]> git.saurik.com Git - wxWidgets.git/blame_incremental - docs/latex/wx/tstring.tex
fixed bug with wxPathExists('c:\') yet again
[wxWidgets.git] / docs / latex / wx / tstring.tex
... / ...
CommitLineData
1\section{wxString overview}\label{wxstringoverview}
2
3Classes: \helpref{wxString}{wxstring}, \helpref{wxArrayString}{wxarraystring}, \helpref{wxStringTokenizer}{wxstringtokenizer}
4
5\subsection{Introduction}
6
7wxString is a class which represents a character string of arbitrary length (limited by
8{\it MAX\_INT} which is usually 2147483647 on 32 bit machines) and containing
9arbitrary characters. The ASCII NUL character is allowed, although care should be
10taken when passing strings containing it to other functions.
11
12wxString works with both ASCII (8 bit characters) as well as UNICODE (16 but
13characters) strings.
14
15This class has all the standard operations you can expect to find in a string class:
16dynamic memory management (string extends to accommodate new characters),
17construction from other strings, C strings and characters, assignment operators,
18access to individual characters, string concatenation and comparison, substring
19extraction, case conversion, trimming and padding (with spaces), searching and
20replacing and both C-like \helpref{Printf()}{wxstringprintf} and stream-like
21insertion functions as well as much more - see \helpref{wxString}{wxstring}
22for a list of all functions.
23
24\subsection{Comparison of wxString to other string classes}
25
26The advantages of using a special string class instead of working directly with
27C strings are so obvious that there is a huge number of such classes available.
28The most important advantage is the need to always
29remember to allocate/free memory for C strings; working with fixed size buffers almost
30inevitably leads to buffer overflows. At last, C++ has a standard string class
31(std::string). So why the need for wxString?
32
33There are several advantages:
34
35\begin{enumerate}\itemsep=0pt
36\item {\bf Efficiency} This class was made to be as efficient as possible: both
37in terms of size (each wxString objects takes exactly the same space as a {\it
38char *} pointer, sing \helpref{reference counting}{wxstringrefcount}) and speed.
39It also provides performance \helpref{statistics gathering code}{wxstringtuning}
40which may be enabled to fine tune the memory allocation strategy for your
41particular application - and the gain might be quite big.
42\item {\bf Compatibility} This class tries to combine almost full compatibility
43with the old wxWindows 1.xx wxString class, some reminiscence to MFC CString
44class and 90\% of the functionality of std::string class.
45\item {\bf Rich set of functions} Some of the functions present in wxString are
46very useful but don't exist in most of other string classes: for example,
47\helpref{AfterFirst}{wxstringafterfirst},
48\helpref{BeforeLast}{wxstringbeforelast}, \helpref{operator<<}{wxstringoperatorout}
49or \helpref{Printf}{wxstringprintf}. Of course, all the standard string
50operations are supported as well.
51\item {\bf UNICODE} In this release, wxString only supports {\it construction} from
52a UNICODE string, but in the next one it will be capable of also storing its
53internal data in either ASCII or UNICODE format.
54\item {\bf Used by wxWindows} And, of course, this class is used everywhere
55inside wxWindows so there is no performance loss which would result from
56conversions of objects of any other string class (including std::string) to
57wxString internally by wxWindows.
58\end{enumerate}
59
60However, there are several problems as well. The most important one is probably
61that there are often several functions to do exactly the same thing: for
62example, to get the length of the string either one of
63length(), \helpref{Len()}{wxstringlen} or
64\helpref{Length()}{wxstringlength} may be used. The first function, as almost
65all the other functions in lowercase, is std::string compatible. The second one
66is "native" wxString version and the last one is wxWindows 1.xx way. So the
67question is: which one is better to use? And the answer is that:
68
69{\bf The usage of std::string compatible functions is strongly advised!} It will
70both make your code more familiar to other C++ programmers (who are supposed to
71have knowledge of std::string but not of wxString), let you reuse the same code
72in both wxWindows and other programs (by just typedefing wxString as std::string
73when used outside wxWindows) and by staying compatible with future versions of
74wxWindows which will probably start using std::string sooner or later too.
75
76In the situations where there is no corresponding std::string function, please
77try to use the new wxString methods and not the old wxWindows 1.xx variants
78which are deprecated and may disappear in future versions.
79
80\subsection{Some advice about using wxString}\label{wxstringadvices}
81
82Probably the main trap with using this class is the implicit conversion operator to
83{\it const char *}. It is advised that you use \helpref{c\_str()}{wxstringcstr}
84instead to clearly indicate when the conversion is done. Specifically, the
85danger of this implicit conversion may be seen in the following code fragment:
86
87\begin{verbatim}
88// this function converts the input string to uppercase, output it to the screen
89// and returns the result
90const char *SayHELLO(const wxString& input)
91{
92 wxString output = input.Upper();
93
94 printf("Hello, %s!\n", output);
95
96 return output;
97}
98\end{verbatim}
99
100There are two nasty bugs in these three lines. First of them is in the call to the
101{\it printf()} function. Although the implicit conversion to C strings is applied
102automatically by the compiler in the case of
103
104\begin{verbatim}
105 puts(output);
106\end{verbatim}
107
108because the argument of {\it puts()} is known to be of the type {\it const char *},
109this is {\bf not} done for {\it printf()} which is a function with variable
110number of arguments (and whose arguments are of unknown types). So this call may
111do anything at all (including displaying the correct string on screen), although
112the most likely result is a program crash. The solution is to use
113\helpref{c\_str()}{wxstringcstr}: just replace this line with
114
115\begin{verbatim}
116 printf("Hello, %s!\n", output.c_str());
117\end{verbatim}
118
119The second bug is that returning {\it output} doesn't work. The implicit cast is
120used again, so the code compiles, but as it returns a pointer to a buffer
121belonging to a local variable which is deleted as soon as the function exits,
122its contents is totally arbitrary. The solution to this problem is also easy:
123just make the function return wxString instead of a C string.
124
125This leads us to the following general advice: all functions taking string
126arguments should take {\it const wxString\&} (this makes assignment to the
127strings inside the function faster because of
128\helpref{reference counting}{wxstringrefcount}) and all functions returning
129strings should return {\it wxString} - this makes it safe to return local
130variables.
131
132\subsection{Other string related functions and classes}
133
134As most programs use character strings, the standard C library provides quite
135a few functions to work with them. Unfortunately, some of them have rather
136counter-intuitive behaviour (like strncpy() which doesn't always terminate the
137resulting string with a NULL) and are in general not very safe (passing NULL
138to them will probably lead to program crash). Moreover, some very useful
139functions are not standard at all. This is why in addition to all wxString
140functions, there are also a few global string functions which try to correct
141these problems: \helpref{wxIsEmpty()}{wxisempty} verifies whether the string
142is empty (returning {\tt TRUE} for {\tt NULL} pointers),
143\helpref{wxStrlen()}{wxstrlen} also handles NULLs correctly and returns 0 for
144them and \helpref{wxStricmp()}{wxstricmp} is just a platform-independent
145version of case-insensitive string comparison function known either as
146stricmp() or strcasecmp() on different platforms.
147
148The {\tt <wx/string.h>} header also defines \helpref{wxSnprintf}{wxsnprintf}
149and \helpref{wxVsnprintf}{wxvsnprintf} functions which should be used instead
150of the inherently dangerous standard {\tt sprintf()} and which use {\tt
151snprintf()} instead which does buffer size checks whenever possible. Of
152course, you may also use \helpref{wxString::Printf}{wxstringprintf} which is
153also safe.
154
155There is another class which might be useful when working with wxString:
156\helpref{wxStringTokenizer}{wxstringtokenizer}. It is helpful when a string must
157be broken into tokens and replaces the standard C library {\it
158strtok()} function.
159
160And the very last string-related class is \helpref{wxArrayString}{wxarraystring}: it
161is just a version of the "template" dynamic array class which is specialized to work
162with strings. Please note that this class is specially optimized (using its
163knowledge of the internal structure of wxString) for storing strings and so it is
164vastly better from a performance point of view than a wxObjectArray of wxStrings.
165
166\subsection{Reference counting and why you shouldn't care about it}\label{wxstringrefcount}
167
168wxString objects use a technique known as {\it copy on write} (COW). This means
169that when a string is assigned to another, no copying really takes place: only
170the reference count on the shared string data is incremented and both strings
171share the same data.
172
173But as soon as one of the two (or more) strings is modified, the data has to be
174copied because the changes to one of the strings shouldn't be seen in the
175others. As data copying only happens when the string is written to, this is
176known as COW.
177
178What is important to understand is that all this happens absolutely
179transparently to the class users and that whether a string is shared or not is
180not seen from the outside of the class - in any case, the result of any
181operation on it is the same.
182
183Probably the unique case when you might want to think about reference
184counting is when a string character is taken from a string which is not a
185constant (or a constant reference). In this case, due to C++ rules, the
186"read-only" {\it operator[]} (which is the same as
187\helpref{GetChar()}{wxstringgetchar}) cannot be chosen and the "read/write"
188{\it operator[]} (the same as
189\helpref{GetWritableChar()}{wxstringgetwritablechar}) is used instead. As the
190call to this operator may modify the string, its data is unshared (COW is done)
191and so if the string was really shared there is some performance loss (both in
192terms of speed and memory consumption). In the rare cases when this may be
193important, you might prefer using \helpref{GetChar()}{wxstringgetchar} instead
194of the array subscript operator for this reasons. Please note that
195\helpref{at()}{wxstringat} method has the same problem as the subscript operator in
196this situation and so using it is not really better. Also note that if all
197string arguments to your functions are passed as {\it const wxString\&} (see the
198section \helpref{Some advice}{wxstringadvices}) this situation will almost
199never arise because for constant references the correct operator is called automatically.
200
201\subsection{Tuning wxString for your application}\label{wxstringtuning}
202
203\normalbox{{\bf Note:} this section is strictly about performance issues and is
204absolutely not necessary to read for using wxString class. Please skip it unless
205you feel familiar with profilers and relative tools. If you do read it, please
206also read the preceding section about
207\helpref{reference counting}{wxstringrefcount}.}
208
209For the performance reasons wxString doesn't allocate exactly the amount of
210memory needed for each string. Instead, it adds a small amount of space to each
211allocated block which allows it to not reallocate memory (a relatively
212expensive operation) too often as when, for example, a string is constructed by
213subsequently adding one character at a time to it, as for example in:
214
215\begin{verbatim}
216// delete all vowels from the string
217wxString DeleteAllVowels(const wxString& original)
218{
219 wxString result;
220
221 size_t len = original.length();
222 for ( size_t n = 0; n < len; n++ )
223 {
224 if ( strchr("aeuio", tolower(original[n])) == NULL )
225 result += original[n];
226 }
227
228 return result;
229}
230\end{verbatim}
231
232This is quite a common situation and not allocating extra memory at all would
233lead to very bad performance in this case because there would be as many memory
234(re)allocations as there are consonants in the original string. Allocating too
235much extra memory would help to improve the speed in this situation, but due to
236a great number of wxString objects typically used in a program would also
237increase the memory consumption too much.
238
239The very best solution in precisely this case would be to use
240\helpref{Alloc()}{wxstringalloc} function to preallocate, for example, len bytes
241from the beginning - this will lead to exactly one memory allocation being
242performed (because the result is at most as long as the original string).
243
244However, using Alloc() is tedious and so wxString tries to do its best. The
245default algorithm assumes that memory allocation is done in granularity of at
246least 16 bytes (which is the case on almost all of wide-spread platforms) and so
247nothing is lost if the amount of memory to allocate is rounded up to the next
248multiple of 16. Like this, no memory is lost and 15 iterations from 16 in the
249example above won't allocate memory but use the already allocated pool.
250
251The default approach is quite conservative. Allocating more memory may bring
252important performance benefits for programs using (relatively) few very long
253strings. The amount of memory allocated is configured by the setting of {\it
254EXTRA\_ALLOC} in the file string.cpp during compilation (be sure to understand
255why its default value is what it is before modifying it!). You may try setting
256it to greater amount (say twice nLen) or to 0 (to see performance degradation
257which will follow) and analyse the impact of it on your program. If you do it,
258you will probably find it helpful to also define WXSTRING\_STATISTICS symbol
259which tells the wxString class to collect performance statistics and to show
260them on stderr on program termination. This will show you the average length of
261strings your program manipulates, their average initial length and also the
262percent of times when memory wasn't reallocated when string concatenation was
263done but the already preallocated memory was used (this value should be about
26498\% for the default allocation policy, if it is less than 90\% you should
265really consider fine tuning wxString for your application).
266
267It goes without saying that a profiler should be used to measure the precise
268difference the change to EXTRA\_ALLOC makes to your program.
269