]>
Commit | Line | Data |
---|---|---|
1 | /* inftrees.c -- generate Huffman trees for efficient decoding | |
2 | * Copyright (C) 1995-1998 Mark Adler | |
3 | * For conditions of distribution and use, see copyright notice in zlib.h | |
4 | */ | |
5 | ||
6 | #include "zutil.h" | |
7 | #include "inftrees.h" | |
8 | ||
9 | #if !defined(BUILDFIXED) && !defined(STDC) | |
10 | # define BUILDFIXED /* non ANSI compilers may not accept inffixed.h */ | |
11 | #endif | |
12 | ||
13 | const char inflate_copyright[] = | |
14 | " inflate 1.1.2 Copyright 1995-1998 Mark Adler "; | |
15 | /* | |
16 | If you use the zlib library in a product, an acknowledgment is welcome | |
17 | in the documentation of your product. If for some reason you cannot | |
18 | include such an acknowledgment, I would appreciate that you keep this | |
19 | copyright string in the executable of your product. | |
20 | */ | |
21 | struct internal_state {int dummy;}; /* for buggy compilers */ | |
22 | ||
23 | /* simplify the use of the inflate_huft type with some defines */ | |
24 | #define exop word.what.Exop | |
25 | #define bits word.what.Bits | |
26 | ||
27 | ||
28 | local int huft_build OF(( | |
29 | uIntf *, /* code lengths in bits */ | |
30 | uInt, /* number of codes */ | |
31 | uInt, /* number of "simple" codes */ | |
32 | const uIntf *, /* list of base values for non-simple codes */ | |
33 | const uIntf *, /* list of extra bits for non-simple codes */ | |
34 | inflate_huft * FAR*,/* result: starting table */ | |
35 | uIntf *, /* maximum lookup bits (returns actual) */ | |
36 | inflate_huft *, /* space for trees */ | |
37 | uInt *, /* hufts used in space */ | |
38 | uIntf * )); /* space for values */ | |
39 | ||
40 | /* Tables for deflate from PKZIP's appnote.txt. */ | |
41 | local const uInt cplens[31] = { /* Copy lengths for literal codes 257..285 */ | |
42 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, | |
43 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; | |
44 | /* see note #13 above about 258 */ | |
45 | local const uInt cplext[31] = { /* Extra bits for literal codes 257..285 */ | |
46 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, | |
47 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 112, 112}; /* 112==invalid */ | |
48 | local const uInt cpdist[30] = { /* Copy offsets for distance codes 0..29 */ | |
49 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, | |
50 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, | |
51 | 8193, 12289, 16385, 24577}; | |
52 | local const uInt cpdext[30] = { /* Extra bits for distance codes */ | |
53 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, | |
54 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, | |
55 | 12, 12, 13, 13}; | |
56 | ||
57 | /* | |
58 | Huffman code decoding is performed using a multi-level table lookup. | |
59 | The fastest way to decode is to simply build a lookup table whose | |
60 | size is determined by the longest code. However, the time it takes | |
61 | to build this table can also be a factor if the data being decoded | |
62 | is not very long. The most common codes are necessarily the | |
63 | shortest codes, so those codes dominate the decoding time, and hence | |
64 | the speed. The idea is you can have a shorter table that decodes the | |
65 | shorter, more probable codes, and then point to subsidiary tables for | |
66 | the longer codes. The time it costs to decode the longer codes is | |
67 | then traded against the time it takes to make longer tables. | |
68 | ||
69 | This results of this trade are in the variables lbits and dbits | |
70 | below. lbits is the number of bits the first level table for literal/ | |
71 | length codes can decode in one step, and dbits is the same thing for | |
72 | the distance codes. Subsequent tables are also less than or equal to | |
73 | those sizes. These values may be adjusted either when all of the | |
74 | codes are shorter than that, in which case the longest code length in | |
75 | bits is used, or when the shortest code is *longer* than the requested | |
76 | table size, in which case the length of the shortest code in bits is | |
77 | used. | |
78 | ||
79 | There are two different values for the two tables, since they code a | |
80 | different number of possibilities each. The literal/length table | |
81 | codes 286 possible values, or in a flat code, a little over eight | |
82 | bits. The distance table codes 30 possible values, or a little less | |
83 | than five bits, flat. The optimum values for speed end up being | |
84 | about one bit more than those, so lbits is 8+1 and dbits is 5+1. | |
85 | The optimum values may differ though from machine to machine, and | |
86 | possibly even between compilers. Your mileage may vary. | |
87 | */ | |
88 | ||
89 | ||
90 | /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */ | |
91 | #define BMAX 15 /* maximum bit length of any code */ | |
92 | ||
93 | local int huft_build(b, n, s, d, e, t, m, hp, hn, v) | |
94 | uIntf *b; /* code lengths in bits (all assumed <= BMAX) */ | |
95 | uInt n; /* number of codes (assumed <= 288) */ | |
96 | uInt s; /* number of simple-valued codes (0..s-1) */ | |
97 | const uIntf *d; /* list of base values for non-simple codes */ | |
98 | const uIntf *e; /* list of extra bits for non-simple codes */ | |
99 | inflate_huft * FAR *t; /* result: starting table */ | |
100 | uIntf *m; /* maximum lookup bits, returns actual */ | |
101 | inflate_huft *hp; /* space for trees */ | |
102 | uInt *hn; /* hufts used in space */ | |
103 | uIntf *v; /* working area: values in order of bit length */ | |
104 | /* Given a list of code lengths and a maximum table size, make a set of | |
105 | tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR | |
106 | if the given code set is incomplete (the tables are still built in this | |
107 | case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of | |
108 | lengths), or Z_MEM_ERROR if not enough memory. */ | |
109 | { | |
110 | ||
111 | uInt a; /* counter for codes of length k */ | |
112 | uInt c[BMAX+1]; /* bit length count table */ | |
113 | uInt f; /* i repeats in table every f entries */ | |
114 | int g; /* maximum code length */ | |
115 | int h; /* table level */ | |
116 | register uInt i; /* counter, current code */ | |
117 | register uInt j; /* counter */ | |
118 | register int k; /* number of bits in current code */ | |
119 | int l; /* bits per table (returned in m) */ | |
120 | uInt mask; /* (1 << w) - 1, to avoid cc -O bug on HP */ | |
121 | register uIntf *p; /* pointer into c[], b[], or v[] */ | |
122 | inflate_huft *q; /* points to current table */ | |
123 | struct inflate_huft_s r; /* table entry for structure assignment */ | |
124 | inflate_huft *u[BMAX]; /* table stack */ | |
125 | register int w; /* bits before this table == (l * h) */ | |
126 | uInt x[BMAX+1]; /* bit offsets, then code stack */ | |
127 | uIntf *xp; /* pointer into x */ | |
128 | int y; /* number of dummy codes added */ | |
129 | uInt z; /* number of entries in current table */ | |
130 | ||
131 | ||
132 | /* Generate counts for each bit length */ | |
133 | p = c; | |
134 | #define C0 *p++ = 0; | |
135 | #define C2 C0 C0 C0 C0 | |
136 | #define C4 C2 C2 C2 C2 | |
137 | C4 /* clear c[]--assume BMAX+1 is 16 */ | |
138 | p = b; i = n; | |
139 | do { | |
140 | c[*p++]++; /* assume all entries <= BMAX */ | |
141 | } while (--i); | |
142 | if (c[0] == n) /* null input--all zero length codes */ | |
143 | { | |
144 | *t = (inflate_huft *)Z_NULL; | |
145 | *m = 0; | |
146 | return Z_OK; | |
147 | } | |
148 | ||
149 | ||
150 | /* Find minimum and maximum length, bound *m by those */ | |
151 | l = *m; | |
152 | for (j = 1; j <= BMAX; j++) | |
153 | if (c[j]) | |
154 | break; | |
155 | k = j; /* minimum code length */ | |
156 | if ((uInt)l < j) | |
157 | l = j; | |
158 | for (i = BMAX; i; i--) | |
159 | if (c[i]) | |
160 | break; | |
161 | g = i; /* maximum code length */ | |
162 | if ((uInt)l > i) | |
163 | l = i; | |
164 | *m = l; | |
165 | ||
166 | ||
167 | /* Adjust last length count to fill out codes, if needed */ | |
168 | for (y = 1 << j; j < i; j++, y <<= 1) | |
169 | if ((y -= c[j]) < 0) | |
170 | return Z_DATA_ERROR; | |
171 | if ((y -= c[i]) < 0) | |
172 | return Z_DATA_ERROR; | |
173 | c[i] += y; | |
174 | ||
175 | ||
176 | /* Generate starting offsets into the value table for each length */ | |
177 | x[1] = j = 0; | |
178 | p = c + 1; xp = x + 2; | |
179 | while (--i) { /* note that i == g from above */ | |
180 | *xp++ = (j += *p++); | |
181 | } | |
182 | ||
183 | ||
184 | /* Make a table of values in order of bit lengths */ | |
185 | p = b; i = 0; | |
186 | do { | |
187 | if ((j = *p++) != 0) | |
188 | v[x[j]++] = i; | |
189 | } while (++i < n); | |
190 | n = x[g]; /* set n to length of v */ | |
191 | ||
192 | ||
193 | /* Generate the Huffman codes and for each, make the table entries */ | |
194 | x[0] = i = 0; /* first Huffman code is zero */ | |
195 | p = v; /* grab values in bit order */ | |
196 | h = -1; /* no tables yet--level -1 */ | |
197 | w = -l; /* bits decoded == (l * h) */ | |
198 | u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */ | |
199 | q = (inflate_huft *)Z_NULL; /* ditto */ | |
200 | z = 0; /* ditto */ | |
201 | ||
202 | /* go through the bit lengths (k already is bits in shortest code) */ | |
203 | for (; k <= g; k++) | |
204 | { | |
205 | a = c[k]; | |
206 | while (a--) | |
207 | { | |
208 | /* here i is the Huffman code of length k bits for value *p */ | |
209 | /* make tables up to required level */ | |
210 | while (k > w + l) | |
211 | { | |
212 | h++; | |
213 | w += l; /* previous table always l bits */ | |
214 | ||
215 | /* compute minimum size table less than or equal to l bits */ | |
216 | z = g - w; | |
217 | z = z > (uInt)l ? l : z; /* table size upper limit */ | |
218 | if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ | |
219 | { /* too few codes for k-w bit table */ | |
220 | f -= a + 1; /* deduct codes from patterns left */ | |
221 | xp = c + k; | |
222 | if (j < z) | |
223 | while (++j < z) /* try smaller tables up to z bits */ | |
224 | { | |
225 | if ((f <<= 1) <= *++xp) | |
226 | break; /* enough codes to use up j bits */ | |
227 | f -= *xp; /* else deduct codes from patterns */ | |
228 | } | |
229 | } | |
230 | z = 1 << j; /* table entries for j-bit table */ | |
231 | ||
232 | /* allocate new table */ | |
233 | if (*hn + z > MANY) /* (note: doesn't matter for fixed) */ | |
234 | return Z_MEM_ERROR; /* not enough memory */ | |
235 | u[h] = q = hp + *hn; | |
236 | *hn += z; | |
237 | ||
238 | /* connect to last table, if there is one */ | |
239 | if (h) | |
240 | { | |
241 | x[h] = i; /* save pattern for backing up */ | |
242 | r.bits = (Byte)l; /* bits to dump before this table */ | |
243 | r.exop = (Byte)j; /* bits in this table */ | |
244 | j = i >> (w - l); | |
245 | r.base = (uInt)(q - u[h-1] - j); /* offset to this table */ | |
246 | u[h-1][j] = r; /* connect to last table */ | |
247 | } | |
248 | else | |
249 | *t = q; /* first table is returned result */ | |
250 | } | |
251 | ||
252 | /* set up table entry in r */ | |
253 | r.bits = (Byte)(k - w); | |
254 | if (p >= v + n) | |
255 | r.exop = 128 + 64; /* out of values--invalid code */ | |
256 | else if (*p < s) | |
257 | { | |
258 | r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */ | |
259 | r.base = *p++; /* simple code is just the value */ | |
260 | } | |
261 | else | |
262 | { | |
263 | r.exop = (Byte)(e[*p - s] + 16 + 64);/* non-simple--look up in lists */ | |
264 | r.base = d[*p++ - s]; | |
265 | } | |
266 | ||
267 | /* fill code-like entries with r */ | |
268 | f = 1 << (k - w); | |
269 | for (j = i >> w; j < z; j += f) | |
270 | q[j] = r; | |
271 | ||
272 | /* backwards increment the k-bit code i */ | |
273 | for (j = 1 << (k - 1); i & j; j >>= 1) | |
274 | i ^= j; | |
275 | i ^= j; | |
276 | ||
277 | /* backup over finished tables */ | |
278 | mask = (1 << w) - 1; /* needed on HP, cc -O bug */ | |
279 | while ((i & mask) != x[h]) | |
280 | { | |
281 | h--; /* don't need to update q */ | |
282 | w -= l; | |
283 | mask = (1 << w) - 1; | |
284 | } | |
285 | } | |
286 | } | |
287 | ||
288 | ||
289 | /* Return Z_BUF_ERROR if we were given an incomplete table */ | |
290 | return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; | |
291 | } | |
292 | ||
293 | ||
294 | int inflate_trees_bits(c, bb, tb, hp, z) | |
295 | uIntf *c; /* 19 code lengths */ | |
296 | uIntf *bb; /* bits tree desired/actual depth */ | |
297 | inflate_huft * FAR *tb; /* bits tree result */ | |
298 | inflate_huft *hp; /* space for trees */ | |
299 | z_streamp z; /* for messages */ | |
300 | { | |
301 | int r; | |
302 | uInt hn = 0; /* hufts used in space */ | |
303 | uIntf *v; /* work area for huft_build */ | |
304 | ||
305 | if ((v = (uIntf*)ZALLOC(z, 19, sizeof(uInt))) == Z_NULL) | |
306 | return Z_MEM_ERROR; | |
307 | r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, | |
308 | tb, bb, hp, &hn, v); | |
309 | if (r == Z_DATA_ERROR) | |
310 | z->msg = (char*)"oversubscribed dynamic bit lengths tree"; | |
311 | else if (r == Z_BUF_ERROR || *bb == 0) | |
312 | { | |
313 | z->msg = (char*)"incomplete dynamic bit lengths tree"; | |
314 | r = Z_DATA_ERROR; | |
315 | } | |
316 | ZFREE(z, v); | |
317 | return r; | |
318 | } | |
319 | ||
320 | ||
321 | int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, hp, z) | |
322 | uInt nl; /* number of literal/length codes */ | |
323 | uInt nd; /* number of distance codes */ | |
324 | uIntf *c; /* that many (total) code lengths */ | |
325 | uIntf *bl; /* literal desired/actual bit depth */ | |
326 | uIntf *bd; /* distance desired/actual bit depth */ | |
327 | inflate_huft * FAR *tl; /* literal/length tree result */ | |
328 | inflate_huft * FAR *td; /* distance tree result */ | |
329 | inflate_huft *hp; /* space for trees */ | |
330 | z_streamp z; /* for messages */ | |
331 | { | |
332 | int r; | |
333 | uInt hn = 0; /* hufts used in space */ | |
334 | uIntf *v; /* work area for huft_build */ | |
335 | ||
336 | /* allocate work area */ | |
337 | if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL) | |
338 | return Z_MEM_ERROR; | |
339 | ||
340 | /* build literal/length tree */ | |
341 | r = huft_build(c, nl, 257, cplens, cplext, tl, bl, hp, &hn, v); | |
342 | if (r != Z_OK || *bl == 0) | |
343 | { | |
344 | if (r == Z_DATA_ERROR) | |
345 | z->msg = (char*)"oversubscribed literal/length tree"; | |
346 | else if (r != Z_MEM_ERROR) | |
347 | { | |
348 | z->msg = (char*)"incomplete literal/length tree"; | |
349 | r = Z_DATA_ERROR; | |
350 | } | |
351 | ZFREE(z, v); | |
352 | return r; | |
353 | } | |
354 | ||
355 | /* build distance tree */ | |
356 | r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, hp, &hn, v); | |
357 | if (r != Z_OK || (*bd == 0 && nl > 257)) | |
358 | { | |
359 | if (r == Z_DATA_ERROR) | |
360 | z->msg = (char*)"oversubscribed distance tree"; | |
361 | else if (r == Z_BUF_ERROR) { | |
362 | #ifdef PKZIP_BUG_WORKAROUND | |
363 | r = Z_OK; | |
364 | } | |
365 | #else | |
366 | z->msg = (char*)"incomplete distance tree"; | |
367 | r = Z_DATA_ERROR; | |
368 | } | |
369 | else if (r != Z_MEM_ERROR) | |
370 | { | |
371 | z->msg = (char*)"empty distance tree with lengths"; | |
372 | r = Z_DATA_ERROR; | |
373 | } | |
374 | ZFREE(z, v); | |
375 | return r; | |
376 | #endif | |
377 | } | |
378 | ||
379 | /* done */ | |
380 | ZFREE(z, v); | |
381 | return Z_OK; | |
382 | } | |
383 | ||
384 | ||
385 | /* build fixed tables only once--keep them here */ | |
386 | #ifdef BUILDFIXED | |
387 | local int fixed_built = 0; | |
388 | #define FIXEDH 544 /* number of hufts used by fixed tables */ | |
389 | local inflate_huft fixed_mem[FIXEDH]; | |
390 | local uInt fixed_bl; | |
391 | local uInt fixed_bd; | |
392 | local inflate_huft *fixed_tl; | |
393 | local inflate_huft *fixed_td; | |
394 | #else | |
395 | #include "inffixed.h" | |
396 | #endif | |
397 | ||
398 | ||
399 | int inflate_trees_fixed(bl, bd, tl, td, z) | |
400 | uIntf *bl; /* literal desired/actual bit depth */ | |
401 | uIntf *bd; /* distance desired/actual bit depth */ | |
402 | inflate_huft * FAR *tl; /* literal/length tree result */ | |
403 | inflate_huft * FAR *td; /* distance tree result */ | |
404 | z_streamp z; /* for memory allocation */ | |
405 | { | |
406 | #ifdef BUILDFIXED | |
407 | /* build fixed tables if not already */ | |
408 | if (!fixed_built) | |
409 | { | |
410 | int k; /* temporary variable */ | |
411 | uInt f = 0; /* number of hufts used in fixed_mem */ | |
412 | uIntf *c; /* length list for huft_build */ | |
413 | uIntf *v; /* work area for huft_build */ | |
414 | ||
415 | /* allocate memory */ | |
416 | if ((c = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL) | |
417 | return Z_MEM_ERROR; | |
418 | if ((v = (uIntf*)ZALLOC(z, 288, sizeof(uInt))) == Z_NULL) | |
419 | { | |
420 | ZFREE(z, c); | |
421 | return Z_MEM_ERROR; | |
422 | } | |
423 | ||
424 | /* literal table */ | |
425 | for (k = 0; k < 144; k++) | |
426 | c[k] = 8; | |
427 | for (; k < 256; k++) | |
428 | c[k] = 9; | |
429 | for (; k < 280; k++) | |
430 | c[k] = 7; | |
431 | for (; k < 288; k++) | |
432 | c[k] = 8; | |
433 | fixed_bl = 9; | |
434 | huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, | |
435 | fixed_mem, &f, v); | |
436 | ||
437 | /* distance table */ | |
438 | for (k = 0; k < 30; k++) | |
439 | c[k] = 5; | |
440 | fixed_bd = 5; | |
441 | huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, | |
442 | fixed_mem, &f, v); | |
443 | ||
444 | /* done */ | |
445 | ZFREE(z, v); | |
446 | ZFREE(z, c); | |
447 | fixed_built = 1; | |
448 | } | |
449 | #endif | |
450 | *bl = fixed_bl; | |
451 | *bd = fixed_bd; | |
452 | *tl = fixed_tl; | |
453 | *td = fixed_td; | |
454 | return Z_OK; | |
455 | } |