]>
Commit | Line | Data |
---|---|---|
1 | /////////////////////////////////////////////////////////////////////////////// | |
2 | // Name: matrix.cpp | |
3 | // Purpose: wxTransformMatrix class | |
4 | // Author: Chris Breeze, Julian Smart | |
5 | // Modified by: Klaas Holwerda | |
6 | // Created: 01/02/97 | |
7 | // RCS-ID: $Id$ | |
8 | // Copyright: (c) Julian Smart | |
9 | // Licence: wxWindows licence | |
10 | /////////////////////////////////////////////////////////////////////////////// | |
11 | ||
12 | // Note: this is intended to be used in wxDC at some point to replace | |
13 | // the current system of scaling/translation. It is not yet used. | |
14 | ||
15 | // For compilers that support precompilation, includes "wx.h". | |
16 | #include "wx/wxprec.h" | |
17 | ||
18 | #ifdef __BORLANDC__ | |
19 | #pragma hdrstop | |
20 | #endif | |
21 | ||
22 | #ifndef WX_PRECOMP | |
23 | #include "wx/defs.h" | |
24 | #include "wx/math.h" | |
25 | #endif | |
26 | ||
27 | #include "wx/matrix.h" | |
28 | ||
29 | static const double pi = M_PI; | |
30 | ||
31 | wxTransformMatrix::wxTransformMatrix(void) | |
32 | { | |
33 | m_isIdentity = false; | |
34 | ||
35 | Identity(); | |
36 | } | |
37 | ||
38 | wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat) | |
39 | : wxObject() | |
40 | { | |
41 | (*this) = mat; | |
42 | } | |
43 | ||
44 | double wxTransformMatrix::GetValue(int col, int row) const | |
45 | { | |
46 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
47 | return 0.0; | |
48 | ||
49 | return m_matrix[col][row]; | |
50 | } | |
51 | ||
52 | void wxTransformMatrix::SetValue(int col, int row, double value) | |
53 | { | |
54 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
55 | return; | |
56 | ||
57 | m_matrix[col][row] = value; | |
58 | m_isIdentity = IsIdentity1(); | |
59 | } | |
60 | ||
61 | void wxTransformMatrix::operator = (const wxTransformMatrix& mat) | |
62 | { | |
63 | int i, j; | |
64 | for (i = 0; i < 3; i++) | |
65 | { | |
66 | for (j = 0; j < 3; j++) | |
67 | { | |
68 | m_matrix[i][j] = mat.m_matrix[i][j]; | |
69 | } | |
70 | } | |
71 | m_isIdentity = mat.m_isIdentity; | |
72 | } | |
73 | ||
74 | bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) const | |
75 | { | |
76 | if (m_isIdentity && mat.m_isIdentity) | |
77 | return true; | |
78 | ||
79 | int i, j; | |
80 | for (i = 0; i < 3; i++) | |
81 | { | |
82 | for (j = 0; j < 3; j++) | |
83 | { | |
84 | if ( !wxIsSameDouble(m_matrix[i][j], mat.m_matrix[i][j]) ) | |
85 | return false; | |
86 | } | |
87 | } | |
88 | return true; | |
89 | } | |
90 | ||
91 | bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) const | |
92 | { | |
93 | return (! ((*this) == mat)); | |
94 | } | |
95 | ||
96 | double& wxTransformMatrix::operator()(int col, int row) | |
97 | { | |
98 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
99 | return m_matrix[0][0]; | |
100 | ||
101 | return m_matrix[col][row]; | |
102 | } | |
103 | ||
104 | double wxTransformMatrix::operator()(int col, int row) const | |
105 | { | |
106 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
107 | return 0.0; | |
108 | ||
109 | return m_matrix[col][row]; | |
110 | } | |
111 | ||
112 | // Invert matrix | |
113 | bool wxTransformMatrix::Invert(void) | |
114 | { | |
115 | double inverseMatrix[3][3]; | |
116 | ||
117 | // calculate the adjoint | |
118 | inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]); | |
119 | inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]); | |
120 | inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]); | |
121 | ||
122 | inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]); | |
123 | inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]); | |
124 | inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]); | |
125 | ||
126 | inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]); | |
127 | inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]); | |
128 | inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]); | |
129 | ||
130 | // now divide by the determinant | |
131 | double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0]; | |
132 | if ( wxIsNullDouble(det) ) | |
133 | return false; | |
134 | ||
135 | inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det; | |
136 | inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det; | |
137 | inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det; | |
138 | ||
139 | for (int i = 0; i < 3; i++) | |
140 | { | |
141 | for (int j = 0; j < 3; j++) | |
142 | { | |
143 | m_matrix[i][j] = inverseMatrix[i][j]; | |
144 | } | |
145 | } | |
146 | m_isIdentity = IsIdentity1(); | |
147 | return true; | |
148 | } | |
149 | ||
150 | // Make into identity matrix | |
151 | bool wxTransformMatrix::Identity(void) | |
152 | { | |
153 | m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0; | |
154 | m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0; | |
155 | m_isIdentity = true; | |
156 | ||
157 | return true; | |
158 | } | |
159 | ||
160 | // Scale by scale (isotropic scaling i.e. the same in x and y): | |
161 | // | scale 0 0 | | |
162 | // matrix' = | 0 scale 0 | x matrix | |
163 | // | 0 0 scale | | |
164 | // | |
165 | bool wxTransformMatrix::Scale(double scale) | |
166 | { | |
167 | int i, j; | |
168 | for (i = 0; i < 3; i++) | |
169 | { | |
170 | for (j = 0; j < 3; j++) | |
171 | { | |
172 | m_matrix[i][j] *= scale; | |
173 | } | |
174 | } | |
175 | m_isIdentity = IsIdentity1(); | |
176 | ||
177 | return true; | |
178 | } | |
179 | ||
180 | ||
181 | // scale a matrix in 2D | |
182 | // | |
183 | // xs 0 xc(1-xs) | |
184 | // 0 ys yc(1-ys) | |
185 | // 0 0 1 | |
186 | // | |
187 | wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc) | |
188 | { | |
189 | double r00,r10,r20,r01,r11,r21; | |
190 | ||
191 | if (m_isIdentity) | |
192 | { | |
193 | double tx = xc*(1-xs); | |
194 | double ty = yc*(1-ys); | |
195 | r00 = xs; | |
196 | r10 = 0; | |
197 | r20 = tx; | |
198 | r01 = 0; | |
199 | r11 = ys; | |
200 | r21 = ty; | |
201 | } | |
202 | else if ( !wxIsNullDouble(xc) || !wxIsNullDouble(yc) ) | |
203 | { | |
204 | double tx = xc*(1-xs); | |
205 | double ty = yc*(1-ys); | |
206 | r00 = xs * m_matrix[0][0]; | |
207 | r10 = xs * m_matrix[1][0]; | |
208 | r20 = xs * m_matrix[2][0] + tx; | |
209 | r01 = ys * m_matrix[0][1]; | |
210 | r11 = ys * m_matrix[1][1]; | |
211 | r21 = ys * m_matrix[2][1] + ty; | |
212 | } | |
213 | else | |
214 | { | |
215 | r00 = xs * m_matrix[0][0]; | |
216 | r10 = xs * m_matrix[1][0]; | |
217 | r20 = xs * m_matrix[2][0]; | |
218 | r01 = ys * m_matrix[0][1]; | |
219 | r11 = ys * m_matrix[1][1]; | |
220 | r21 = ys * m_matrix[2][1]; | |
221 | } | |
222 | ||
223 | m_matrix[0][0] = r00; | |
224 | m_matrix[1][0] = r10; | |
225 | m_matrix[2][0] = r20; | |
226 | m_matrix[0][1] = r01; | |
227 | m_matrix[1][1] = r11; | |
228 | m_matrix[2][1] = r21; | |
229 | ||
230 | /* or like this | |
231 | // first translate to origin O | |
232 | (*this).Translate(-x_cen, -y_cen); | |
233 | ||
234 | // now do the scaling | |
235 | wxTransformMatrix scale; | |
236 | scale.m_matrix[0][0] = x_fac; | |
237 | scale.m_matrix[1][1] = y_fac; | |
238 | scale.m_isIdentity = IsIdentity1(); | |
239 | ||
240 | *this = scale * (*this); | |
241 | ||
242 | // translate back from origin to x_cen, y_cen | |
243 | (*this).Translate(x_cen, y_cen); | |
244 | */ | |
245 | ||
246 | m_isIdentity = IsIdentity1(); | |
247 | ||
248 | return *this; | |
249 | } | |
250 | ||
251 | ||
252 | // mirror a matrix in x, y | |
253 | // | |
254 | // -1 0 0 Y-mirror | |
255 | // 0 -1 0 X-mirror | |
256 | // 0 0 -1 Z-mirror | |
257 | wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y) | |
258 | { | |
259 | wxTransformMatrix temp; | |
260 | if (x) | |
261 | { | |
262 | temp.m_matrix[1][1] = -1; | |
263 | temp.m_isIdentity=false; | |
264 | } | |
265 | if (y) | |
266 | { | |
267 | temp.m_matrix[0][0] = -1; | |
268 | temp.m_isIdentity=false; | |
269 | } | |
270 | ||
271 | *this = temp * (*this); | |
272 | m_isIdentity = IsIdentity1(); | |
273 | return *this; | |
274 | } | |
275 | ||
276 | // Translate by dx, dy: | |
277 | // | 1 0 dx | | |
278 | // matrix' = | 0 1 dy | x matrix | |
279 | // | 0 0 1 | | |
280 | // | |
281 | bool wxTransformMatrix::Translate(double dx, double dy) | |
282 | { | |
283 | int i; | |
284 | for (i = 0; i < 3; i++) | |
285 | m_matrix[i][0] += dx * m_matrix[i][2]; | |
286 | for (i = 0; i < 3; i++) | |
287 | m_matrix[i][1] += dy * m_matrix[i][2]; | |
288 | ||
289 | m_isIdentity = IsIdentity1(); | |
290 | ||
291 | return true; | |
292 | } | |
293 | ||
294 | // Rotate clockwise by the given number of degrees: | |
295 | // | cos sin 0 | | |
296 | // matrix' = | -sin cos 0 | x matrix | |
297 | // | 0 0 1 | | |
298 | bool wxTransformMatrix::Rotate(double degrees) | |
299 | { | |
300 | Rotate(-degrees,0,0); | |
301 | return true; | |
302 | } | |
303 | ||
304 | // counter clockwise rotate around a point | |
305 | // | |
306 | // cos(r) -sin(r) x(1-cos(r))+y(sin(r) | |
307 | // sin(r) cos(r) y(1-cos(r))-x(sin(r) | |
308 | // 0 0 1 | |
309 | wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y) | |
310 | { | |
311 | double angle = degrees * pi / 180.0; | |
312 | double c = cos(angle); | |
313 | double s = sin(angle); | |
314 | double r00,r10,r20,r01,r11,r21; | |
315 | ||
316 | if (m_isIdentity) | |
317 | { | |
318 | double tx = x*(1-c)+y*s; | |
319 | double ty = y*(1-c)-x*s; | |
320 | r00 = c ; | |
321 | r10 = -s; | |
322 | r20 = tx; | |
323 | r01 = s; | |
324 | r11 = c; | |
325 | r21 = ty; | |
326 | } | |
327 | else if ( !wxIsNullDouble(x) || !wxIsNullDouble(y) ) | |
328 | { | |
329 | double tx = x*(1-c)+y*s; | |
330 | double ty = y*(1-c)-x*s; | |
331 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2]; | |
332 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2]; | |
333 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2]; | |
334 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2]; | |
335 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2]; | |
336 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2]; | |
337 | } | |
338 | else | |
339 | { | |
340 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1]; | |
341 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1]; | |
342 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1]; | |
343 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0]; | |
344 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0]; | |
345 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0]; | |
346 | } | |
347 | ||
348 | m_matrix[0][0] = r00; | |
349 | m_matrix[1][0] = r10; | |
350 | m_matrix[2][0] = r20; | |
351 | m_matrix[0][1] = r01; | |
352 | m_matrix[1][1] = r11; | |
353 | m_matrix[2][1] = r21; | |
354 | ||
355 | /* or like this | |
356 | wxTransformMatrix rotate; | |
357 | rotate.m_matrix[2][0] = tx; | |
358 | rotate.m_matrix[2][1] = ty; | |
359 | ||
360 | rotate.m_matrix[0][0] = c; | |
361 | rotate.m_matrix[0][1] = s; | |
362 | ||
363 | rotate.m_matrix[1][0] = -s; | |
364 | rotate.m_matrix[1][1] = c; | |
365 | ||
366 | rotate.m_isIdentity=false; | |
367 | *this = rotate * (*this); | |
368 | */ | |
369 | m_isIdentity = IsIdentity1(); | |
370 | ||
371 | return *this; | |
372 | } | |
373 | ||
374 | // Transform a point from logical to device coordinates | |
375 | bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const | |
376 | { | |
377 | if (IsIdentity()) | |
378 | { | |
379 | tx = x; ty = y; return true; | |
380 | } | |
381 | ||
382 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]; | |
383 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]; | |
384 | ||
385 | return true; | |
386 | } | |
387 | ||
388 | // Transform a point from device to logical coordinates. | |
389 | ||
390 | // Example of use: | |
391 | // wxTransformMatrix mat = dc.GetTransformation(); | |
392 | // mat.Invert(); | |
393 | // mat.InverseTransformPoint(x, y, x1, y1); | |
394 | // OR (shorthand:) | |
395 | // dc.LogicalToDevice(x, y, x1, y1); | |
396 | // The latter is slightly less efficient if we're doing several | |
397 | // conversions, since the matrix is inverted several times. | |
398 | bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const | |
399 | { | |
400 | if (IsIdentity()) | |
401 | { | |
402 | tx = x; | |
403 | ty = y; | |
404 | return true; | |
405 | } | |
406 | ||
407 | const double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2]; | |
408 | if ( wxIsNullDouble(z) ) | |
409 | return false; | |
410 | ||
411 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; | |
412 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; | |
413 | return true; | |
414 | } | |
415 | ||
416 | wxTransformMatrix& wxTransformMatrix::operator*=(const double& t) | |
417 | { | |
418 | for (int i = 0; i < 3; i++) | |
419 | for (int j = 0; j < 3; j++) | |
420 | m_matrix[i][j]*= t; | |
421 | m_isIdentity = IsIdentity1(); | |
422 | return *this; | |
423 | } | |
424 | ||
425 | wxTransformMatrix& wxTransformMatrix::operator/=(const double& t) | |
426 | { | |
427 | for (int i = 0; i < 3; i++) | |
428 | for (int j = 0; j < 3; j++) | |
429 | m_matrix[i][j]/= t; | |
430 | m_isIdentity = IsIdentity1(); | |
431 | return *this; | |
432 | } | |
433 | ||
434 | wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat) | |
435 | { | |
436 | for (int i = 0; i < 3; i++) | |
437 | for (int j = 0; j < 3; j++) | |
438 | m_matrix[i][j] += mat.m_matrix[i][j]; | |
439 | m_isIdentity = IsIdentity1(); | |
440 | return *this; | |
441 | } | |
442 | ||
443 | wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat) | |
444 | { | |
445 | for (int i = 0; i < 3; i++) | |
446 | for (int j = 0; j < 3; j++) | |
447 | m_matrix[i][j] -= mat.m_matrix[i][j]; | |
448 | m_isIdentity = IsIdentity1(); | |
449 | return *this; | |
450 | } | |
451 | ||
452 | wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat) | |
453 | { | |
454 | ||
455 | if (mat.m_isIdentity) | |
456 | return *this; | |
457 | if (m_isIdentity) | |
458 | { | |
459 | *this = mat; | |
460 | return *this; | |
461 | } | |
462 | else | |
463 | { | |
464 | wxTransformMatrix result; | |
465 | for (int i = 0; i < 3; i++) | |
466 | { | |
467 | for (int j = 0; j < 3; j++) | |
468 | { | |
469 | double sum = 0; | |
470 | for (int k = 0; k < 3; k++) | |
471 | sum += m_matrix[k][i] * mat.m_matrix[j][k]; | |
472 | result.m_matrix[j][i] = sum; | |
473 | } | |
474 | } | |
475 | *this = result; | |
476 | } | |
477 | ||
478 | m_isIdentity = IsIdentity1(); | |
479 | return *this; | |
480 | } | |
481 | ||
482 | ||
483 | // constant operators | |
484 | wxTransformMatrix wxTransformMatrix::operator*(const double& t) const | |
485 | { | |
486 | wxTransformMatrix result = *this; | |
487 | result *= t; | |
488 | result.m_isIdentity = result.IsIdentity1(); | |
489 | return result; | |
490 | } | |
491 | ||
492 | wxTransformMatrix wxTransformMatrix::operator/(const double& t) const | |
493 | { | |
494 | wxTransformMatrix result = *this; | |
495 | // wxASSERT(t!=0); | |
496 | result /= t; | |
497 | result.m_isIdentity = result.IsIdentity1(); | |
498 | return result; | |
499 | } | |
500 | ||
501 | wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const | |
502 | { | |
503 | wxTransformMatrix result = *this; | |
504 | result += m; | |
505 | result.m_isIdentity = result.IsIdentity1(); | |
506 | return result; | |
507 | } | |
508 | ||
509 | wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const | |
510 | { | |
511 | wxTransformMatrix result = *this; | |
512 | result -= m; | |
513 | result.m_isIdentity = result.IsIdentity1(); | |
514 | return result; | |
515 | } | |
516 | ||
517 | ||
518 | wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const | |
519 | { | |
520 | wxTransformMatrix result = *this; | |
521 | result *= m; | |
522 | result.m_isIdentity = result.IsIdentity1(); | |
523 | return result; | |
524 | } | |
525 | ||
526 | ||
527 | wxTransformMatrix wxTransformMatrix::operator-() const | |
528 | { | |
529 | wxTransformMatrix result = *this; | |
530 | for (int i = 0; i < 3; i++) | |
531 | for (int j = 0; j < 3; j++) | |
532 | result.m_matrix[i][j] = -(this->m_matrix[i][j]); | |
533 | result.m_isIdentity = result.IsIdentity1(); | |
534 | return result; | |
535 | } | |
536 | ||
537 | static double CheckInt(double getal) | |
538 | { | |
539 | // check if the number is very close to an integer | |
540 | if ( (ceil(getal) - getal) < 0.0001) | |
541 | return ceil(getal); | |
542 | ||
543 | else if ( (getal - floor(getal)) < 0.0001) | |
544 | return floor(getal); | |
545 | ||
546 | return getal; | |
547 | ||
548 | } | |
549 | ||
550 | double wxTransformMatrix::Get_scaleX() | |
551 | { | |
552 | double scale_factor; | |
553 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
554 | if ( !wxIsSameDouble(rot_angle, 90) && !wxIsSameDouble(rot_angle, -90) ) | |
555 | scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi); | |
556 | else | |
557 | scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
558 | ||
559 | scale_factor = CheckInt(scale_factor); | |
560 | if (scale_factor < 0) | |
561 | scale_factor = -scale_factor; | |
562 | ||
563 | return scale_factor; | |
564 | } | |
565 | ||
566 | double wxTransformMatrix::Get_scaleY() | |
567 | { | |
568 | double scale_factor; | |
569 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
570 | if ( !wxIsSameDouble(rot_angle, 90) && !wxIsSameDouble(rot_angle, -90) ) | |
571 | scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi); | |
572 | else | |
573 | scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
574 | ||
575 | scale_factor = CheckInt(scale_factor); | |
576 | if (scale_factor < 0) | |
577 | ||
578 | scale_factor = -scale_factor; | |
579 | ||
580 | return scale_factor; | |
581 | ||
582 | } | |
583 | ||
584 | double wxTransformMatrix::GetRotation() | |
585 | { | |
586 | double temp1 = GetValue(0,0); // for angle calculation | |
587 | double temp2 = GetValue(0,1); // | |
588 | ||
589 | // Rotation | |
590 | double rot_angle = atan2(temp2,temp1)*180/pi; | |
591 | ||
592 | rot_angle = CheckInt(rot_angle); | |
593 | return rot_angle; | |
594 | } | |
595 | ||
596 | void wxTransformMatrix::SetRotation(double rotation) | |
597 | { | |
598 | double x=GetValue(2,0); | |
599 | double y=GetValue(2,1); | |
600 | Rotate(-GetRotation(), x, y); | |
601 | Rotate(rotation, x, y); | |
602 | } | |
603 |