]>
Commit | Line | Data |
---|---|---|
1 | /* $Header$ */ | |
2 | ||
3 | /* | |
4 | * Copyright (c) 1991-1997 Sam Leffler | |
5 | * Copyright (c) 1991-1997 Silicon Graphics, Inc. | |
6 | * | |
7 | * Permission to use, copy, modify, distribute, and sell this software and | |
8 | * its documentation for any purpose is hereby granted without fee, provided | |
9 | * that (i) the above copyright notices and this permission notice appear in | |
10 | * all copies of the software and related documentation, and (ii) the names of | |
11 | * Sam Leffler and Silicon Graphics may not be used in any advertising or | |
12 | * publicity relating to the software without the specific, prior written | |
13 | * permission of Sam Leffler and Silicon Graphics. | |
14 | * | |
15 | * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
16 | * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
17 | * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
18 | * | |
19 | * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR | |
20 | * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, | |
21 | * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, | |
22 | * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF | |
23 | * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE | |
24 | * OF THIS SOFTWARE. | |
25 | */ | |
26 | ||
27 | /* | |
28 | * TIFF Library | |
29 | * | |
30 | * Read and return a packed RGBA image. | |
31 | */ | |
32 | #include "tiffiop.h" | |
33 | #include <assert.h> | |
34 | #include <stdio.h> | |
35 | ||
36 | static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32); | |
37 | static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | |
38 | static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32); | |
39 | static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | |
40 | static int pickTileContigCase(TIFFRGBAImage*); | |
41 | static int pickTileSeparateCase(TIFFRGBAImage*); | |
42 | ||
43 | static const char photoTag[] = "PhotometricInterpretation"; | |
44 | ||
45 | /* | |
46 | * Helper constants used in Orientation tag handling | |
47 | */ | |
48 | #define FLIP_VERTICALLY 0x01 | |
49 | #define FLIP_HORIZONTALLY 0x02 | |
50 | ||
51 | /* | |
52 | * Color conversion constants. We will define display types here. | |
53 | */ | |
54 | ||
55 | TIFFDisplay display_sRGB = { | |
56 | { /* XYZ -> luminance matrix */ | |
57 | { 3.2410F, -1.5374F, -0.4986F }, | |
58 | { -0.9692F, 1.8760F, 0.0416F }, | |
59 | { 0.0556F, -0.2040F, 1.0570F } | |
60 | }, | |
61 | 100.0F, 100.0F, 100.0F, /* Light o/p for reference white */ | |
62 | 255, 255, 255, /* Pixel values for ref. white */ | |
63 | 1.0F, 1.0F, 1.0F, /* Residual light o/p for black pixel */ | |
64 | 2.4F, 2.4F, 2.4F, /* Gamma values for the three guns */ | |
65 | }; | |
66 | ||
67 | /* | |
68 | * Check the image to see if TIFFReadRGBAImage can deal with it. | |
69 | * 1/0 is returned according to whether or not the image can | |
70 | * be handled. If 0 is returned, emsg contains the reason | |
71 | * why it is being rejected. | |
72 | */ | |
73 | int | |
74 | TIFFRGBAImageOK(TIFF* tif, char emsg[1024]) | |
75 | { | |
76 | TIFFDirectory* td = &tif->tif_dir; | |
77 | uint16 photometric; | |
78 | int colorchannels; | |
79 | ||
80 | if (!tif->tif_decodestatus) { | |
81 | sprintf(emsg, "Sorry, requested compression method is not configured"); | |
82 | return (0); | |
83 | } | |
84 | switch (td->td_bitspersample) { | |
85 | case 1: case 2: case 4: | |
86 | case 8: case 16: | |
87 | break; | |
88 | default: | |
89 | sprintf(emsg, "Sorry, can not handle images with %d-bit samples", | |
90 | td->td_bitspersample); | |
91 | return (0); | |
92 | } | |
93 | colorchannels = td->td_samplesperpixel - td->td_extrasamples; | |
94 | if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) { | |
95 | switch (colorchannels) { | |
96 | case 1: | |
97 | photometric = PHOTOMETRIC_MINISBLACK; | |
98 | break; | |
99 | case 3: | |
100 | photometric = PHOTOMETRIC_RGB; | |
101 | break; | |
102 | default: | |
103 | sprintf(emsg, "Missing needed %s tag", photoTag); | |
104 | return (0); | |
105 | } | |
106 | } | |
107 | switch (photometric) { | |
108 | case PHOTOMETRIC_MINISWHITE: | |
109 | case PHOTOMETRIC_MINISBLACK: | |
110 | case PHOTOMETRIC_PALETTE: | |
111 | if (td->td_planarconfig == PLANARCONFIG_CONTIG | |
112 | && td->td_samplesperpixel != 1 | |
113 | && td->td_bitspersample < 8 ) { | |
114 | sprintf(emsg, | |
115 | "Sorry, can not handle contiguous data with %s=%d, " | |
116 | "and %s=%d and Bits/Sample=%d", | |
117 | photoTag, photometric, | |
118 | "Samples/pixel", td->td_samplesperpixel, | |
119 | td->td_bitspersample); | |
120 | return (0); | |
121 | } | |
122 | /* | |
123 | ** We should likely validate that any extra samples are either | |
124 | ** to be ignored, or are alpha, and if alpha we should try to use | |
125 | ** them. But for now we won't bother with this. | |
126 | */ | |
127 | break; | |
128 | case PHOTOMETRIC_YCBCR: | |
129 | if (td->td_planarconfig != PLANARCONFIG_CONTIG) { | |
130 | sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d", | |
131 | "Planarconfiguration", td->td_planarconfig); | |
132 | return (0); | |
133 | } | |
134 | break; | |
135 | case PHOTOMETRIC_RGB: | |
136 | if (colorchannels < 3) { | |
137 | sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", | |
138 | "Color channels", colorchannels); | |
139 | return (0); | |
140 | } | |
141 | break; | |
142 | case PHOTOMETRIC_SEPARATED: | |
143 | if (td->td_inkset != INKSET_CMYK) { | |
144 | sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | |
145 | "InkSet", td->td_inkset); | |
146 | return (0); | |
147 | } | |
148 | if (td->td_samplesperpixel < 4) { | |
149 | sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | |
150 | "Samples/pixel", td->td_samplesperpixel); | |
151 | return (0); | |
152 | } | |
153 | break; | |
154 | case PHOTOMETRIC_LOGL: | |
155 | if (td->td_compression != COMPRESSION_SGILOG) { | |
156 | sprintf(emsg, "Sorry, LogL data must have %s=%d", | |
157 | "Compression", COMPRESSION_SGILOG); | |
158 | return (0); | |
159 | } | |
160 | break; | |
161 | case PHOTOMETRIC_LOGLUV: | |
162 | if (td->td_compression != COMPRESSION_SGILOG && | |
163 | td->td_compression != COMPRESSION_SGILOG24) { | |
164 | sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", | |
165 | "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); | |
166 | return (0); | |
167 | } | |
168 | if (td->td_planarconfig != PLANARCONFIG_CONTIG) { | |
169 | sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", | |
170 | "Planarconfiguration", td->td_planarconfig); | |
171 | return (0); | |
172 | } | |
173 | break; | |
174 | case PHOTOMETRIC_CIELAB: | |
175 | break; | |
176 | default: | |
177 | sprintf(emsg, "Sorry, can not handle image with %s=%d", | |
178 | photoTag, photometric); | |
179 | return (0); | |
180 | } | |
181 | return (1); | |
182 | } | |
183 | ||
184 | void | |
185 | TIFFRGBAImageEnd(TIFFRGBAImage* img) | |
186 | { | |
187 | if (img->Map) | |
188 | _TIFFfree(img->Map), img->Map = NULL; | |
189 | if (img->BWmap) | |
190 | _TIFFfree(img->BWmap), img->BWmap = NULL; | |
191 | if (img->PALmap) | |
192 | _TIFFfree(img->PALmap), img->PALmap = NULL; | |
193 | if (img->ycbcr) | |
194 | _TIFFfree(img->ycbcr), img->ycbcr = NULL; | |
195 | if (img->cielab) | |
196 | _TIFFfree(img->cielab), img->cielab = NULL; | |
197 | ||
198 | if( img->redcmap ) { | |
199 | _TIFFfree( img->redcmap ); | |
200 | _TIFFfree( img->greencmap ); | |
201 | _TIFFfree( img->bluecmap ); | |
202 | } | |
203 | } | |
204 | ||
205 | static int | |
206 | isCCITTCompression(TIFF* tif) | |
207 | { | |
208 | uint16 compress; | |
209 | TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress); | |
210 | return (compress == COMPRESSION_CCITTFAX3 || | |
211 | compress == COMPRESSION_CCITTFAX4 || | |
212 | compress == COMPRESSION_CCITTRLE || | |
213 | compress == COMPRESSION_CCITTRLEW); | |
214 | } | |
215 | ||
216 | int | |
217 | TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024]) | |
218 | { | |
219 | uint16* sampleinfo; | |
220 | uint16 extrasamples; | |
221 | uint16 planarconfig; | |
222 | uint16 compress; | |
223 | int colorchannels; | |
224 | uint16 *red_orig, *green_orig, *blue_orig; | |
225 | int n_color; | |
226 | ||
227 | /* Initialize to normal values */ | |
228 | img->row_offset = 0; | |
229 | img->col_offset = 0; | |
230 | img->redcmap = NULL; | |
231 | img->greencmap = NULL; | |
232 | img->bluecmap = NULL; | |
233 | img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */ | |
234 | ||
235 | img->tif = tif; | |
236 | img->stoponerr = stop; | |
237 | TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample); | |
238 | switch (img->bitspersample) { | |
239 | case 1: case 2: case 4: | |
240 | case 8: case 16: | |
241 | break; | |
242 | default: | |
243 | sprintf(emsg, "Sorry, can not handle images with %d-bit samples", | |
244 | img->bitspersample); | |
245 | return (0); | |
246 | } | |
247 | img->alpha = 0; | |
248 | TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel); | |
249 | TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, | |
250 | &extrasamples, &sampleinfo); | |
251 | if (extrasamples == 1) | |
252 | { | |
253 | switch (sampleinfo[0]) { | |
254 | case EXTRASAMPLE_UNSPECIFIED: /* Workaround for some images without */ | |
255 | if (img->samplesperpixel == 4) /* correct info about alpha channel */ | |
256 | img->alpha = EXTRASAMPLE_ASSOCALPHA; | |
257 | break; | |
258 | case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */ | |
259 | case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */ | |
260 | img->alpha = sampleinfo[0]; | |
261 | break; | |
262 | } | |
263 | } | |
264 | ||
265 | #if DEFAULT_EXTRASAMPLE_AS_ALPHA == 1 | |
266 | if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) | |
267 | img->photometric = PHOTOMETRIC_MINISWHITE; | |
268 | ||
269 | if( extrasamples == 0 | |
270 | && img->samplesperpixel == 4 | |
271 | && img->photometric == PHOTOMETRIC_RGB ) | |
272 | { | |
273 | img->alpha = EXTRASAMPLE_ASSOCALPHA; | |
274 | extrasamples = 1; | |
275 | } | |
276 | #endif | |
277 | ||
278 | colorchannels = img->samplesperpixel - extrasamples; | |
279 | TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress); | |
280 | TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig); | |
281 | if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) { | |
282 | switch (colorchannels) { | |
283 | case 1: | |
284 | if (isCCITTCompression(tif)) | |
285 | img->photometric = PHOTOMETRIC_MINISWHITE; | |
286 | else | |
287 | img->photometric = PHOTOMETRIC_MINISBLACK; | |
288 | break; | |
289 | case 3: | |
290 | img->photometric = PHOTOMETRIC_RGB; | |
291 | break; | |
292 | default: | |
293 | sprintf(emsg, "Missing needed %s tag", photoTag); | |
294 | return (0); | |
295 | } | |
296 | } | |
297 | switch (img->photometric) { | |
298 | case PHOTOMETRIC_PALETTE: | |
299 | if (!TIFFGetField(tif, TIFFTAG_COLORMAP, | |
300 | &red_orig, &green_orig, &blue_orig)) { | |
301 | TIFFError(TIFFFileName(tif), "Missing required \"Colormap\" tag"); | |
302 | return (0); | |
303 | } | |
304 | ||
305 | /* copy the colormaps so we can modify them */ | |
306 | n_color = (1L << img->bitspersample); | |
307 | img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | |
308 | img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | |
309 | img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | |
310 | if( !img->redcmap || !img->greencmap || !img->bluecmap ) { | |
311 | TIFFError(TIFFFileName(tif), "Out of memory for colormap copy"); | |
312 | return (0); | |
313 | } | |
314 | ||
315 | memcpy( img->redcmap, red_orig, n_color * 2 ); | |
316 | memcpy( img->greencmap, green_orig, n_color * 2 ); | |
317 | memcpy( img->bluecmap, blue_orig, n_color * 2 ); | |
318 | ||
319 | /* fall thru... */ | |
320 | case PHOTOMETRIC_MINISWHITE: | |
321 | case PHOTOMETRIC_MINISBLACK: | |
322 | if (planarconfig == PLANARCONFIG_CONTIG | |
323 | && img->samplesperpixel != 1 | |
324 | && img->bitspersample < 8 ) { | |
325 | sprintf(emsg, | |
326 | "Sorry, can not handle contiguous data with %s=%d, " | |
327 | "and %s=%d and Bits/Sample=%d", | |
328 | photoTag, img->photometric, | |
329 | "Samples/pixel", img->samplesperpixel, | |
330 | img->bitspersample); | |
331 | return (0); | |
332 | } | |
333 | break; | |
334 | case PHOTOMETRIC_YCBCR: | |
335 | if (planarconfig != PLANARCONFIG_CONTIG) { | |
336 | sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d", | |
337 | "Planarconfiguration", planarconfig); | |
338 | return (0); | |
339 | } | |
340 | /* It would probably be nice to have a reality check here. */ | |
341 | if (planarconfig == PLANARCONFIG_CONTIG) | |
342 | /* can rely on libjpeg to convert to RGB */ | |
343 | /* XXX should restore current state on exit */ | |
344 | switch (compress) { | |
345 | case COMPRESSION_OJPEG: | |
346 | case COMPRESSION_JPEG: | |
347 | TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB); | |
348 | img->photometric = PHOTOMETRIC_RGB; | |
349 | break; | |
350 | ||
351 | default: | |
352 | /* do nothing */; | |
353 | break; | |
354 | } | |
355 | break; | |
356 | case PHOTOMETRIC_RGB: | |
357 | if (colorchannels < 3) { | |
358 | sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", | |
359 | "Color channels", colorchannels); | |
360 | return (0); | |
361 | } | |
362 | break; | |
363 | case PHOTOMETRIC_SEPARATED: { | |
364 | uint16 inkset; | |
365 | TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); | |
366 | if (inkset != INKSET_CMYK) { | |
367 | sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | |
368 | "InkSet", inkset); | |
369 | return (0); | |
370 | } | |
371 | if (img->samplesperpixel < 4) { | |
372 | sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | |
373 | "Samples/pixel", img->samplesperpixel); | |
374 | return (0); | |
375 | } | |
376 | break; | |
377 | } | |
378 | case PHOTOMETRIC_LOGL: | |
379 | if (compress != COMPRESSION_SGILOG) { | |
380 | sprintf(emsg, "Sorry, LogL data must have %s=%d", | |
381 | "Compression", COMPRESSION_SGILOG); | |
382 | return (0); | |
383 | } | |
384 | TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); | |
385 | img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */ | |
386 | img->bitspersample = 8; | |
387 | break; | |
388 | case PHOTOMETRIC_LOGLUV: | |
389 | if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) { | |
390 | sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", | |
391 | "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); | |
392 | return (0); | |
393 | } | |
394 | if (planarconfig != PLANARCONFIG_CONTIG) { | |
395 | sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", | |
396 | "Planarconfiguration", planarconfig); | |
397 | return (0); | |
398 | } | |
399 | TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); | |
400 | img->photometric = PHOTOMETRIC_RGB; /* little white lie */ | |
401 | img->bitspersample = 8; | |
402 | break; | |
403 | case PHOTOMETRIC_CIELAB: | |
404 | break; | |
405 | default: | |
406 | sprintf(emsg, "Sorry, can not handle image with %s=%d", | |
407 | photoTag, img->photometric); | |
408 | return (0); | |
409 | } | |
410 | img->Map = NULL; | |
411 | img->BWmap = NULL; | |
412 | img->PALmap = NULL; | |
413 | img->ycbcr = NULL; | |
414 | img->cielab = NULL; | |
415 | TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width); | |
416 | TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height); | |
417 | TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation); | |
418 | img->isContig = | |
419 | !(planarconfig == PLANARCONFIG_SEPARATE && colorchannels > 1); | |
420 | if (img->isContig) { | |
421 | img->get = TIFFIsTiled(tif) ? gtTileContig : gtStripContig; | |
422 | return pickTileContigCase(img); | |
423 | } else { | |
424 | img->get = TIFFIsTiled(tif) ? gtTileSeparate : gtStripSeparate; | |
425 | return pickTileSeparateCase(img); | |
426 | } | |
427 | } | |
428 | ||
429 | int | |
430 | TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
431 | { | |
432 | if (img->get == NULL) { | |
433 | TIFFError(TIFFFileName(img->tif), "No \"get\" routine setup"); | |
434 | return (0); | |
435 | } | |
436 | if (img->put.any == NULL) { | |
437 | TIFFError(TIFFFileName(img->tif), | |
438 | "No \"put\" routine setupl; probably can not handle image format"); | |
439 | return (0); | |
440 | } | |
441 | return (*img->get)(img, raster, w, h); | |
442 | } | |
443 | ||
444 | /* | |
445 | * Read the specified image into an ABGR-format rastertaking in account | |
446 | * specified orientation. | |
447 | */ | |
448 | int | |
449 | TIFFReadRGBAImageOriented(TIFF* tif, | |
450 | uint32 rwidth, uint32 rheight, uint32* raster, | |
451 | int orientation, int stop) | |
452 | { | |
453 | char emsg[1024]; | |
454 | TIFFRGBAImage img; | |
455 | int ok; | |
456 | ||
457 | if (TIFFRGBAImageOK(tif, emsg) && | |
458 | TIFFRGBAImageBegin(&img, tif, stop, emsg)) { | |
459 | img.req_orientation = orientation; | |
460 | /* XXX verify rwidth and rheight against width and height */ | |
461 | ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth, | |
462 | rwidth, img.height); | |
463 | TIFFRGBAImageEnd(&img); | |
464 | } else { | |
465 | TIFFError(TIFFFileName(tif), emsg); | |
466 | ok = 0; | |
467 | } | |
468 | return (ok); | |
469 | } | |
470 | ||
471 | /* | |
472 | * Read the specified image into an ABGR-format raster. Use bottom left | |
473 | * origin for raster by default. | |
474 | */ | |
475 | int | |
476 | TIFFReadRGBAImage(TIFF* tif, | |
477 | uint32 rwidth, uint32 rheight, uint32* raster, int stop) | |
478 | { | |
479 | return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster, | |
480 | ORIENTATION_BOTLEFT, stop); | |
481 | } | |
482 | ||
483 | static int | |
484 | setorientation(TIFFRGBAImage* img) | |
485 | { | |
486 | switch (img->orientation) { | |
487 | case ORIENTATION_TOPLEFT: | |
488 | case ORIENTATION_LEFTTOP: | |
489 | if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
490 | img->req_orientation == ORIENTATION_RIGHTTOP) | |
491 | return FLIP_HORIZONTALLY; | |
492 | else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
493 | img->req_orientation == ORIENTATION_RIGHTBOT) | |
494 | return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
495 | else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
496 | img->req_orientation == ORIENTATION_LEFTBOT) | |
497 | return FLIP_VERTICALLY; | |
498 | else | |
499 | return 0; | |
500 | case ORIENTATION_TOPRIGHT: | |
501 | case ORIENTATION_RIGHTTOP: | |
502 | if (img->req_orientation == ORIENTATION_TOPLEFT || | |
503 | img->req_orientation == ORIENTATION_LEFTTOP) | |
504 | return FLIP_HORIZONTALLY; | |
505 | else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
506 | img->req_orientation == ORIENTATION_RIGHTBOT) | |
507 | return FLIP_VERTICALLY; | |
508 | else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
509 | img->req_orientation == ORIENTATION_LEFTBOT) | |
510 | return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
511 | else | |
512 | return 0; | |
513 | case ORIENTATION_BOTRIGHT: | |
514 | case ORIENTATION_RIGHTBOT: | |
515 | if (img->req_orientation == ORIENTATION_TOPLEFT || | |
516 | img->req_orientation == ORIENTATION_LEFTTOP) | |
517 | return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
518 | else if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
519 | img->req_orientation == ORIENTATION_RIGHTTOP) | |
520 | return FLIP_VERTICALLY; | |
521 | else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
522 | img->req_orientation == ORIENTATION_LEFTBOT) | |
523 | return FLIP_HORIZONTALLY; | |
524 | else | |
525 | return 0; | |
526 | case ORIENTATION_BOTLEFT: | |
527 | case ORIENTATION_LEFTBOT: | |
528 | if (img->req_orientation == ORIENTATION_TOPLEFT || | |
529 | img->req_orientation == ORIENTATION_LEFTTOP) | |
530 | return FLIP_VERTICALLY; | |
531 | else if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
532 | img->req_orientation == ORIENTATION_RIGHTTOP) | |
533 | return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
534 | else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
535 | img->req_orientation == ORIENTATION_RIGHTBOT) | |
536 | return FLIP_HORIZONTALLY; | |
537 | else | |
538 | return 0; | |
539 | default: /* NOTREACHED */ | |
540 | return 0; | |
541 | } | |
542 | } | |
543 | ||
544 | /* | |
545 | * Get an tile-organized image that has | |
546 | * PlanarConfiguration contiguous if SamplesPerPixel > 1 | |
547 | * or | |
548 | * SamplesPerPixel == 1 | |
549 | */ | |
550 | static int | |
551 | gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
552 | { | |
553 | TIFF* tif = img->tif; | |
554 | tileContigRoutine put = img->put.contig; | |
555 | uint32 col, row, y, rowstoread; | |
556 | uint32 pos; | |
557 | uint32 tw, th; | |
558 | u_char* buf; | |
559 | int32 fromskew, toskew; | |
560 | uint32 nrow; | |
561 | int ret = 1, flip; | |
562 | ||
563 | buf = (u_char*) _TIFFmalloc(TIFFTileSize(tif)); | |
564 | if (buf == 0) { | |
565 | TIFFError(TIFFFileName(tif), "No space for tile buffer"); | |
566 | return (0); | |
567 | } | |
568 | _TIFFmemset(buf, 0, TIFFTileSize(tif)); | |
569 | TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | |
570 | TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | |
571 | ||
572 | flip = setorientation(img); | |
573 | if (flip & FLIP_VERTICALLY) { | |
574 | y = h - 1; | |
575 | toskew = -(int32)(tw + w); | |
576 | } | |
577 | else { | |
578 | y = 0; | |
579 | toskew = -(int32)(tw - w); | |
580 | } | |
581 | ||
582 | for (row = 0; row < h; row += nrow) | |
583 | { | |
584 | rowstoread = th - (row + img->row_offset) % th; | |
585 | nrow = (row + rowstoread > h ? h - row : rowstoread); | |
586 | for (col = 0; col < w; col += tw) | |
587 | { | |
588 | if (TIFFReadTile(tif, buf, col+img->col_offset, | |
589 | row+img->row_offset, 0, 0) < 0 && img->stoponerr) | |
590 | { | |
591 | ret = 0; | |
592 | break; | |
593 | } | |
594 | ||
595 | pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif); | |
596 | ||
597 | if (col + tw > w) | |
598 | { | |
599 | /* | |
600 | * Tile is clipped horizontally. Calculate | |
601 | * visible portion and skewing factors. | |
602 | */ | |
603 | uint32 npix = w - col; | |
604 | fromskew = tw - npix; | |
605 | (*put)(img, raster+y*w+col, col, y, | |
606 | npix, nrow, fromskew, toskew + fromskew, buf + pos); | |
607 | } | |
608 | else | |
609 | { | |
610 | (*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf + pos); | |
611 | } | |
612 | } | |
613 | ||
614 | y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
615 | } | |
616 | _TIFFfree(buf); | |
617 | ||
618 | if (flip & FLIP_HORIZONTALLY) { | |
619 | uint32 line; | |
620 | ||
621 | for (line = 0; line < h; line++) { | |
622 | uint32 *left = raster + (line * w); | |
623 | uint32 *right = left + w - 1; | |
624 | ||
625 | while ( left < right ) { | |
626 | uint32 temp = *left; | |
627 | *left = *right; | |
628 | *right = temp; | |
629 | left++, right--; | |
630 | } | |
631 | } | |
632 | } | |
633 | ||
634 | return (ret); | |
635 | } | |
636 | ||
637 | /* | |
638 | * Get an tile-organized image that has | |
639 | * SamplesPerPixel > 1 | |
640 | * PlanarConfiguration separated | |
641 | * We assume that all such images are RGB. | |
642 | */ | |
643 | static int | |
644 | gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
645 | { | |
646 | TIFF* tif = img->tif; | |
647 | tileSeparateRoutine put = img->put.separate; | |
648 | uint32 col, row, y, rowstoread; | |
649 | uint32 pos; | |
650 | uint32 tw, th; | |
651 | u_char* buf; | |
652 | u_char* r; | |
653 | u_char* g; | |
654 | u_char* b; | |
655 | u_char* a; | |
656 | tsize_t tilesize; | |
657 | int32 fromskew, toskew; | |
658 | int alpha = img->alpha; | |
659 | uint32 nrow; | |
660 | int ret = 1, flip; | |
661 | ||
662 | tilesize = TIFFTileSize(tif); | |
663 | buf = (u_char*) _TIFFmalloc(4*tilesize); | |
664 | if (buf == 0) { | |
665 | TIFFError(TIFFFileName(tif), "No space for tile buffer"); | |
666 | return (0); | |
667 | } | |
668 | _TIFFmemset(buf, 0, 4*tilesize); | |
669 | r = buf; | |
670 | g = r + tilesize; | |
671 | b = g + tilesize; | |
672 | a = b + tilesize; | |
673 | if (!alpha) | |
674 | memset(a, 0xff, tilesize); | |
675 | TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | |
676 | TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | |
677 | ||
678 | flip = setorientation(img); | |
679 | if (flip & FLIP_VERTICALLY) { | |
680 | y = h - 1; | |
681 | toskew = -(int32)(tw + w); | |
682 | } | |
683 | else { | |
684 | y = 0; | |
685 | toskew = -(int32)(tw - w); | |
686 | } | |
687 | ||
688 | for (row = 0; row < h; row += nrow) | |
689 | { | |
690 | rowstoread = th - (row + img->row_offset) % th; | |
691 | nrow = (row + rowstoread > h ? h - row : rowstoread); | |
692 | for (col = 0; col < w; col += tw) | |
693 | { | |
694 | if (TIFFReadTile(tif, r, col+img->col_offset, | |
695 | row+img->row_offset,0,0) < 0 && img->stoponerr) | |
696 | { | |
697 | ret = 0; | |
698 | break; | |
699 | } | |
700 | if (TIFFReadTile(tif, g, col+img->col_offset, | |
701 | row+img->row_offset,0,1) < 0 && img->stoponerr) | |
702 | { | |
703 | ret = 0; | |
704 | break; | |
705 | } | |
706 | if (TIFFReadTile(tif, b, col+img->col_offset, | |
707 | row+img->row_offset,0,2) < 0 && img->stoponerr) | |
708 | { | |
709 | ret = 0; | |
710 | break; | |
711 | } | |
712 | if (alpha && TIFFReadTile(tif,a,col+img->col_offset, | |
713 | row+img->row_offset,0,3) < 0 && img->stoponerr) | |
714 | { | |
715 | ret = 0; | |
716 | break; | |
717 | } | |
718 | ||
719 | pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif); | |
720 | ||
721 | if (col + tw > w) | |
722 | { | |
723 | /* | |
724 | * Tile is clipped horizontally. Calculate | |
725 | * visible portion and skewing factors. | |
726 | */ | |
727 | uint32 npix = w - col; | |
728 | fromskew = tw - npix; | |
729 | (*put)(img, raster+y*w+col, col, y, | |
730 | npix, nrow, fromskew, toskew + fromskew, | |
731 | r + pos, g + pos, b + pos, a + pos); | |
732 | } else { | |
733 | (*put)(img, raster+y*w+col, col, y, | |
734 | tw, nrow, 0, toskew, r + pos, g + pos, b + pos, a + pos); | |
735 | } | |
736 | } | |
737 | ||
738 | y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow); | |
739 | } | |
740 | ||
741 | if (flip & FLIP_HORIZONTALLY) { | |
742 | uint32 line; | |
743 | ||
744 | for (line = 0; line < h; line++) { | |
745 | uint32 *left = raster + (line * w); | |
746 | uint32 *right = left + w - 1; | |
747 | ||
748 | while ( left < right ) { | |
749 | uint32 temp = *left; | |
750 | *left = *right; | |
751 | *right = temp; | |
752 | left++, right--; | |
753 | } | |
754 | } | |
755 | } | |
756 | ||
757 | _TIFFfree(buf); | |
758 | return (ret); | |
759 | } | |
760 | ||
761 | /* | |
762 | * Get a strip-organized image that has | |
763 | * PlanarConfiguration contiguous if SamplesPerPixel > 1 | |
764 | * or | |
765 | * SamplesPerPixel == 1 | |
766 | */ | |
767 | static int | |
768 | gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
769 | { | |
770 | TIFF* tif = img->tif; | |
771 | tileContigRoutine put = img->put.contig; | |
772 | uint32 row, y, nrow, rowstoread; | |
773 | uint32 pos; | |
774 | u_char* buf; | |
775 | uint32 rowsperstrip; | |
776 | uint32 imagewidth = img->width; | |
777 | tsize_t scanline; | |
778 | int32 fromskew, toskew; | |
779 | int ret = 1, flip; | |
780 | ||
781 | buf = (u_char*) _TIFFmalloc(TIFFStripSize(tif)); | |
782 | if (buf == 0) { | |
783 | TIFFError(TIFFFileName(tif), "No space for strip buffer"); | |
784 | return (0); | |
785 | } | |
786 | _TIFFmemset(buf, 0, TIFFStripSize(tif)); | |
787 | ||
788 | flip = setorientation(img); | |
789 | if (flip & FLIP_VERTICALLY) { | |
790 | y = h - 1; | |
791 | toskew = -(int32)(w + w); | |
792 | } else { | |
793 | y = 0; | |
794 | toskew = -(int32)(w - w); | |
795 | } | |
796 | ||
797 | TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
798 | scanline = TIFFScanlineSize(tif); | |
799 | fromskew = (w < imagewidth ? imagewidth - w : 0); | |
800 | for (row = 0; row < h; row += nrow) | |
801 | { | |
802 | rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; | |
803 | nrow = (row + rowstoread > h ? h - row : rowstoread); | |
804 | if (TIFFReadEncodedStrip(tif, | |
805 | TIFFComputeStrip(tif,row+img->row_offset, 0), | |
806 | buf, | |
807 | ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 | |
808 | && img->stoponerr) | |
809 | { | |
810 | ret = 0; | |
811 | break; | |
812 | } | |
813 | ||
814 | pos = ((row + img->row_offset) % rowsperstrip) * scanline; | |
815 | (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos); | |
816 | y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
817 | } | |
818 | ||
819 | if (flip & FLIP_HORIZONTALLY) { | |
820 | uint32 line; | |
821 | ||
822 | for (line = 0; line < h; line++) { | |
823 | uint32 *left = raster + (line * w); | |
824 | uint32 *right = left + w - 1; | |
825 | ||
826 | while ( left < right ) { | |
827 | uint32 temp = *left; | |
828 | *left = *right; | |
829 | *right = temp; | |
830 | left++, right--; | |
831 | } | |
832 | } | |
833 | } | |
834 | ||
835 | _TIFFfree(buf); | |
836 | return (ret); | |
837 | } | |
838 | ||
839 | /* | |
840 | * Get a strip-organized image with | |
841 | * SamplesPerPixel > 1 | |
842 | * PlanarConfiguration separated | |
843 | * We assume that all such images are RGB. | |
844 | */ | |
845 | static int | |
846 | gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
847 | { | |
848 | TIFF* tif = img->tif; | |
849 | tileSeparateRoutine put = img->put.separate; | |
850 | u_char *buf; | |
851 | u_char *r, *g, *b, *a; | |
852 | uint32 row, y, nrow, rowstoread; | |
853 | uint32 pos; | |
854 | tsize_t scanline; | |
855 | uint32 rowsperstrip, offset_row; | |
856 | uint32 imagewidth = img->width; | |
857 | tsize_t stripsize; | |
858 | int32 fromskew, toskew; | |
859 | int alpha = img->alpha; | |
860 | int ret = 1, flip; | |
861 | ||
862 | stripsize = TIFFStripSize(tif); | |
863 | r = buf = (u_char *)_TIFFmalloc(4*stripsize); | |
864 | if (buf == 0) { | |
865 | TIFFError(TIFFFileName(tif), "No space for tile buffer"); | |
866 | return (0); | |
867 | } | |
868 | _TIFFmemset(buf, 0, 4*stripsize); | |
869 | g = r + stripsize; | |
870 | b = g + stripsize; | |
871 | a = b + stripsize; | |
872 | if (!alpha) | |
873 | memset(a, 0xff, stripsize); | |
874 | ||
875 | flip = setorientation(img); | |
876 | if (flip & FLIP_VERTICALLY) { | |
877 | y = h - 1; | |
878 | toskew = -(int32)(w + w); | |
879 | } | |
880 | else { | |
881 | y = 0; | |
882 | toskew = -(int32)(w - w); | |
883 | } | |
884 | ||
885 | TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
886 | scanline = TIFFScanlineSize(tif); | |
887 | fromskew = (w < imagewidth ? imagewidth - w : 0); | |
888 | for (row = 0; row < h; row += nrow) | |
889 | { | |
890 | rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; | |
891 | nrow = (row + rowstoread > h ? h - row : rowstoread); | |
892 | offset_row = row + img->row_offset; | |
893 | if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0), | |
894 | r, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 | |
895 | && img->stoponerr) | |
896 | { | |
897 | ret = 0; | |
898 | break; | |
899 | } | |
900 | if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1), | |
901 | g, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 | |
902 | && img->stoponerr) | |
903 | { | |
904 | ret = 0; | |
905 | break; | |
906 | } | |
907 | if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2), | |
908 | b, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 | |
909 | && img->stoponerr) | |
910 | { | |
911 | ret = 0; | |
912 | break; | |
913 | } | |
914 | if (alpha && | |
915 | (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 3), | |
916 | a, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 | |
917 | && img->stoponerr)) | |
918 | { | |
919 | ret = 0; | |
920 | break; | |
921 | } | |
922 | ||
923 | pos = ((row + img->row_offset) % rowsperstrip) * scanline; | |
924 | (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, r + pos, g + pos, | |
925 | b + pos, a + pos); | |
926 | y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
927 | } | |
928 | ||
929 | if (flip & FLIP_HORIZONTALLY) { | |
930 | uint32 line; | |
931 | ||
932 | for (line = 0; line < h; line++) { | |
933 | uint32 *left = raster + (line * w); | |
934 | uint32 *right = left + w - 1; | |
935 | ||
936 | while ( left < right ) { | |
937 | uint32 temp = *left; | |
938 | *left = *right; | |
939 | *right = temp; | |
940 | left++, right--; | |
941 | } | |
942 | } | |
943 | } | |
944 | ||
945 | _TIFFfree(buf); | |
946 | return (ret); | |
947 | } | |
948 | ||
949 | /* | |
950 | * The following routines move decoded data returned | |
951 | * from the TIFF library into rasters filled with packed | |
952 | * ABGR pixels (i.e. suitable for passing to lrecwrite.) | |
953 | * | |
954 | * The routines have been created according to the most | |
955 | * important cases and optimized. pickTileContigCase and | |
956 | * pickTileSeparateCase analyze the parameters and select | |
957 | * the appropriate "put" routine to use. | |
958 | */ | |
959 | #define REPEAT8(op) REPEAT4(op); REPEAT4(op) | |
960 | #define REPEAT4(op) REPEAT2(op); REPEAT2(op) | |
961 | #define REPEAT2(op) op; op | |
962 | #define CASE8(x,op) \ | |
963 | switch (x) { \ | |
964 | case 7: op; case 6: op; case 5: op; \ | |
965 | case 4: op; case 3: op; case 2: op; \ | |
966 | case 1: op; \ | |
967 | } | |
968 | #define CASE4(x,op) switch (x) { case 3: op; case 2: op; case 1: op; } | |
969 | #define NOP | |
970 | ||
971 | #define UNROLL8(w, op1, op2) { \ | |
972 | uint32 _x; \ | |
973 | for (_x = w; _x >= 8; _x -= 8) { \ | |
974 | op1; \ | |
975 | REPEAT8(op2); \ | |
976 | } \ | |
977 | if (_x > 0) { \ | |
978 | op1; \ | |
979 | CASE8(_x,op2); \ | |
980 | } \ | |
981 | } | |
982 | #define UNROLL4(w, op1, op2) { \ | |
983 | uint32 _x; \ | |
984 | for (_x = w; _x >= 4; _x -= 4) { \ | |
985 | op1; \ | |
986 | REPEAT4(op2); \ | |
987 | } \ | |
988 | if (_x > 0) { \ | |
989 | op1; \ | |
990 | CASE4(_x,op2); \ | |
991 | } \ | |
992 | } | |
993 | #define UNROLL2(w, op1, op2) { \ | |
994 | uint32 _x; \ | |
995 | for (_x = w; _x >= 2; _x -= 2) { \ | |
996 | op1; \ | |
997 | REPEAT2(op2); \ | |
998 | } \ | |
999 | if (_x) { \ | |
1000 | op1; \ | |
1001 | op2; \ | |
1002 | } \ | |
1003 | } | |
1004 | ||
1005 | #define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; } | |
1006 | #define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; } | |
1007 | ||
1008 | #define A1 ((uint32)(0xffL<<24)) | |
1009 | #define PACK(r,g,b) \ | |
1010 | ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1) | |
1011 | #define PACK4(r,g,b,a) \ | |
1012 | ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24)) | |
1013 | #define W2B(v) (((v)>>8)&0xff) | |
1014 | #define PACKW(r,g,b) \ | |
1015 | ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1) | |
1016 | #define PACKW4(r,g,b,a) \ | |
1017 | ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24)) | |
1018 | ||
1019 | #define DECLAREContigPutFunc(name) \ | |
1020 | static void name(\ | |
1021 | TIFFRGBAImage* img, \ | |
1022 | uint32* cp, \ | |
1023 | uint32 x, uint32 y, \ | |
1024 | uint32 w, uint32 h, \ | |
1025 | int32 fromskew, int32 toskew, \ | |
1026 | u_char* pp \ | |
1027 | ) | |
1028 | ||
1029 | /* | |
1030 | * 8-bit palette => colormap/RGB | |
1031 | */ | |
1032 | DECLAREContigPutFunc(put8bitcmaptile) | |
1033 | { | |
1034 | uint32** PALmap = img->PALmap; | |
1035 | int samplesperpixel = img->samplesperpixel; | |
1036 | ||
1037 | (void) y; | |
1038 | while (h-- > 0) { | |
1039 | for (x = w; x-- > 0;) | |
1040 | { | |
1041 | *cp++ = PALmap[*pp][0]; | |
1042 | pp += samplesperpixel; | |
1043 | } | |
1044 | cp += toskew; | |
1045 | pp += fromskew; | |
1046 | } | |
1047 | } | |
1048 | ||
1049 | /* | |
1050 | * 4-bit palette => colormap/RGB | |
1051 | */ | |
1052 | DECLAREContigPutFunc(put4bitcmaptile) | |
1053 | { | |
1054 | uint32** PALmap = img->PALmap; | |
1055 | ||
1056 | (void) x; (void) y; | |
1057 | fromskew /= 2; | |
1058 | while (h-- > 0) { | |
1059 | uint32* bw; | |
1060 | UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
1061 | cp += toskew; | |
1062 | pp += fromskew; | |
1063 | } | |
1064 | } | |
1065 | ||
1066 | /* | |
1067 | * 2-bit palette => colormap/RGB | |
1068 | */ | |
1069 | DECLAREContigPutFunc(put2bitcmaptile) | |
1070 | { | |
1071 | uint32** PALmap = img->PALmap; | |
1072 | ||
1073 | (void) x; (void) y; | |
1074 | fromskew /= 4; | |
1075 | while (h-- > 0) { | |
1076 | uint32* bw; | |
1077 | UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
1078 | cp += toskew; | |
1079 | pp += fromskew; | |
1080 | } | |
1081 | } | |
1082 | ||
1083 | /* | |
1084 | * 1-bit palette => colormap/RGB | |
1085 | */ | |
1086 | DECLAREContigPutFunc(put1bitcmaptile) | |
1087 | { | |
1088 | uint32** PALmap = img->PALmap; | |
1089 | ||
1090 | (void) x; (void) y; | |
1091 | fromskew /= 8; | |
1092 | while (h-- > 0) { | |
1093 | uint32* bw; | |
1094 | UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
1095 | cp += toskew; | |
1096 | pp += fromskew; | |
1097 | } | |
1098 | } | |
1099 | ||
1100 | /* | |
1101 | * 8-bit greyscale => colormap/RGB | |
1102 | */ | |
1103 | DECLAREContigPutFunc(putgreytile) | |
1104 | { | |
1105 | int samplesperpixel = img->samplesperpixel; | |
1106 | uint32** BWmap = img->BWmap; | |
1107 | ||
1108 | (void) y; | |
1109 | while (h-- > 0) { | |
1110 | for (x = w; x-- > 0;) | |
1111 | { | |
1112 | *cp++ = BWmap[*pp][0]; | |
1113 | pp += samplesperpixel; | |
1114 | } | |
1115 | cp += toskew; | |
1116 | pp += fromskew; | |
1117 | } | |
1118 | } | |
1119 | ||
1120 | /* | |
1121 | * 16-bit greyscale => colormap/RGB | |
1122 | */ | |
1123 | DECLAREContigPutFunc(put16bitbwtile) | |
1124 | { | |
1125 | int samplesperpixel = img->samplesperpixel; | |
1126 | uint32** BWmap = img->BWmap; | |
1127 | ||
1128 | (void) y; | |
1129 | while (h-- > 0) { | |
1130 | uint16 *wp = (uint16 *) pp; | |
1131 | ||
1132 | for (x = w; x-- > 0;) | |
1133 | { | |
1134 | /* use high order byte of 16bit value */ | |
1135 | ||
1136 | *cp++ = BWmap[*wp >> 8][0]; | |
1137 | pp += 2 * samplesperpixel; | |
1138 | wp += samplesperpixel; | |
1139 | } | |
1140 | cp += toskew; | |
1141 | pp += fromskew; | |
1142 | } | |
1143 | } | |
1144 | ||
1145 | /* | |
1146 | * 1-bit bilevel => colormap/RGB | |
1147 | */ | |
1148 | DECLAREContigPutFunc(put1bitbwtile) | |
1149 | { | |
1150 | uint32** BWmap = img->BWmap; | |
1151 | ||
1152 | (void) x; (void) y; | |
1153 | fromskew /= 8; | |
1154 | while (h-- > 0) { | |
1155 | uint32* bw; | |
1156 | UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
1157 | cp += toskew; | |
1158 | pp += fromskew; | |
1159 | } | |
1160 | } | |
1161 | ||
1162 | /* | |
1163 | * 2-bit greyscale => colormap/RGB | |
1164 | */ | |
1165 | DECLAREContigPutFunc(put2bitbwtile) | |
1166 | { | |
1167 | uint32** BWmap = img->BWmap; | |
1168 | ||
1169 | (void) x; (void) y; | |
1170 | fromskew /= 4; | |
1171 | while (h-- > 0) { | |
1172 | uint32* bw; | |
1173 | UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
1174 | cp += toskew; | |
1175 | pp += fromskew; | |
1176 | } | |
1177 | } | |
1178 | ||
1179 | /* | |
1180 | * 4-bit greyscale => colormap/RGB | |
1181 | */ | |
1182 | DECLAREContigPutFunc(put4bitbwtile) | |
1183 | { | |
1184 | uint32** BWmap = img->BWmap; | |
1185 | ||
1186 | (void) x; (void) y; | |
1187 | fromskew /= 2; | |
1188 | while (h-- > 0) { | |
1189 | uint32* bw; | |
1190 | UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
1191 | cp += toskew; | |
1192 | pp += fromskew; | |
1193 | } | |
1194 | } | |
1195 | ||
1196 | /* | |
1197 | * 8-bit packed samples, no Map => RGB | |
1198 | */ | |
1199 | DECLAREContigPutFunc(putRGBcontig8bittile) | |
1200 | { | |
1201 | int samplesperpixel = img->samplesperpixel; | |
1202 | ||
1203 | (void) x; (void) y; | |
1204 | fromskew *= samplesperpixel; | |
1205 | while (h-- > 0) { | |
1206 | UNROLL8(w, NOP, | |
1207 | *cp++ = PACK(pp[0], pp[1], pp[2]); | |
1208 | pp += samplesperpixel); | |
1209 | cp += toskew; | |
1210 | pp += fromskew; | |
1211 | } | |
1212 | } | |
1213 | ||
1214 | /* | |
1215 | * 8-bit packed samples, w/ Map => RGB | |
1216 | */ | |
1217 | DECLAREContigPutFunc(putRGBcontig8bitMaptile) | |
1218 | { | |
1219 | TIFFRGBValue* Map = img->Map; | |
1220 | int samplesperpixel = img->samplesperpixel; | |
1221 | ||
1222 | (void) y; | |
1223 | fromskew *= samplesperpixel; | |
1224 | while (h-- > 0) { | |
1225 | for (x = w; x-- > 0;) { | |
1226 | *cp++ = PACK(Map[pp[0]], Map[pp[1]], Map[pp[2]]); | |
1227 | pp += samplesperpixel; | |
1228 | } | |
1229 | pp += fromskew; | |
1230 | cp += toskew; | |
1231 | } | |
1232 | } | |
1233 | ||
1234 | /* | |
1235 | * 8-bit packed samples => RGBA w/ associated alpha | |
1236 | * (known to have Map == NULL) | |
1237 | */ | |
1238 | DECLAREContigPutFunc(putRGBAAcontig8bittile) | |
1239 | { | |
1240 | int samplesperpixel = img->samplesperpixel; | |
1241 | ||
1242 | (void) x; (void) y; | |
1243 | fromskew *= samplesperpixel; | |
1244 | while (h-- > 0) { | |
1245 | UNROLL8(w, NOP, | |
1246 | *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]); | |
1247 | pp += samplesperpixel); | |
1248 | cp += toskew; | |
1249 | pp += fromskew; | |
1250 | } | |
1251 | } | |
1252 | ||
1253 | /* | |
1254 | * 8-bit packed samples => RGBA w/ unassociated alpha | |
1255 | * (known to have Map == NULL) | |
1256 | */ | |
1257 | DECLAREContigPutFunc(putRGBUAcontig8bittile) | |
1258 | { | |
1259 | int samplesperpixel = img->samplesperpixel; | |
1260 | ||
1261 | (void) y; | |
1262 | fromskew *= samplesperpixel; | |
1263 | while (h-- > 0) { | |
1264 | uint32 r, g, b, a; | |
1265 | for (x = w; x-- > 0;) { | |
1266 | a = pp[3]; | |
1267 | r = (pp[0] * a) / 255; | |
1268 | g = (pp[1] * a) / 255; | |
1269 | b = (pp[2] * a) / 255; | |
1270 | *cp++ = PACK4(r,g,b,a); | |
1271 | pp += samplesperpixel; | |
1272 | } | |
1273 | cp += toskew; | |
1274 | pp += fromskew; | |
1275 | } | |
1276 | } | |
1277 | ||
1278 | /* | |
1279 | * 16-bit packed samples => RGB | |
1280 | */ | |
1281 | DECLAREContigPutFunc(putRGBcontig16bittile) | |
1282 | { | |
1283 | int samplesperpixel = img->samplesperpixel; | |
1284 | uint16 *wp = (uint16 *)pp; | |
1285 | ||
1286 | (void) y; | |
1287 | fromskew *= samplesperpixel; | |
1288 | while (h-- > 0) { | |
1289 | for (x = w; x-- > 0;) { | |
1290 | *cp++ = PACKW(wp[0], wp[1], wp[2]); | |
1291 | wp += samplesperpixel; | |
1292 | } | |
1293 | cp += toskew; | |
1294 | wp += fromskew; | |
1295 | } | |
1296 | } | |
1297 | ||
1298 | /* | |
1299 | * 16-bit packed samples => RGBA w/ associated alpha | |
1300 | * (known to have Map == NULL) | |
1301 | */ | |
1302 | DECLAREContigPutFunc(putRGBAAcontig16bittile) | |
1303 | { | |
1304 | int samplesperpixel = img->samplesperpixel; | |
1305 | uint16 *wp = (uint16 *)pp; | |
1306 | ||
1307 | (void) y; | |
1308 | fromskew *= samplesperpixel; | |
1309 | while (h-- > 0) { | |
1310 | for (x = w; x-- > 0;) { | |
1311 | *cp++ = PACKW4(wp[0], wp[1], wp[2], wp[3]); | |
1312 | wp += samplesperpixel; | |
1313 | } | |
1314 | cp += toskew; | |
1315 | wp += fromskew; | |
1316 | } | |
1317 | } | |
1318 | ||
1319 | /* | |
1320 | * 16-bit packed samples => RGBA w/ unassociated alpha | |
1321 | * (known to have Map == NULL) | |
1322 | */ | |
1323 | DECLAREContigPutFunc(putRGBUAcontig16bittile) | |
1324 | { | |
1325 | int samplesperpixel = img->samplesperpixel; | |
1326 | uint16 *wp = (uint16 *)pp; | |
1327 | ||
1328 | (void) y; | |
1329 | fromskew *= samplesperpixel; | |
1330 | while (h-- > 0) { | |
1331 | uint32 r,g,b,a; | |
1332 | /* | |
1333 | * We shift alpha down four bits just in case unsigned | |
1334 | * arithmetic doesn't handle the full range. | |
1335 | * We still have plenty of accuracy, since the output is 8 bits. | |
1336 | * So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff) | |
1337 | * Since we want r*a * 0xff for eight bit output, | |
1338 | * we divide by (0xffff * 0xfff) / 0xff == 0x10eff. | |
1339 | */ | |
1340 | for (x = w; x-- > 0;) { | |
1341 | a = wp[3] >> 4; | |
1342 | r = (wp[0] * a) / 0x10eff; | |
1343 | g = (wp[1] * a) / 0x10eff; | |
1344 | b = (wp[2] * a) / 0x10eff; | |
1345 | *cp++ = PACK4(r,g,b,a); | |
1346 | wp += samplesperpixel; | |
1347 | } | |
1348 | cp += toskew; | |
1349 | wp += fromskew; | |
1350 | } | |
1351 | } | |
1352 | ||
1353 | /* | |
1354 | * 8-bit packed CMYK samples w/o Map => RGB | |
1355 | * | |
1356 | * NB: The conversion of CMYK->RGB is *very* crude. | |
1357 | */ | |
1358 | DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) | |
1359 | { | |
1360 | int samplesperpixel = img->samplesperpixel; | |
1361 | uint16 r, g, b, k; | |
1362 | ||
1363 | (void) x; (void) y; | |
1364 | fromskew *= samplesperpixel; | |
1365 | while (h-- > 0) { | |
1366 | UNROLL8(w, NOP, | |
1367 | k = 255 - pp[3]; | |
1368 | r = (k*(255-pp[0]))/255; | |
1369 | g = (k*(255-pp[1]))/255; | |
1370 | b = (k*(255-pp[2]))/255; | |
1371 | *cp++ = PACK(r, g, b); | |
1372 | pp += samplesperpixel); | |
1373 | cp += toskew; | |
1374 | pp += fromskew; | |
1375 | } | |
1376 | } | |
1377 | ||
1378 | /* | |
1379 | * 8-bit packed CMYK samples w/Map => RGB | |
1380 | * | |
1381 | * NB: The conversion of CMYK->RGB is *very* crude. | |
1382 | */ | |
1383 | DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) | |
1384 | { | |
1385 | int samplesperpixel = img->samplesperpixel; | |
1386 | TIFFRGBValue* Map = img->Map; | |
1387 | uint16 r, g, b, k; | |
1388 | ||
1389 | (void) y; | |
1390 | fromskew *= samplesperpixel; | |
1391 | while (h-- > 0) { | |
1392 | for (x = w; x-- > 0;) { | |
1393 | k = 255 - pp[3]; | |
1394 | r = (k*(255-pp[0]))/255; | |
1395 | g = (k*(255-pp[1]))/255; | |
1396 | b = (k*(255-pp[2]))/255; | |
1397 | *cp++ = PACK(Map[r], Map[g], Map[b]); | |
1398 | pp += samplesperpixel; | |
1399 | } | |
1400 | pp += fromskew; | |
1401 | cp += toskew; | |
1402 | } | |
1403 | } | |
1404 | ||
1405 | #define DECLARESepPutFunc(name) \ | |
1406 | static void name(\ | |
1407 | TIFFRGBAImage* img,\ | |
1408 | uint32* cp,\ | |
1409 | uint32 x, uint32 y, \ | |
1410 | uint32 w, uint32 h,\ | |
1411 | int32 fromskew, int32 toskew,\ | |
1412 | u_char* r, u_char* g, u_char* b, u_char* a\ | |
1413 | ) | |
1414 | ||
1415 | /* | |
1416 | * 8-bit unpacked samples => RGB | |
1417 | */ | |
1418 | DECLARESepPutFunc(putRGBseparate8bittile) | |
1419 | { | |
1420 | (void) img; (void) x; (void) y; (void) a; | |
1421 | while (h-- > 0) { | |
1422 | UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++)); | |
1423 | SKEW(r, g, b, fromskew); | |
1424 | cp += toskew; | |
1425 | } | |
1426 | } | |
1427 | ||
1428 | /* | |
1429 | * 8-bit unpacked samples => RGB | |
1430 | */ | |
1431 | DECLARESepPutFunc(putRGBseparate8bitMaptile) | |
1432 | { | |
1433 | TIFFRGBValue* Map = img->Map; | |
1434 | ||
1435 | (void) y; (void) a; | |
1436 | while (h-- > 0) { | |
1437 | for (x = w; x > 0; x--) | |
1438 | *cp++ = PACK(Map[*r++], Map[*g++], Map[*b++]); | |
1439 | SKEW(r, g, b, fromskew); | |
1440 | cp += toskew; | |
1441 | } | |
1442 | } | |
1443 | ||
1444 | /* | |
1445 | * 8-bit unpacked samples => RGBA w/ associated alpha | |
1446 | */ | |
1447 | DECLARESepPutFunc(putRGBAAseparate8bittile) | |
1448 | { | |
1449 | (void) img; (void) x; (void) y; | |
1450 | while (h-- > 0) { | |
1451 | UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++)); | |
1452 | SKEW4(r, g, b, a, fromskew); | |
1453 | cp += toskew; | |
1454 | } | |
1455 | } | |
1456 | ||
1457 | /* | |
1458 | * 8-bit unpacked samples => RGBA w/ unassociated alpha | |
1459 | */ | |
1460 | DECLARESepPutFunc(putRGBUAseparate8bittile) | |
1461 | { | |
1462 | (void) img; (void) y; | |
1463 | while (h-- > 0) { | |
1464 | uint32 rv, gv, bv, av; | |
1465 | for (x = w; x-- > 0;) { | |
1466 | av = *a++; | |
1467 | rv = (*r++ * av) / 255; | |
1468 | gv = (*g++ * av) / 255; | |
1469 | bv = (*b++ * av) / 255; | |
1470 | *cp++ = PACK4(rv,gv,bv,av); | |
1471 | } | |
1472 | SKEW4(r, g, b, a, fromskew); | |
1473 | cp += toskew; | |
1474 | } | |
1475 | } | |
1476 | ||
1477 | /* | |
1478 | * 16-bit unpacked samples => RGB | |
1479 | */ | |
1480 | DECLARESepPutFunc(putRGBseparate16bittile) | |
1481 | { | |
1482 | uint16 *wr = (uint16*) r; | |
1483 | uint16 *wg = (uint16*) g; | |
1484 | uint16 *wb = (uint16*) b; | |
1485 | ||
1486 | (void) img; (void) y; (void) a; | |
1487 | while (h-- > 0) { | |
1488 | for (x = 0; x < w; x++) | |
1489 | *cp++ = PACKW(*wr++, *wg++, *wb++); | |
1490 | SKEW(wr, wg, wb, fromskew); | |
1491 | cp += toskew; | |
1492 | } | |
1493 | } | |
1494 | ||
1495 | /* | |
1496 | * 16-bit unpacked samples => RGBA w/ associated alpha | |
1497 | */ | |
1498 | DECLARESepPutFunc(putRGBAAseparate16bittile) | |
1499 | { | |
1500 | uint16 *wr = (uint16*) r; | |
1501 | uint16 *wg = (uint16*) g; | |
1502 | uint16 *wb = (uint16*) b; | |
1503 | uint16 *wa = (uint16*) a; | |
1504 | ||
1505 | (void) img; (void) y; | |
1506 | while (h-- > 0) { | |
1507 | for (x = 0; x < w; x++) | |
1508 | *cp++ = PACKW4(*wr++, *wg++, *wb++, *wa++); | |
1509 | SKEW4(wr, wg, wb, wa, fromskew); | |
1510 | cp += toskew; | |
1511 | } | |
1512 | } | |
1513 | ||
1514 | /* | |
1515 | * 16-bit unpacked samples => RGBA w/ unassociated alpha | |
1516 | */ | |
1517 | DECLARESepPutFunc(putRGBUAseparate16bittile) | |
1518 | { | |
1519 | uint16 *wr = (uint16*) r; | |
1520 | uint16 *wg = (uint16*) g; | |
1521 | uint16 *wb = (uint16*) b; | |
1522 | uint16 *wa = (uint16*) a; | |
1523 | ||
1524 | (void) img; (void) y; | |
1525 | while (h-- > 0) { | |
1526 | uint32 r,g,b,a; | |
1527 | /* | |
1528 | * We shift alpha down four bits just in case unsigned | |
1529 | * arithmetic doesn't handle the full range. | |
1530 | * We still have plenty of accuracy, since the output is 8 bits. | |
1531 | * So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff) | |
1532 | * Since we want r*a * 0xff for eight bit output, | |
1533 | * we divide by (0xffff * 0xfff) / 0xff == 0x10eff. | |
1534 | */ | |
1535 | for (x = w; x-- > 0;) { | |
1536 | a = *wa++ >> 4; | |
1537 | r = (*wr++ * a) / 0x10eff; | |
1538 | g = (*wg++ * a) / 0x10eff; | |
1539 | b = (*wb++ * a) / 0x10eff; | |
1540 | *cp++ = PACK4(r,g,b,a); | |
1541 | } | |
1542 | SKEW4(wr, wg, wb, wa, fromskew); | |
1543 | cp += toskew; | |
1544 | } | |
1545 | } | |
1546 | ||
1547 | /* | |
1548 | * 8-bit packed CIE L*a*b 1976 samples => RGB | |
1549 | */ | |
1550 | DECLAREContigPutFunc(putcontig8bitCIELab) | |
1551 | { | |
1552 | float X, Y, Z; | |
1553 | uint32 r, g, b; | |
1554 | (void) y; | |
1555 | fromskew *= 3; | |
1556 | while (h-- > 0) { | |
1557 | for (x = w; x-- > 0;) { | |
1558 | TIFFCIELabToXYZ(img->cielab, | |
1559 | (u_char)pp[0], | |
1560 | (signed char)pp[1], | |
1561 | (signed char)pp[2], | |
1562 | &X, &Y, &Z); | |
1563 | TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b); | |
1564 | *cp++ = PACK(r, g, b); | |
1565 | pp += 3; | |
1566 | } | |
1567 | cp += toskew; | |
1568 | pp += fromskew; | |
1569 | } | |
1570 | } | |
1571 | ||
1572 | /* | |
1573 | * YCbCr -> RGB conversion and packing routines. | |
1574 | */ | |
1575 | ||
1576 | #define YCbCrtoRGB(dst, Y) { \ | |
1577 | uint32 r, g, b; \ | |
1578 | TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \ | |
1579 | dst = PACK(r, g, b); \ | |
1580 | } | |
1581 | ||
1582 | /* | |
1583 | * 8-bit packed YCbCr samples => RGB | |
1584 | * This function is generic for different sampling sizes, | |
1585 | * and can handle blocks sizes that aren't multiples of the | |
1586 | * sampling size. However, it is substantially less optimized | |
1587 | * than the specific sampling cases. It is used as a fallback | |
1588 | * for difficult blocks. | |
1589 | */ | |
1590 | #ifdef notdef | |
1591 | static void putcontig8bitYCbCrGenericTile( | |
1592 | TIFFRGBAImage* img, | |
1593 | uint32* cp, | |
1594 | uint32 x, uint32 y, | |
1595 | uint32 w, uint32 h, | |
1596 | int32 fromskew, int32 toskew, | |
1597 | u_char* pp, | |
1598 | int h_group, | |
1599 | int v_group ) | |
1600 | ||
1601 | { | |
1602 | uint32* cp1 = cp+w+toskew; | |
1603 | uint32* cp2 = cp1+w+toskew; | |
1604 | uint32* cp3 = cp2+w+toskew; | |
1605 | int32 incr = 3*w+4*toskew; | |
1606 | int32 Cb, Cr; | |
1607 | int group_size = v_group * h_group + 2; | |
1608 | ||
1609 | (void) y; | |
1610 | fromskew = (fromskew * group_size) / h_group; | |
1611 | ||
1612 | for( yy = 0; yy < h; yy++ ) | |
1613 | { | |
1614 | u_char *pp_line; | |
1615 | int y_line_group = yy / v_group; | |
1616 | int y_remainder = yy - y_line_group * v_group; | |
1617 | ||
1618 | pp_line = pp + v_line_group * | |
1619 | ||
1620 | ||
1621 | for( xx = 0; xx < w; xx++ ) | |
1622 | { | |
1623 | Cb = pp | |
1624 | } | |
1625 | } | |
1626 | for (; h >= 4; h -= 4) { | |
1627 | x = w>>2; | |
1628 | do { | |
1629 | Cb = pp[16]; | |
1630 | Cr = pp[17]; | |
1631 | ||
1632 | YCbCrtoRGB(cp [0], pp[ 0]); | |
1633 | YCbCrtoRGB(cp [1], pp[ 1]); | |
1634 | YCbCrtoRGB(cp [2], pp[ 2]); | |
1635 | YCbCrtoRGB(cp [3], pp[ 3]); | |
1636 | YCbCrtoRGB(cp1[0], pp[ 4]); | |
1637 | YCbCrtoRGB(cp1[1], pp[ 5]); | |
1638 | YCbCrtoRGB(cp1[2], pp[ 6]); | |
1639 | YCbCrtoRGB(cp1[3], pp[ 7]); | |
1640 | YCbCrtoRGB(cp2[0], pp[ 8]); | |
1641 | YCbCrtoRGB(cp2[1], pp[ 9]); | |
1642 | YCbCrtoRGB(cp2[2], pp[10]); | |
1643 | YCbCrtoRGB(cp2[3], pp[11]); | |
1644 | YCbCrtoRGB(cp3[0], pp[12]); | |
1645 | YCbCrtoRGB(cp3[1], pp[13]); | |
1646 | YCbCrtoRGB(cp3[2], pp[14]); | |
1647 | YCbCrtoRGB(cp3[3], pp[15]); | |
1648 | ||
1649 | cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; | |
1650 | pp += 18; | |
1651 | } while (--x); | |
1652 | cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1653 | pp += fromskew; | |
1654 | } | |
1655 | } | |
1656 | #endif | |
1657 | ||
1658 | /* | |
1659 | * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB | |
1660 | */ | |
1661 | DECLAREContigPutFunc(putcontig8bitYCbCr44tile) | |
1662 | { | |
1663 | uint32* cp1 = cp+w+toskew; | |
1664 | uint32* cp2 = cp1+w+toskew; | |
1665 | uint32* cp3 = cp2+w+toskew; | |
1666 | int32 incr = 3*w+4*toskew; | |
1667 | ||
1668 | (void) y; | |
1669 | /* adjust fromskew */ | |
1670 | fromskew = (fromskew * 18) / 4; | |
1671 | if ((h & 3) == 0 && (w & 3) == 0) { | |
1672 | for (; h >= 4; h -= 4) { | |
1673 | x = w>>2; | |
1674 | do { | |
1675 | int32 Cb = pp[16]; | |
1676 | int32 Cr = pp[17]; | |
1677 | ||
1678 | YCbCrtoRGB(cp [0], pp[ 0]); | |
1679 | YCbCrtoRGB(cp [1], pp[ 1]); | |
1680 | YCbCrtoRGB(cp [2], pp[ 2]); | |
1681 | YCbCrtoRGB(cp [3], pp[ 3]); | |
1682 | YCbCrtoRGB(cp1[0], pp[ 4]); | |
1683 | YCbCrtoRGB(cp1[1], pp[ 5]); | |
1684 | YCbCrtoRGB(cp1[2], pp[ 6]); | |
1685 | YCbCrtoRGB(cp1[3], pp[ 7]); | |
1686 | YCbCrtoRGB(cp2[0], pp[ 8]); | |
1687 | YCbCrtoRGB(cp2[1], pp[ 9]); | |
1688 | YCbCrtoRGB(cp2[2], pp[10]); | |
1689 | YCbCrtoRGB(cp2[3], pp[11]); | |
1690 | YCbCrtoRGB(cp3[0], pp[12]); | |
1691 | YCbCrtoRGB(cp3[1], pp[13]); | |
1692 | YCbCrtoRGB(cp3[2], pp[14]); | |
1693 | YCbCrtoRGB(cp3[3], pp[15]); | |
1694 | ||
1695 | cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; | |
1696 | pp += 18; | |
1697 | } while (--x); | |
1698 | cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1699 | pp += fromskew; | |
1700 | } | |
1701 | } else { | |
1702 | while (h > 0) { | |
1703 | for (x = w; x > 0;) { | |
1704 | int32 Cb = pp[16]; | |
1705 | int32 Cr = pp[17]; | |
1706 | switch (x) { | |
1707 | default: | |
1708 | switch (h) { | |
1709 | default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */ | |
1710 | case 3: YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */ | |
1711 | case 2: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ | |
1712 | case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ | |
1713 | } /* FALLTHROUGH */ | |
1714 | case 3: | |
1715 | switch (h) { | |
1716 | default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */ | |
1717 | case 3: YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */ | |
1718 | case 2: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ | |
1719 | case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ | |
1720 | } /* FALLTHROUGH */ | |
1721 | case 2: | |
1722 | switch (h) { | |
1723 | default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */ | |
1724 | case 3: YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */ | |
1725 | case 2: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ | |
1726 | case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | |
1727 | } /* FALLTHROUGH */ | |
1728 | case 1: | |
1729 | switch (h) { | |
1730 | default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */ | |
1731 | case 3: YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */ | |
1732 | case 2: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ | |
1733 | case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | |
1734 | } /* FALLTHROUGH */ | |
1735 | } | |
1736 | if (x < 4) { | |
1737 | cp += x; cp1 += x; cp2 += x; cp3 += x; | |
1738 | x = 0; | |
1739 | } | |
1740 | else { | |
1741 | cp += 4; cp1 += 4; cp2 += 4; cp3 += 4; | |
1742 | x -= 4; | |
1743 | } | |
1744 | pp += 18; | |
1745 | } | |
1746 | if (h <= 4) | |
1747 | break; | |
1748 | h -= 4; | |
1749 | cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1750 | pp += fromskew; | |
1751 | } | |
1752 | } | |
1753 | } | |
1754 | ||
1755 | /* | |
1756 | * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB | |
1757 | */ | |
1758 | DECLAREContigPutFunc(putcontig8bitYCbCr42tile) | |
1759 | { | |
1760 | uint32* cp1 = cp+w+toskew; | |
1761 | int32 incr = 2*toskew+w; | |
1762 | ||
1763 | (void) y; | |
1764 | fromskew = (fromskew * 10) / 4; | |
1765 | if ((h & 3) == 0 && (w & 1) == 0) { | |
1766 | for (; h >= 2; h -= 2) { | |
1767 | x = w>>2; | |
1768 | do { | |
1769 | int32 Cb = pp[8]; | |
1770 | int32 Cr = pp[9]; | |
1771 | ||
1772 | YCbCrtoRGB(cp [0], pp[0]); | |
1773 | YCbCrtoRGB(cp [1], pp[1]); | |
1774 | YCbCrtoRGB(cp [2], pp[2]); | |
1775 | YCbCrtoRGB(cp [3], pp[3]); | |
1776 | YCbCrtoRGB(cp1[0], pp[4]); | |
1777 | YCbCrtoRGB(cp1[1], pp[5]); | |
1778 | YCbCrtoRGB(cp1[2], pp[6]); | |
1779 | YCbCrtoRGB(cp1[3], pp[7]); | |
1780 | ||
1781 | cp += 4, cp1 += 4; | |
1782 | pp += 10; | |
1783 | } while (--x); | |
1784 | cp += incr, cp1 += incr; | |
1785 | pp += fromskew; | |
1786 | } | |
1787 | } else { | |
1788 | while (h > 0) { | |
1789 | for (x = w; x > 0;) { | |
1790 | int32 Cb = pp[8]; | |
1791 | int32 Cr = pp[9]; | |
1792 | switch (x) { | |
1793 | default: | |
1794 | switch (h) { | |
1795 | default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ | |
1796 | case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ | |
1797 | } /* FALLTHROUGH */ | |
1798 | case 3: | |
1799 | switch (h) { | |
1800 | default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ | |
1801 | case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ | |
1802 | } /* FALLTHROUGH */ | |
1803 | case 2: | |
1804 | switch (h) { | |
1805 | default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ | |
1806 | case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | |
1807 | } /* FALLTHROUGH */ | |
1808 | case 1: | |
1809 | switch (h) { | |
1810 | default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ | |
1811 | case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | |
1812 | } /* FALLTHROUGH */ | |
1813 | } | |
1814 | if (x < 4) { | |
1815 | cp += x; cp1 += x; | |
1816 | x = 0; | |
1817 | } | |
1818 | else { | |
1819 | cp += 4; cp1 += 4; | |
1820 | x -= 4; | |
1821 | } | |
1822 | pp += 10; | |
1823 | } | |
1824 | if (h <= 2) | |
1825 | break; | |
1826 | h -= 2; | |
1827 | cp += incr, cp1 += incr; | |
1828 | pp += fromskew; | |
1829 | } | |
1830 | } | |
1831 | } | |
1832 | ||
1833 | /* | |
1834 | * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB | |
1835 | */ | |
1836 | DECLAREContigPutFunc(putcontig8bitYCbCr41tile) | |
1837 | { | |
1838 | (void) y; | |
1839 | /* XXX adjust fromskew */ | |
1840 | do { | |
1841 | x = w>>2; | |
1842 | do { | |
1843 | int32 Cb = pp[4]; | |
1844 | int32 Cr = pp[5]; | |
1845 | ||
1846 | YCbCrtoRGB(cp [0], pp[0]); | |
1847 | YCbCrtoRGB(cp [1], pp[1]); | |
1848 | YCbCrtoRGB(cp [2], pp[2]); | |
1849 | YCbCrtoRGB(cp [3], pp[3]); | |
1850 | ||
1851 | cp += 4; | |
1852 | pp += 6; | |
1853 | } while (--x); | |
1854 | ||
1855 | if( (w&3) != 0 ) | |
1856 | { | |
1857 | int32 Cb = pp[4]; | |
1858 | int32 Cr = pp[5]; | |
1859 | ||
1860 | switch( (w&3) ) { | |
1861 | case 3: YCbCrtoRGB(cp [2], pp[2]); | |
1862 | case 2: YCbCrtoRGB(cp [1], pp[1]); | |
1863 | case 1: YCbCrtoRGB(cp [0], pp[0]); | |
1864 | case 0: break; | |
1865 | } | |
1866 | ||
1867 | cp += (w&3); | |
1868 | pp += 6; | |
1869 | } | |
1870 | ||
1871 | cp += toskew; | |
1872 | pp += fromskew; | |
1873 | } while (--h); | |
1874 | ||
1875 | } | |
1876 | ||
1877 | /* | |
1878 | * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB | |
1879 | */ | |
1880 | DECLAREContigPutFunc(putcontig8bitYCbCr22tile) | |
1881 | { | |
1882 | uint32* cp1 = cp+w+toskew; | |
1883 | int32 incr = 2*toskew+w; | |
1884 | ||
1885 | (void) y; | |
1886 | fromskew = (fromskew * 6) / 2; | |
1887 | if ((h & 1) == 0 && (w & 1) == 0) { | |
1888 | for (; h >= 2; h -= 2) { | |
1889 | x = w>>1; | |
1890 | do { | |
1891 | int32 Cb = pp[4]; | |
1892 | int32 Cr = pp[5]; | |
1893 | ||
1894 | YCbCrtoRGB(cp [0], pp[0]); | |
1895 | YCbCrtoRGB(cp [1], pp[1]); | |
1896 | YCbCrtoRGB(cp1[0], pp[2]); | |
1897 | YCbCrtoRGB(cp1[1], pp[3]); | |
1898 | ||
1899 | cp += 2, cp1 += 2; | |
1900 | pp += 6; | |
1901 | } while (--x); | |
1902 | cp += incr, cp1 += incr; | |
1903 | pp += fromskew; | |
1904 | } | |
1905 | } else { | |
1906 | while (h > 0) { | |
1907 | for (x = w; x > 0;) { | |
1908 | int32 Cb = pp[4]; | |
1909 | int32 Cr = pp[5]; | |
1910 | switch (x) { | |
1911 | default: | |
1912 | switch (h) { | |
1913 | default: YCbCrtoRGB(cp1[1], pp[ 3]); /* FALLTHROUGH */ | |
1914 | case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | |
1915 | } /* FALLTHROUGH */ | |
1916 | case 1: | |
1917 | switch (h) { | |
1918 | default: YCbCrtoRGB(cp1[0], pp[ 2]); /* FALLTHROUGH */ | |
1919 | case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | |
1920 | } /* FALLTHROUGH */ | |
1921 | } | |
1922 | if (x < 2) { | |
1923 | cp += x; cp1 += x; | |
1924 | x = 0; | |
1925 | } | |
1926 | else { | |
1927 | cp += 2; cp1 += 2; | |
1928 | x -= 2; | |
1929 | } | |
1930 | pp += 6; | |
1931 | } | |
1932 | if (h <= 2) | |
1933 | break; | |
1934 | h -= 2; | |
1935 | cp += incr, cp1 += incr; | |
1936 | pp += fromskew; | |
1937 | } | |
1938 | } | |
1939 | } | |
1940 | ||
1941 | /* | |
1942 | * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB | |
1943 | */ | |
1944 | DECLAREContigPutFunc(putcontig8bitYCbCr21tile) | |
1945 | { | |
1946 | (void) y; | |
1947 | fromskew = (fromskew * 4) / 2; | |
1948 | do { | |
1949 | x = w>>1; | |
1950 | do { | |
1951 | int32 Cb = pp[2]; | |
1952 | int32 Cr = pp[3]; | |
1953 | ||
1954 | YCbCrtoRGB(cp[0], pp[0]); | |
1955 | YCbCrtoRGB(cp[1], pp[1]); | |
1956 | ||
1957 | cp += 2; | |
1958 | pp += 4; | |
1959 | } while (--x); | |
1960 | ||
1961 | if( (w&1) != 0 ) | |
1962 | { | |
1963 | int32 Cb = pp[2]; | |
1964 | int32 Cr = pp[3]; | |
1965 | ||
1966 | YCbCrtoRGB(cp [0], pp[0]); | |
1967 | ||
1968 | cp += 1; | |
1969 | pp += 4; | |
1970 | } | |
1971 | ||
1972 | cp += toskew; | |
1973 | pp += fromskew; | |
1974 | } while (--h); | |
1975 | } | |
1976 | ||
1977 | /* | |
1978 | * 8-bit packed YCbCr samples w/ no subsampling => RGB | |
1979 | */ | |
1980 | DECLAREContigPutFunc(putcontig8bitYCbCr11tile) | |
1981 | { | |
1982 | (void) y; | |
1983 | fromskew *= 3; | |
1984 | do { | |
1985 | x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */ | |
1986 | do { | |
1987 | int32 Cb = pp[1]; | |
1988 | int32 Cr = pp[2]; | |
1989 | ||
1990 | YCbCrtoRGB(*cp++, pp[0]); | |
1991 | ||
1992 | pp += 3; | |
1993 | } while (--x); | |
1994 | cp += toskew; | |
1995 | pp += fromskew; | |
1996 | } while (--h); | |
1997 | } | |
1998 | #undef YCbCrtoRGB | |
1999 | ||
2000 | static tileContigRoutine | |
2001 | initYCbCrConversion(TIFFRGBAImage* img) | |
2002 | { | |
2003 | static char module[] = "initCIELabConversion"; | |
2004 | ||
2005 | float *luma, *refBlackWhite; | |
2006 | uint16 hs, vs; | |
2007 | ||
2008 | if (img->ycbcr == NULL) { | |
2009 | img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc( | |
2010 | TIFFroundup(sizeof (TIFFYCbCrToRGB), sizeof (long)) | |
2011 | + 4*256*sizeof (TIFFRGBValue) | |
2012 | + 2*256*sizeof (int) | |
2013 | + 3*256*sizeof (int32) | |
2014 | ); | |
2015 | if (img->ycbcr == NULL) { | |
2016 | TIFFError(module, | |
2017 | "No space for YCbCr->RGB conversion state"); | |
2018 | return (NULL); | |
2019 | } | |
2020 | } | |
2021 | ||
2022 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma); | |
2023 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE, | |
2024 | &refBlackWhite); | |
2025 | if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0) | |
2026 | return NULL; | |
2027 | ||
2028 | /* | |
2029 | * The 6.0 spec says that subsampling must be | |
2030 | * one of 1, 2, or 4, and that vertical subsampling | |
2031 | * must always be <= horizontal subsampling; so | |
2032 | * there are only a few possibilities and we just | |
2033 | * enumerate the cases. | |
2034 | */ | |
2035 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs); | |
2036 | switch ((hs<<4)|vs) { | |
2037 | case 0x44: return (putcontig8bitYCbCr44tile); | |
2038 | case 0x42: return (putcontig8bitYCbCr42tile); | |
2039 | case 0x41: return (putcontig8bitYCbCr41tile); | |
2040 | case 0x22: return (putcontig8bitYCbCr22tile); | |
2041 | case 0x21: return (putcontig8bitYCbCr21tile); | |
2042 | case 0x11: return (putcontig8bitYCbCr11tile); | |
2043 | } | |
2044 | ||
2045 | return (NULL); | |
2046 | } | |
2047 | ||
2048 | static tileContigRoutine | |
2049 | initCIELabConversion(TIFFRGBAImage* img) | |
2050 | { | |
2051 | static char module[] = "initCIELabConversion"; | |
2052 | ||
2053 | float *whitePoint; | |
2054 | float refWhite[3]; | |
2055 | ||
2056 | if (!img->cielab) { | |
2057 | img->cielab = (TIFFCIELabToRGB *) | |
2058 | _TIFFmalloc(sizeof(TIFFCIELabToRGB)); | |
2059 | if (!img->cielab) { | |
2060 | TIFFError(module, | |
2061 | "No space for CIE L*a*b*->RGB conversion state."); | |
2062 | return NULL; | |
2063 | } | |
2064 | } | |
2065 | ||
2066 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint); | |
2067 | refWhite[1] = 100.0F; | |
2068 | refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1]; | |
2069 | refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1]) | |
2070 | / whitePoint[1] * refWhite[1]; | |
2071 | if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) { | |
2072 | TIFFError(module, | |
2073 | "Failed to initialize CIE L*a*b*->RGB conversion state."); | |
2074 | _TIFFfree(img->cielab); | |
2075 | return NULL; | |
2076 | } | |
2077 | ||
2078 | return putcontig8bitCIELab; | |
2079 | } | |
2080 | ||
2081 | /* | |
2082 | * Greyscale images with less than 8 bits/sample are handled | |
2083 | * with a table to avoid lots of shifts and masks. The table | |
2084 | * is setup so that put*bwtile (below) can retrieve 8/bitspersample | |
2085 | * pixel values simply by indexing into the table with one | |
2086 | * number. | |
2087 | */ | |
2088 | static int | |
2089 | makebwmap(TIFFRGBAImage* img) | |
2090 | { | |
2091 | TIFFRGBValue* Map = img->Map; | |
2092 | int bitspersample = img->bitspersample; | |
2093 | int nsamples = 8 / bitspersample; | |
2094 | int i; | |
2095 | uint32* p; | |
2096 | ||
2097 | if( nsamples == 0 ) | |
2098 | nsamples = 1; | |
2099 | ||
2100 | img->BWmap = (uint32**) _TIFFmalloc( | |
2101 | 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | |
2102 | if (img->BWmap == NULL) { | |
2103 | TIFFError(TIFFFileName(img->tif), "No space for B&W mapping table"); | |
2104 | return (0); | |
2105 | } | |
2106 | p = (uint32*)(img->BWmap + 256); | |
2107 | for (i = 0; i < 256; i++) { | |
2108 | TIFFRGBValue c; | |
2109 | img->BWmap[i] = p; | |
2110 | switch (bitspersample) { | |
2111 | #define GREY(x) c = Map[x]; *p++ = PACK(c,c,c); | |
2112 | case 1: | |
2113 | GREY(i>>7); | |
2114 | GREY((i>>6)&1); | |
2115 | GREY((i>>5)&1); | |
2116 | GREY((i>>4)&1); | |
2117 | GREY((i>>3)&1); | |
2118 | GREY((i>>2)&1); | |
2119 | GREY((i>>1)&1); | |
2120 | GREY(i&1); | |
2121 | break; | |
2122 | case 2: | |
2123 | GREY(i>>6); | |
2124 | GREY((i>>4)&3); | |
2125 | GREY((i>>2)&3); | |
2126 | GREY(i&3); | |
2127 | break; | |
2128 | case 4: | |
2129 | GREY(i>>4); | |
2130 | GREY(i&0xf); | |
2131 | break; | |
2132 | case 8: | |
2133 | case 16: | |
2134 | GREY(i); | |
2135 | break; | |
2136 | } | |
2137 | #undef GREY | |
2138 | } | |
2139 | return (1); | |
2140 | } | |
2141 | ||
2142 | /* | |
2143 | * Construct a mapping table to convert from the range | |
2144 | * of the data samples to [0,255] --for display. This | |
2145 | * process also handles inverting B&W images when needed. | |
2146 | */ | |
2147 | static int | |
2148 | setupMap(TIFFRGBAImage* img) | |
2149 | { | |
2150 | int32 x, range; | |
2151 | ||
2152 | range = (int32)((1L<<img->bitspersample)-1); | |
2153 | ||
2154 | /* treat 16 bit the same as eight bit */ | |
2155 | if( img->bitspersample == 16 ) | |
2156 | range = (int32) 255; | |
2157 | ||
2158 | img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue)); | |
2159 | if (img->Map == NULL) { | |
2160 | TIFFError(TIFFFileName(img->tif), | |
2161 | "No space for photometric conversion table"); | |
2162 | return (0); | |
2163 | } | |
2164 | if (img->photometric == PHOTOMETRIC_MINISWHITE) { | |
2165 | for (x = 0; x <= range; x++) | |
2166 | img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range); | |
2167 | } else { | |
2168 | for (x = 0; x <= range; x++) | |
2169 | img->Map[x] = (TIFFRGBValue) ((x * 255) / range); | |
2170 | } | |
2171 | if (img->bitspersample <= 16 && | |
2172 | (img->photometric == PHOTOMETRIC_MINISBLACK || | |
2173 | img->photometric == PHOTOMETRIC_MINISWHITE)) { | |
2174 | /* | |
2175 | * Use photometric mapping table to construct | |
2176 | * unpacking tables for samples <= 8 bits. | |
2177 | */ | |
2178 | if (!makebwmap(img)) | |
2179 | return (0); | |
2180 | /* no longer need Map, free it */ | |
2181 | _TIFFfree(img->Map), img->Map = NULL; | |
2182 | } | |
2183 | return (1); | |
2184 | } | |
2185 | ||
2186 | static int | |
2187 | checkcmap(TIFFRGBAImage* img) | |
2188 | { | |
2189 | uint16* r = img->redcmap; | |
2190 | uint16* g = img->greencmap; | |
2191 | uint16* b = img->bluecmap; | |
2192 | long n = 1L<<img->bitspersample; | |
2193 | ||
2194 | while (n-- > 0) | |
2195 | if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256) | |
2196 | return (16); | |
2197 | return (8); | |
2198 | } | |
2199 | ||
2200 | static void | |
2201 | cvtcmap(TIFFRGBAImage* img) | |
2202 | { | |
2203 | uint16* r = img->redcmap; | |
2204 | uint16* g = img->greencmap; | |
2205 | uint16* b = img->bluecmap; | |
2206 | long i; | |
2207 | ||
2208 | for (i = (1L<<img->bitspersample)-1; i >= 0; i--) { | |
2209 | #define CVT(x) ((uint16)((x)>>8)) | |
2210 | r[i] = CVT(r[i]); | |
2211 | g[i] = CVT(g[i]); | |
2212 | b[i] = CVT(b[i]); | |
2213 | #undef CVT | |
2214 | } | |
2215 | } | |
2216 | ||
2217 | /* | |
2218 | * Palette images with <= 8 bits/sample are handled | |
2219 | * with a table to avoid lots of shifts and masks. The table | |
2220 | * is setup so that put*cmaptile (below) can retrieve 8/bitspersample | |
2221 | * pixel values simply by indexing into the table with one | |
2222 | * number. | |
2223 | */ | |
2224 | static int | |
2225 | makecmap(TIFFRGBAImage* img) | |
2226 | { | |
2227 | int bitspersample = img->bitspersample; | |
2228 | int nsamples = 8 / bitspersample; | |
2229 | uint16* r = img->redcmap; | |
2230 | uint16* g = img->greencmap; | |
2231 | uint16* b = img->bluecmap; | |
2232 | uint32 *p; | |
2233 | int i; | |
2234 | ||
2235 | img->PALmap = (uint32**) _TIFFmalloc( | |
2236 | 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | |
2237 | if (img->PALmap == NULL) { | |
2238 | TIFFError(TIFFFileName(img->tif), "No space for Palette mapping table"); | |
2239 | return (0); | |
2240 | } | |
2241 | p = (uint32*)(img->PALmap + 256); | |
2242 | for (i = 0; i < 256; i++) { | |
2243 | TIFFRGBValue c; | |
2244 | img->PALmap[i] = p; | |
2245 | #define CMAP(x) c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff); | |
2246 | switch (bitspersample) { | |
2247 | case 1: | |
2248 | CMAP(i>>7); | |
2249 | CMAP((i>>6)&1); | |
2250 | CMAP((i>>5)&1); | |
2251 | CMAP((i>>4)&1); | |
2252 | CMAP((i>>3)&1); | |
2253 | CMAP((i>>2)&1); | |
2254 | CMAP((i>>1)&1); | |
2255 | CMAP(i&1); | |
2256 | break; | |
2257 | case 2: | |
2258 | CMAP(i>>6); | |
2259 | CMAP((i>>4)&3); | |
2260 | CMAP((i>>2)&3); | |
2261 | CMAP(i&3); | |
2262 | break; | |
2263 | case 4: | |
2264 | CMAP(i>>4); | |
2265 | CMAP(i&0xf); | |
2266 | break; | |
2267 | case 8: | |
2268 | CMAP(i); | |
2269 | break; | |
2270 | } | |
2271 | #undef CMAP | |
2272 | } | |
2273 | return (1); | |
2274 | } | |
2275 | ||
2276 | /* | |
2277 | * Construct any mapping table used | |
2278 | * by the associated put routine. | |
2279 | */ | |
2280 | static int | |
2281 | buildMap(TIFFRGBAImage* img) | |
2282 | { | |
2283 | switch (img->photometric) { | |
2284 | case PHOTOMETRIC_RGB: | |
2285 | case PHOTOMETRIC_YCBCR: | |
2286 | case PHOTOMETRIC_SEPARATED: | |
2287 | if (img->bitspersample == 8) | |
2288 | break; | |
2289 | /* fall thru... */ | |
2290 | case PHOTOMETRIC_MINISBLACK: | |
2291 | case PHOTOMETRIC_MINISWHITE: | |
2292 | if (!setupMap(img)) | |
2293 | return (0); | |
2294 | break; | |
2295 | case PHOTOMETRIC_PALETTE: | |
2296 | /* | |
2297 | * Convert 16-bit colormap to 8-bit (unless it looks | |
2298 | * like an old-style 8-bit colormap). | |
2299 | */ | |
2300 | if (checkcmap(img) == 16) | |
2301 | cvtcmap(img); | |
2302 | else | |
2303 | TIFFWarning(TIFFFileName(img->tif), "Assuming 8-bit colormap"); | |
2304 | /* | |
2305 | * Use mapping table and colormap to construct | |
2306 | * unpacking tables for samples < 8 bits. | |
2307 | */ | |
2308 | if (img->bitspersample <= 8 && !makecmap(img)) | |
2309 | return (0); | |
2310 | break; | |
2311 | } | |
2312 | return (1); | |
2313 | } | |
2314 | ||
2315 | /* | |
2316 | * Select the appropriate conversion routine for packed data. | |
2317 | */ | |
2318 | static int | |
2319 | pickTileContigCase(TIFFRGBAImage* img) | |
2320 | { | |
2321 | tileContigRoutine put = 0; | |
2322 | ||
2323 | if (buildMap(img)) { | |
2324 | switch (img->photometric) { | |
2325 | case PHOTOMETRIC_RGB: | |
2326 | switch (img->bitspersample) { | |
2327 | case 8: | |
2328 | if (!img->Map) { | |
2329 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2330 | put = putRGBAAcontig8bittile; | |
2331 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2332 | put = putRGBUAcontig8bittile; | |
2333 | else | |
2334 | put = putRGBcontig8bittile; | |
2335 | } else | |
2336 | put = putRGBcontig8bitMaptile; | |
2337 | break; | |
2338 | case 16: | |
2339 | put = putRGBcontig16bittile; | |
2340 | if (!img->Map) { | |
2341 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2342 | put = putRGBAAcontig16bittile; | |
2343 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2344 | put = putRGBUAcontig16bittile; | |
2345 | } | |
2346 | break; | |
2347 | } | |
2348 | break; | |
2349 | case PHOTOMETRIC_SEPARATED: | |
2350 | if (img->bitspersample == 8) { | |
2351 | if (!img->Map) | |
2352 | put = putRGBcontig8bitCMYKtile; | |
2353 | else | |
2354 | put = putRGBcontig8bitCMYKMaptile; | |
2355 | } | |
2356 | break; | |
2357 | case PHOTOMETRIC_PALETTE: | |
2358 | switch (img->bitspersample) { | |
2359 | case 8: put = put8bitcmaptile; break; | |
2360 | case 4: put = put4bitcmaptile; break; | |
2361 | case 2: put = put2bitcmaptile; break; | |
2362 | case 1: put = put1bitcmaptile; break; | |
2363 | } | |
2364 | break; | |
2365 | case PHOTOMETRIC_MINISWHITE: | |
2366 | case PHOTOMETRIC_MINISBLACK: | |
2367 | switch (img->bitspersample) { | |
2368 | case 16: put = put16bitbwtile; break; | |
2369 | case 8: put = putgreytile; break; | |
2370 | case 4: put = put4bitbwtile; break; | |
2371 | case 2: put = put2bitbwtile; break; | |
2372 | case 1: put = put1bitbwtile; break; | |
2373 | } | |
2374 | break; | |
2375 | case PHOTOMETRIC_YCBCR: | |
2376 | if (img->bitspersample == 8) | |
2377 | put = initYCbCrConversion(img); | |
2378 | break; | |
2379 | case PHOTOMETRIC_CIELAB: | |
2380 | if (img->bitspersample == 8) | |
2381 | put = initCIELabConversion(img); | |
2382 | break; | |
2383 | } | |
2384 | } | |
2385 | return ((img->put.contig = put) != 0); | |
2386 | } | |
2387 | ||
2388 | /* | |
2389 | * Select the appropriate conversion routine for unpacked data. | |
2390 | * | |
2391 | * NB: we assume that unpacked single channel data is directed | |
2392 | * to the "packed routines. | |
2393 | */ | |
2394 | static int | |
2395 | pickTileSeparateCase(TIFFRGBAImage* img) | |
2396 | { | |
2397 | tileSeparateRoutine put = 0; | |
2398 | ||
2399 | if (buildMap(img)) { | |
2400 | switch (img->photometric) { | |
2401 | case PHOTOMETRIC_RGB: | |
2402 | switch (img->bitspersample) { | |
2403 | case 8: | |
2404 | if (!img->Map) { | |
2405 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2406 | put = putRGBAAseparate8bittile; | |
2407 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2408 | put = putRGBUAseparate8bittile; | |
2409 | else | |
2410 | put = putRGBseparate8bittile; | |
2411 | } else | |
2412 | put = putRGBseparate8bitMaptile; | |
2413 | break; | |
2414 | case 16: | |
2415 | put = putRGBseparate16bittile; | |
2416 | if (!img->Map) { | |
2417 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2418 | put = putRGBAAseparate16bittile; | |
2419 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2420 | put = putRGBUAseparate16bittile; | |
2421 | } | |
2422 | break; | |
2423 | } | |
2424 | break; | |
2425 | } | |
2426 | } | |
2427 | return ((img->put.separate = put) != 0); | |
2428 | } | |
2429 | ||
2430 | /* | |
2431 | * Read a whole strip off data from the file, and convert to RGBA form. | |
2432 | * If this is the last strip, then it will only contain the portion of | |
2433 | * the strip that is actually within the image space. The result is | |
2434 | * organized in bottom to top form. | |
2435 | */ | |
2436 | ||
2437 | ||
2438 | int | |
2439 | TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster ) | |
2440 | ||
2441 | { | |
2442 | char emsg[1024]; | |
2443 | TIFFRGBAImage img; | |
2444 | int ok; | |
2445 | uint32 rowsperstrip, rows_to_read; | |
2446 | ||
2447 | if( TIFFIsTiled( tif ) ) | |
2448 | { | |
2449 | TIFFError(TIFFFileName(tif), | |
2450 | "Can't use TIFFReadRGBAStrip() with tiled file."); | |
2451 | return (0); | |
2452 | } | |
2453 | ||
2454 | TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
2455 | if( (row % rowsperstrip) != 0 ) | |
2456 | { | |
2457 | TIFFError(TIFFFileName(tif), | |
2458 | "Row passed to TIFFReadRGBAStrip() must be first in a strip."); | |
2459 | return (0); | |
2460 | } | |
2461 | ||
2462 | if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) { | |
2463 | ||
2464 | img.row_offset = row; | |
2465 | img.col_offset = 0; | |
2466 | ||
2467 | if( row + rowsperstrip > img.height ) | |
2468 | rows_to_read = img.height - row; | |
2469 | else | |
2470 | rows_to_read = rowsperstrip; | |
2471 | ||
2472 | ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read ); | |
2473 | ||
2474 | TIFFRGBAImageEnd(&img); | |
2475 | } else { | |
2476 | TIFFError(TIFFFileName(tif), emsg); | |
2477 | ok = 0; | |
2478 | } | |
2479 | ||
2480 | return (ok); | |
2481 | } | |
2482 | ||
2483 | /* | |
2484 | * Read a whole tile off data from the file, and convert to RGBA form. | |
2485 | * The returned RGBA data is organized from bottom to top of tile, | |
2486 | * and may include zeroed areas if the tile extends off the image. | |
2487 | */ | |
2488 | ||
2489 | int | |
2490 | TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster) | |
2491 | ||
2492 | { | |
2493 | char emsg[1024]; | |
2494 | TIFFRGBAImage img; | |
2495 | int ok; | |
2496 | uint32 tile_xsize, tile_ysize; | |
2497 | uint32 read_xsize, read_ysize; | |
2498 | uint32 i_row; | |
2499 | ||
2500 | /* | |
2501 | * Verify that our request is legal - on a tile file, and on a | |
2502 | * tile boundary. | |
2503 | */ | |
2504 | ||
2505 | if( !TIFFIsTiled( tif ) ) | |
2506 | { | |
2507 | TIFFError(TIFFFileName(tif), | |
2508 | "Can't use TIFFReadRGBATile() with stripped file."); | |
2509 | return (0); | |
2510 | } | |
2511 | ||
2512 | TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize); | |
2513 | TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize); | |
2514 | if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 ) | |
2515 | { | |
2516 | TIFFError(TIFFFileName(tif), | |
2517 | "Row/col passed to TIFFReadRGBATile() must be top" | |
2518 | "left corner of a tile."); | |
2519 | return (0); | |
2520 | } | |
2521 | ||
2522 | /* | |
2523 | * Setup the RGBA reader. | |
2524 | */ | |
2525 | ||
2526 | if (!TIFFRGBAImageOK(tif, emsg) | |
2527 | || !TIFFRGBAImageBegin(&img, tif, 0, emsg)) { | |
2528 | TIFFError(TIFFFileName(tif), emsg); | |
2529 | return( 0 ); | |
2530 | } | |
2531 | ||
2532 | /* | |
2533 | * The TIFFRGBAImageGet() function doesn't allow us to get off the | |
2534 | * edge of the image, even to fill an otherwise valid tile. So we | |
2535 | * figure out how much we can read, and fix up the tile buffer to | |
2536 | * a full tile configuration afterwards. | |
2537 | */ | |
2538 | ||
2539 | if( row + tile_ysize > img.height ) | |
2540 | read_ysize = img.height - row; | |
2541 | else | |
2542 | read_ysize = tile_ysize; | |
2543 | ||
2544 | if( col + tile_xsize > img.width ) | |
2545 | read_xsize = img.width - col; | |
2546 | else | |
2547 | read_xsize = tile_xsize; | |
2548 | ||
2549 | /* | |
2550 | * Read the chunk of imagery. | |
2551 | */ | |
2552 | ||
2553 | img.row_offset = row; | |
2554 | img.col_offset = col; | |
2555 | ||
2556 | ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize ); | |
2557 | ||
2558 | TIFFRGBAImageEnd(&img); | |
2559 | ||
2560 | /* | |
2561 | * If our read was incomplete we will need to fix up the tile by | |
2562 | * shifting the data around as if a full tile of data is being returned. | |
2563 | * | |
2564 | * This is all the more complicated because the image is organized in | |
2565 | * bottom to top format. | |
2566 | */ | |
2567 | ||
2568 | if( read_xsize == tile_xsize && read_ysize == tile_ysize ) | |
2569 | return( ok ); | |
2570 | ||
2571 | for( i_row = 0; i_row < read_ysize; i_row++ ) { | |
2572 | memmove( raster + (tile_ysize - i_row - 1) * tile_xsize, | |
2573 | raster + (read_ysize - i_row - 1) * read_xsize, | |
2574 | read_xsize * sizeof(uint32) ); | |
2575 | _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize, | |
2576 | 0, sizeof(uint32) * (tile_xsize - read_xsize) ); | |
2577 | } | |
2578 | ||
2579 | for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) { | |
2580 | _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize, | |
2581 | 0, sizeof(uint32) * tile_xsize ); | |
2582 | } | |
2583 | ||
2584 | return (ok); | |
2585 | } |