]>
Commit | Line | Data |
---|---|---|
1 | /* adler32.c -- compute the Adler-32 checksum of a data stream | |
2 | * Copyright (C) 1995-2004 Mark Adler | |
3 | * For conditions of distribution and use, see copyright notice in zlib.h | |
4 | */ | |
5 | ||
6 | /* @(#) $Id$ */ | |
7 | ||
8 | #define ZLIB_INTERNAL | |
9 | #include "zlib.h" | |
10 | ||
11 | #define BASE 65521UL /* largest prime smaller than 65536 */ | |
12 | #define NMAX 5552 | |
13 | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ | |
14 | ||
15 | #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} | |
16 | #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); | |
17 | #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); | |
18 | #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); | |
19 | #define DO16(buf) DO8(buf,0); DO8(buf,8); | |
20 | ||
21 | /* use NO_DIVIDE if your processor does not do division in hardware */ | |
22 | #ifdef NO_DIVIDE | |
23 | # define MOD(a) \ | |
24 | do { \ | |
25 | if (a >= (BASE << 16)) a -= (BASE << 16); \ | |
26 | if (a >= (BASE << 15)) a -= (BASE << 15); \ | |
27 | if (a >= (BASE << 14)) a -= (BASE << 14); \ | |
28 | if (a >= (BASE << 13)) a -= (BASE << 13); \ | |
29 | if (a >= (BASE << 12)) a -= (BASE << 12); \ | |
30 | if (a >= (BASE << 11)) a -= (BASE << 11); \ | |
31 | if (a >= (BASE << 10)) a -= (BASE << 10); \ | |
32 | if (a >= (BASE << 9)) a -= (BASE << 9); \ | |
33 | if (a >= (BASE << 8)) a -= (BASE << 8); \ | |
34 | if (a >= (BASE << 7)) a -= (BASE << 7); \ | |
35 | if (a >= (BASE << 6)) a -= (BASE << 6); \ | |
36 | if (a >= (BASE << 5)) a -= (BASE << 5); \ | |
37 | if (a >= (BASE << 4)) a -= (BASE << 4); \ | |
38 | if (a >= (BASE << 3)) a -= (BASE << 3); \ | |
39 | if (a >= (BASE << 2)) a -= (BASE << 2); \ | |
40 | if (a >= (BASE << 1)) a -= (BASE << 1); \ | |
41 | if (a >= BASE) a -= BASE; \ | |
42 | } while (0) | |
43 | # define MOD4(a) \ | |
44 | do { \ | |
45 | if (a >= (BASE << 4)) a -= (BASE << 4); \ | |
46 | if (a >= (BASE << 3)) a -= (BASE << 3); \ | |
47 | if (a >= (BASE << 2)) a -= (BASE << 2); \ | |
48 | if (a >= (BASE << 1)) a -= (BASE << 1); \ | |
49 | if (a >= BASE) a -= BASE; \ | |
50 | } while (0) | |
51 | #else | |
52 | # define MOD(a) a %= BASE | |
53 | # define MOD4(a) a %= BASE | |
54 | #endif | |
55 | ||
56 | /* ========================================================================= */ | |
57 | uLong ZEXPORT adler32(adler, buf, len) | |
58 | uLong adler; | |
59 | const Bytef *buf; | |
60 | uInt len; | |
61 | { | |
62 | unsigned long sum2; | |
63 | unsigned n; | |
64 | ||
65 | /* split Adler-32 into component sums */ | |
66 | sum2 = (adler >> 16) & 0xffff; | |
67 | adler &= 0xffff; | |
68 | ||
69 | /* in case user likes doing a byte at a time, keep it fast */ | |
70 | if (len == 1) { | |
71 | adler += buf[0]; | |
72 | if (adler >= BASE) | |
73 | adler -= BASE; | |
74 | sum2 += adler; | |
75 | if (sum2 >= BASE) | |
76 | sum2 -= BASE; | |
77 | return adler | (sum2 << 16); | |
78 | } | |
79 | ||
80 | /* initial Adler-32 value (deferred check for len == 1 speed) */ | |
81 | if (buf == Z_NULL) | |
82 | return 1L; | |
83 | ||
84 | /* in case short lengths are provided, keep it somewhat fast */ | |
85 | if (len < 16) { | |
86 | while (len--) { | |
87 | adler += *buf++; | |
88 | sum2 += adler; | |
89 | } | |
90 | if (adler >= BASE) | |
91 | adler -= BASE; | |
92 | MOD4(sum2); /* only added so many BASE's */ | |
93 | return adler | (sum2 << 16); | |
94 | } | |
95 | ||
96 | /* do length NMAX blocks -- requires just one modulo operation */ | |
97 | while (len >= NMAX) { | |
98 | len -= NMAX; | |
99 | n = NMAX / 16; /* NMAX is divisible by 16 */ | |
100 | do { | |
101 | DO16(buf); /* 16 sums unrolled */ | |
102 | buf += 16; | |
103 | } while (--n); | |
104 | MOD(adler); | |
105 | MOD(sum2); | |
106 | } | |
107 | ||
108 | /* do remaining bytes (less than NMAX, still just one modulo) */ | |
109 | if (len) { /* avoid modulos if none remaining */ | |
110 | while (len >= 16) { | |
111 | len -= 16; | |
112 | DO16(buf); | |
113 | buf += 16; | |
114 | } | |
115 | while (len--) { | |
116 | adler += *buf++; | |
117 | sum2 += adler; | |
118 | } | |
119 | MOD(adler); | |
120 | MOD(sum2); | |
121 | } | |
122 | ||
123 | /* return recombined sums */ | |
124 | return adler | (sum2 << 16); | |
125 | } | |
126 | ||
127 | /* ========================================================================= */ | |
128 | uLong ZEXPORT adler32_combine(adler1, adler2, len2) | |
129 | uLong adler1; | |
130 | uLong adler2; | |
131 | z_off_t len2; | |
132 | { | |
133 | unsigned long sum1; | |
134 | unsigned long sum2; | |
135 | unsigned rem; | |
136 | ||
137 | /* the derivation of this formula is left as an exercise for the reader */ | |
138 | rem = (unsigned)(len2 % BASE); | |
139 | sum1 = adler1 & 0xffff; | |
140 | sum2 = rem * sum1; | |
141 | MOD(sum2); | |
142 | sum1 += (adler2 & 0xffff) + BASE - 1; | |
143 | sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; | |
144 | if (sum1 > BASE) sum1 -= BASE; | |
145 | if (sum1 > BASE) sum1 -= BASE; | |
146 | if (sum2 > (BASE << 1)) sum2 -= (BASE << 1); | |
147 | if (sum2 > BASE) sum2 -= BASE; | |
148 | return sum1 | (sum2 << 16); | |
149 | } |