]>
Commit | Line | Data |
---|---|---|
1 | ///////////////////////////////////////////////////////////////////////////// | |
2 | // Name: wx/longlong.cpp | |
3 | // Purpose: implementation of wxLongLongNative | |
4 | // Author: Jeffrey C. Ollie <jeff@ollie.clive.ia.us>, Vadim Zeitlin | |
5 | // Remarks: this class is not public in wxWindows 2.0! It is intentionally | |
6 | // not documented and is for private use only. | |
7 | // Modified by: | |
8 | // Created: 10.02.99 | |
9 | // RCS-ID: $Id$ | |
10 | // Copyright: (c) 1998 Vadim Zeitlin <zeitlin@dptmaths.ens-cachan.fr> | |
11 | // Licence: wxWindows license | |
12 | ///////////////////////////////////////////////////////////////////////////// | |
13 | ||
14 | // ============================================================================ | |
15 | // headers | |
16 | // ============================================================================ | |
17 | ||
18 | #ifdef __GNUG__ | |
19 | #pragma implementation "longlong.h" | |
20 | #endif | |
21 | ||
22 | #include "wx/wxprec.h" | |
23 | ||
24 | #ifdef __BORLANDC__ | |
25 | #pragma hdrstop | |
26 | #endif | |
27 | ||
28 | #if wxUSE_LONGLONG | |
29 | #include "wx/longlong.h" | |
30 | ||
31 | #include <memory.h> // for memset() | |
32 | #include <math.h> // for fabs() | |
33 | ||
34 | // ============================================================================ | |
35 | // implementation | |
36 | // ============================================================================ | |
37 | ||
38 | #if wxUSE_LONGLONG_NATIVE | |
39 | ||
40 | // ---------------------------------------------------------------------------- | |
41 | // misc | |
42 | // ---------------------------------------------------------------------------- | |
43 | ||
44 | void *wxLongLongNative::asArray(void) const | |
45 | { | |
46 | static unsigned char temp[8]; | |
47 | ||
48 | temp[0] = (m_ll >> 56) & 0xFF; | |
49 | temp[1] = (m_ll >> 48) & 0xFF; | |
50 | temp[2] = (m_ll >> 40) & 0xFF; | |
51 | temp[3] = (m_ll >> 32) & 0xFF; | |
52 | temp[4] = (m_ll >> 24) & 0xFF; | |
53 | temp[5] = (m_ll >> 16) & 0xFF; | |
54 | temp[6] = (m_ll >> 8) & 0xFF; | |
55 | temp[7] = (m_ll >> 0) & 0xFF; | |
56 | ||
57 | return temp; | |
58 | } | |
59 | ||
60 | #if wxUSE_STD_IOSTREAM | |
61 | ||
62 | // input/output | |
63 | ostream& operator<< (ostream& o, const wxLongLongNative& ll) | |
64 | { | |
65 | char result[65]; | |
66 | ||
67 | memset(result, 'A', 64); | |
68 | ||
69 | result[64] = '\0'; | |
70 | ||
71 | for (int i = 0; i < 64; i++) | |
72 | { | |
73 | result[63 - i] = '0' + (char) ((ll.m_ll >> i) & 1); | |
74 | } | |
75 | ||
76 | return o << result; | |
77 | } | |
78 | ||
79 | #endif // wxUSE_STD_IOSTREAM | |
80 | ||
81 | #endif // wxUSE_LONGLONG_NATIVE | |
82 | ||
83 | // ============================================================================ | |
84 | // wxLongLongWx: emulation of 'long long' using 2 longs | |
85 | // ============================================================================ | |
86 | ||
87 | #if wxUSE_LONGLONG_WX | |
88 | ||
89 | // assignment | |
90 | wxLongLongWx& wxLongLongWx::Assign(double d) | |
91 | { | |
92 | if ( fabs(d) <= LONG_MAX ) | |
93 | { | |
94 | m_hi = d < 0 ? 1 << (8*sizeof(long) - 1) : 0l; | |
95 | m_lo = (long)d; | |
96 | } | |
97 | else | |
98 | { | |
99 | wxFAIL_MSG(_T("TODO")); | |
100 | } | |
101 | ||
102 | return *this; | |
103 | } | |
104 | ||
105 | wxLongLongWx wxLongLongWx::operator<<(int shift) const | |
106 | { | |
107 | if (shift == 0) | |
108 | return *this; | |
109 | ||
110 | if (shift < 32) | |
111 | return wxLongLongWx((m_hi << shift) | (m_lo >> (32 - shift)), | |
112 | m_lo << shift); | |
113 | else | |
114 | return wxLongLongWx(m_lo << (shift - 32), | |
115 | 0); | |
116 | } | |
117 | ||
118 | wxLongLongWx& wxLongLongWx::operator<<=(int shift) | |
119 | { | |
120 | if (shift == 0) | |
121 | return *this; | |
122 | ||
123 | if (shift < 32) | |
124 | { | |
125 | m_hi <<= shift; | |
126 | m_hi |= m_lo >> (32 - shift); | |
127 | m_lo <<= shift; | |
128 | } | |
129 | else | |
130 | { | |
131 | m_hi = m_lo << (shift - 32); | |
132 | m_lo = 0; | |
133 | } | |
134 | ||
135 | return *this; | |
136 | } | |
137 | ||
138 | wxLongLongWx wxLongLongWx::operator>>(int shift) const | |
139 | { | |
140 | if (shift == 0) | |
141 | return *this; | |
142 | ||
143 | if (shift < 32) | |
144 | return wxLongLongWx(m_hi >> shift, | |
145 | (m_lo >> shift) | (m_hi << (32 - shift))); | |
146 | else | |
147 | return wxLongLongWx((m_hi < 0 ? -1l : 0), | |
148 | m_hi >> (shift - 32)); | |
149 | } | |
150 | ||
151 | wxLongLongWx& wxLongLongWx::operator>>=(int shift) | |
152 | { | |
153 | if (shift == 0) | |
154 | return *this; | |
155 | ||
156 | if (shift < 32) | |
157 | { | |
158 | m_lo >>= shift; | |
159 | m_lo |= m_hi << (32 - shift); | |
160 | m_hi >>= shift; | |
161 | } | |
162 | else | |
163 | { | |
164 | m_lo = m_hi >> (shift - 32); | |
165 | m_hi = (m_hi < 0 ? -1L : 0); | |
166 | } | |
167 | ||
168 | return *this; | |
169 | } | |
170 | ||
171 | wxLongLongWx wxLongLongWx::operator+(const wxLongLongWx& ll) const | |
172 | { | |
173 | wxLongLongWx temp; | |
174 | ||
175 | temp.m_lo = m_lo + ll.m_lo; | |
176 | temp.m_hi = m_hi + ll.m_hi; | |
177 | if ((temp.m_lo < m_lo) || (temp.m_lo < ll.m_lo)) | |
178 | temp.m_hi++; | |
179 | ||
180 | return temp; | |
181 | } | |
182 | ||
183 | wxLongLongWx wxLongLongWx::operator+(long l) const | |
184 | { | |
185 | wxLongLongWx temp; | |
186 | ||
187 | temp.m_lo = m_lo + l; | |
188 | ||
189 | if (l < 0) | |
190 | temp.m_hi += -1l; | |
191 | ||
192 | if ((temp.m_lo < m_lo) || (temp.m_lo < (unsigned long)l)) | |
193 | temp.m_hi++; | |
194 | ||
195 | return temp; | |
196 | } | |
197 | ||
198 | wxLongLongWx& wxLongLongWx::operator+=(const wxLongLongWx& ll) | |
199 | { | |
200 | unsigned long previous = m_lo; | |
201 | ||
202 | m_lo += ll.m_lo; | |
203 | m_hi += ll.m_hi; | |
204 | ||
205 | if ((m_lo < previous) || (m_lo < ll.m_lo)) | |
206 | m_hi++; | |
207 | ||
208 | return *this; | |
209 | } | |
210 | ||
211 | wxLongLongWx& wxLongLongWx::operator+=(long l) | |
212 | { | |
213 | unsigned long previous = m_lo; | |
214 | ||
215 | m_lo += l; | |
216 | if (l < 0) | |
217 | m_hi += -1l; | |
218 | ||
219 | if ((m_lo < previous) || (m_lo < (unsigned long)l)) | |
220 | m_hi++; | |
221 | ||
222 | return *this; | |
223 | } | |
224 | ||
225 | // pre increment | |
226 | wxLongLongWx& wxLongLongWx::operator++() | |
227 | { | |
228 | m_lo++; | |
229 | if (m_lo == 0) | |
230 | m_hi++; | |
231 | ||
232 | return *this; | |
233 | } | |
234 | ||
235 | // post increment | |
236 | wxLongLongWx& wxLongLongWx::operator++(int) | |
237 | { | |
238 | m_lo++; | |
239 | if (m_lo == 0) | |
240 | m_hi++; | |
241 | ||
242 | return *this; | |
243 | } | |
244 | ||
245 | // negation | |
246 | wxLongLongWx wxLongLongWx::operator-() const | |
247 | { | |
248 | wxLongLongWx temp(~m_hi, ~m_lo); | |
249 | ||
250 | temp.m_lo++; | |
251 | if (temp.m_lo == 0) | |
252 | temp.m_hi++; | |
253 | ||
254 | return temp; | |
255 | } | |
256 | ||
257 | // subtraction | |
258 | ||
259 | wxLongLongWx wxLongLongWx::operator-(const wxLongLongWx& ll) const | |
260 | { | |
261 | wxLongLongWx temp; | |
262 | ||
263 | temp.m_lo = m_lo - ll.m_lo; | |
264 | temp.m_hi = m_hi - ll.m_hi; | |
265 | ||
266 | if (m_lo < ll.m_lo) | |
267 | temp.m_hi--; | |
268 | ||
269 | return temp; | |
270 | } | |
271 | ||
272 | wxLongLongWx& wxLongLongWx::operator-=(const wxLongLongWx& ll) | |
273 | { | |
274 | unsigned long previous = m_lo; | |
275 | ||
276 | m_lo -= ll.m_lo; | |
277 | m_hi -= ll.m_hi; | |
278 | ||
279 | if (previous < ll.m_lo) | |
280 | m_hi--; | |
281 | ||
282 | return *this; | |
283 | } | |
284 | ||
285 | // pre decrement | |
286 | wxLongLongWx& wxLongLongWx::operator--() | |
287 | { | |
288 | m_lo--; | |
289 | if (m_lo == 0xFFFFFFFF) | |
290 | m_hi--; | |
291 | ||
292 | return *this; | |
293 | } | |
294 | ||
295 | // post decrement | |
296 | wxLongLongWx& wxLongLongWx::operator--(int) | |
297 | { | |
298 | m_lo--; | |
299 | if (m_lo == 0xFFFFFFFF) | |
300 | m_hi--; | |
301 | ||
302 | return *this; | |
303 | } | |
304 | ||
305 | // comparison operators | |
306 | ||
307 | bool wxLongLongWx::operator<(const wxLongLongWx& ll) const | |
308 | { | |
309 | if ( m_hi < ll.m_hi ) | |
310 | return TRUE; | |
311 | else if ( m_hi == ll.m_hi ) | |
312 | return m_lo < ll.m_lo; | |
313 | else | |
314 | return FALSE; | |
315 | } | |
316 | ||
317 | bool wxLongLongWx::operator>(const wxLongLongWx& ll) const | |
318 | { | |
319 | if ( m_hi > ll.m_hi ) | |
320 | return TRUE; | |
321 | else if ( m_hi == ll.m_hi ) | |
322 | return m_lo > ll.m_lo; | |
323 | else | |
324 | return FALSE; | |
325 | } | |
326 | ||
327 | // bitwise operators | |
328 | ||
329 | wxLongLongWx wxLongLongWx::operator&(const wxLongLongWx& ll) const | |
330 | { | |
331 | return wxLongLongWx(m_hi & ll.m_hi, m_lo & ll.m_lo); | |
332 | } | |
333 | ||
334 | wxLongLongWx wxLongLongWx::operator|(const wxLongLongWx& ll) const | |
335 | { | |
336 | return wxLongLongWx(m_hi | ll.m_hi, m_lo | ll.m_lo); | |
337 | } | |
338 | ||
339 | wxLongLongWx wxLongLongWx::operator^(const wxLongLongWx& ll) const | |
340 | { | |
341 | return wxLongLongWx(m_hi ^ ll.m_hi, m_lo ^ ll.m_lo); | |
342 | } | |
343 | ||
344 | wxLongLongWx& wxLongLongWx::operator&=(const wxLongLongWx& ll) | |
345 | { | |
346 | m_lo &= ll.m_lo; | |
347 | m_hi &= ll.m_hi; | |
348 | ||
349 | return *this; | |
350 | } | |
351 | ||
352 | wxLongLongWx& wxLongLongWx::operator|=(const wxLongLongWx& ll) | |
353 | { | |
354 | m_lo |= ll.m_lo; | |
355 | m_hi |= ll.m_hi; | |
356 | ||
357 | return *this; | |
358 | } | |
359 | ||
360 | wxLongLongWx& wxLongLongWx::operator^=(const wxLongLongWx& ll) | |
361 | { | |
362 | m_lo ^= ll.m_lo; | |
363 | m_hi ^= ll.m_hi; | |
364 | ||
365 | return *this; | |
366 | } | |
367 | ||
368 | wxLongLongWx wxLongLongWx::operator~() const | |
369 | { | |
370 | return wxLongLongWx(~m_hi, ~m_lo); | |
371 | } | |
372 | ||
373 | // multiplication | |
374 | ||
375 | wxLongLongWx wxLongLongWx::operator*(const wxLongLongWx& ll) const | |
376 | { | |
377 | wxLongLongWx t(m_hi, m_lo); | |
378 | wxLongLongWx q(ll.m_hi, ll.m_lo); | |
379 | wxLongLongWx p; | |
380 | int counter = 0; | |
381 | ||
382 | do | |
383 | { | |
384 | if ((q.m_lo & 1) != 0) | |
385 | p += t; | |
386 | q >>= 1; | |
387 | t <<= 1; | |
388 | counter++; | |
389 | } | |
390 | while ((counter < 64) && ((q.m_hi != 0) || (q.m_lo != 0))); | |
391 | return p; | |
392 | } | |
393 | ||
394 | wxLongLongWx& wxLongLongWx::operator*=(const wxLongLongWx& ll) | |
395 | { | |
396 | wxLongLongWx t(m_hi, m_lo); | |
397 | wxLongLongWx q(ll.m_hi, ll.m_lo); | |
398 | int counter = 0; | |
399 | ||
400 | do | |
401 | { | |
402 | if ((q.m_lo & 1) != 0) | |
403 | *this += t; | |
404 | q >>= 1; | |
405 | t <<= 1; | |
406 | counter++; | |
407 | } | |
408 | while ((counter < 64) && ((q.m_hi != 0) || (q.m_lo != 0))); | |
409 | return *this; | |
410 | } | |
411 | ||
412 | // division | |
413 | ||
414 | void wxLongLongWx::Divide(const wxLongLongWx& divisorIn, | |
415 | wxLongLongWx& quotient, | |
416 | wxLongLongWx& remainder) const | |
417 | { | |
418 | if ((divisorIn.m_lo == 0) && (divisorIn.m_hi == 0)) | |
419 | { | |
420 | // provoke division by zero error and silence the compilers warnings | |
421 | // about an expression without effect and unused variable | |
422 | long dummy = divisorIn.m_lo/divisorIn.m_hi; | |
423 | dummy += 0; | |
424 | } | |
425 | ||
426 | // VZ: I'm writing this in a hurry and it's surely not the fastest way to | |
427 | // do this - any improvements are more than welcome | |
428 | // | |
429 | // code inspired by the snippet at | |
430 | // http://www.bearcave.com/software/divide.htm | |
431 | // | |
432 | // Copyright notice: | |
433 | // | |
434 | // Use of this program, for any purpose, is granted the author, Ian | |
435 | // Kaplan, as long as this copyright notice is included in the source | |
436 | // code or any source code derived from this program. The user assumes | |
437 | // all responsibility for using this code. | |
438 | ||
439 | // init everything | |
440 | wxLongLongWx dividend = *this, | |
441 | divisor = divisorIn; | |
442 | ||
443 | quotient = 0l; | |
444 | remainder = 0l; | |
445 | ||
446 | // check for some particular cases | |
447 | if ( divisor > dividend ) | |
448 | { | |
449 | remainder = dividend; | |
450 | ||
451 | return; | |
452 | } | |
453 | ||
454 | if ( divisor == dividend ) | |
455 | { | |
456 | quotient = 1l; | |
457 | ||
458 | return; | |
459 | } | |
460 | ||
461 | // always do unsigned division and adjust the signs later: in C integer | |
462 | // division, the sign of the remainder is the same as the sign of the | |
463 | // dividend, while the sign of the quotient is the product of the signs of | |
464 | // the dividend and divisor. Of course, we also always have | |
465 | // | |
466 | // dividend = quotient*divisor + remainder | |
467 | // | |
468 | // with 0 <= abs(remainder) < abs(divisor) | |
469 | bool negRemainder = dividend.m_hi < 0; | |
470 | bool negQuotient = FALSE; // assume positive | |
471 | if ( dividend.m_hi < 0 ) | |
472 | { | |
473 | negQuotient = !negQuotient; | |
474 | dividend = -dividend; | |
475 | } | |
476 | if ( divisor.m_hi < 0 ) | |
477 | { | |
478 | negQuotient = !negQuotient; | |
479 | divisor = -divisor; | |
480 | } | |
481 | ||
482 | // here: dividend > divisor and both are positibe: do unsigned division | |
483 | size_t nBits = 64u; | |
484 | wxLongLongWx d; | |
485 | ||
486 | #define IS_MSB_SET(ll) ((ll.m_hi) & (1 << (8*sizeof(long) - 1))) | |
487 | ||
488 | while ( remainder < divisor ) | |
489 | { | |
490 | remainder <<= 1; | |
491 | if ( IS_MSB_SET(dividend) ) | |
492 | { | |
493 | remainder |= 1; | |
494 | } | |
495 | ||
496 | d = dividend; | |
497 | dividend <<= 1; | |
498 | ||
499 | nBits--; | |
500 | } | |
501 | ||
502 | // undo the last loop iteration | |
503 | dividend = d; | |
504 | remainder >>= 1; | |
505 | nBits++; | |
506 | ||
507 | for ( size_t i = 0; i < nBits; i++ ) | |
508 | { | |
509 | remainder <<= 1; | |
510 | if ( IS_MSB_SET(dividend) ) | |
511 | { | |
512 | remainder |= 1; | |
513 | } | |
514 | ||
515 | wxLongLongWx t = remainder - divisor; | |
516 | dividend <<= 1; | |
517 | quotient <<= 1; | |
518 | if ( !IS_MSB_SET(t) ) | |
519 | { | |
520 | quotient |= 1; | |
521 | ||
522 | remainder = t; | |
523 | } | |
524 | } | |
525 | ||
526 | // adjust signs | |
527 | if ( negRemainder ) | |
528 | { | |
529 | remainder = -remainder; | |
530 | } | |
531 | ||
532 | if ( negQuotient ) | |
533 | { | |
534 | quotient = -quotient; | |
535 | } | |
536 | } | |
537 | ||
538 | wxLongLongWx wxLongLongWx::operator/(const wxLongLongWx& ll) const | |
539 | { | |
540 | wxLongLongWx quotient, remainder; | |
541 | ||
542 | Divide(ll, quotient, remainder); | |
543 | ||
544 | return quotient; | |
545 | } | |
546 | ||
547 | wxLongLongWx& wxLongLongWx::operator/=(const wxLongLongWx& ll) | |
548 | { | |
549 | wxLongLongWx quotient, remainder; | |
550 | ||
551 | Divide(ll, quotient, remainder); | |
552 | ||
553 | return *this = quotient; | |
554 | } | |
555 | ||
556 | wxLongLongWx wxLongLongWx::operator%(const wxLongLongWx& ll) const | |
557 | { | |
558 | wxLongLongWx quotient, remainder; | |
559 | ||
560 | Divide(ll, quotient, remainder); | |
561 | ||
562 | return remainder; | |
563 | } | |
564 | ||
565 | // ---------------------------------------------------------------------------- | |
566 | // misc | |
567 | // ---------------------------------------------------------------------------- | |
568 | ||
569 | // temporary - just for testing | |
570 | void *wxLongLongWx::asArray(void) const | |
571 | { | |
572 | static unsigned char temp[8]; | |
573 | ||
574 | temp[0] = (char)((m_hi >> 24) & 0xFF); | |
575 | temp[1] = (char)((m_hi >> 16) & 0xFF); | |
576 | temp[2] = (char)((m_hi >> 8) & 0xFF); | |
577 | temp[3] = (char)((m_hi >> 0) & 0xFF); | |
578 | temp[4] = (char)((m_lo >> 24) & 0xFF); | |
579 | temp[5] = (char)((m_lo >> 16) & 0xFF); | |
580 | temp[6] = (char)((m_lo >> 8) & 0xFF); | |
581 | temp[7] = (char)((m_lo >> 0) & 0xFF); | |
582 | ||
583 | return temp; | |
584 | } | |
585 | ||
586 | #if wxUSE_STD_IOSTREAM | |
587 | ||
588 | // input/output | |
589 | ostream& operator<< (ostream& o, const wxLongLongWx& ll) | |
590 | { | |
591 | char result[65]; | |
592 | ||
593 | memset(result, 'A', 64); | |
594 | ||
595 | result[64] = '\0'; | |
596 | ||
597 | for (int i = 0; i < 32; i++) | |
598 | { | |
599 | result[31 - i] = (char) ('0' + (int) ((ll.m_hi >> i) & 1)); | |
600 | result[63 - i] = (char) ('0' + (int) ((ll.m_lo >> i) & 1)); | |
601 | } | |
602 | ||
603 | return o << result; | |
604 | } | |
605 | #endif // wxUSE_STD_IOSTREAM | |
606 | ||
607 | #endif // wxUSE_LONGLONG_NATIVE | |
608 | ||
609 | #endif // wxUSE_LONGLONG |