]>
Commit | Line | Data |
---|---|---|
1 | \section{\class{wxSizer}}\label{wxsizer} | |
2 | ||
3 | wxSizer is the abstract base class used for laying out subwindows in a window. You | |
4 | cannot use wxSizer directly; instead, you will have to use one of the sizer | |
5 | classes derived from it. Currently there are \helpref{wxBoxSizer}{wxboxsizer}, | |
6 | \helpref{wxStaticBoxSizer}{wxstaticboxsizer}, | |
7 | \helpref{wxNotebookSizer}{wxnotebooksizer}, \helpref{wxGridSizer}{wxgridsizer} | |
8 | and \helpref{wxFlexGridSizer}{wxflexgridsizer}. | |
9 | ||
10 | The layout algorithm used by sizers in wxWindows is closely related to layout | |
11 | in other GUI toolkits, such as Java's AWT, the GTK toolkit or the Qt toolkit. It is | |
12 | based upon the idea of the individual subwindows reporting their minimal required | |
13 | size and their ability to get stretched if the size of the parent window has changed. | |
14 | This will most often mean, that the programmer does not set the original size of | |
15 | a dialog in the beginning, rather the dialog will assigned a sizer and this sizer | |
16 | will be queried about the recommended size. The sizer in turn will query its | |
17 | children, which can be normal windows, empty space or other sizers, so that | |
18 | a hierarchy of sizers can be constructed. Note that wxSizer does not derive from wxWindow | |
19 | and thus do not interfere with tab ordering and requires very little resources compared | |
20 | to a real window on screen. | |
21 | ||
22 | What makes sizers so well fitted for use in wxWindows is the fact that every control | |
23 | reports its own minimal size and the algorithm can handle differences in font sizes | |
24 | or different window (dialog item) sizes on different platforms without problems. If e.g. | |
25 | the standard font as well as the overall design of Motif widgets requires more space than | |
26 | on Windows, the initial dialog size will automatically be bigger on Motif than on Windows. | |
27 | ||
28 | \pythonnote{If you wish to create a sizer class in wxPython you should | |
29 | derive the class from {\tt wxPySizer} in order to get Python-aware | |
30 | capabilities for the various virtual methods.} | |
31 | ||
32 | \wxheading{Derived from} | |
33 | ||
34 | \helpref{wxObject}{wxobject} | |
35 | ||
36 | \wxheading{See also} | |
37 | ||
38 | \helpref{Sizer overview}{sizeroverview} | |
39 | ||
40 | \latexignore{\rtfignore{\wxheading{Members}}} | |
41 | ||
42 | \membersection{wxSizer::wxSizer}\label{wxsizerwxsizer} | |
43 | ||
44 | \func{}{wxSizer}{\void} | |
45 | ||
46 | The constructor. Note that wxSizer is an abstract base class and may not | |
47 | be instantiated. | |
48 | ||
49 | \membersection{wxSizer::\destruct{wxSizer}}\label{wxsizerdtor} | |
50 | ||
51 | \func{}{\destruct{wxSizer}}{\void} | |
52 | ||
53 | The destructor. | |
54 | ||
55 | \membersection{wxSizer::Add}\label{wxsizeradd} | |
56 | ||
57 | \func{void}{Add}{\param{wxWindow* }{window}, \param{int }{proportion = 0},\param{int }{flag = 0}, \param{int }{border = 0}, \param{wxObject* }{userData = NULL}} | |
58 | ||
59 | \func{void}{Add}{\param{wxSizer* }{sizer}, \param{int }{proportion = 0}, \param{int }{flag = 0}, \param{int }{border = 0}, \param{wxObject* }{userData = NULL}} | |
60 | ||
61 | \func{void}{Add}{\param{int }{width}, \param{int }{height}, \param{int }{proportion = 0}, \param{int }{flag = 0}, \param{int }{border = 0}, \param{wxObject* }{userData = NULL}} | |
62 | ||
63 | Appends a child to the sizer. wxSizer itself is an abstract class, but the parameters are | |
64 | equivalent in the derived classes that you will instantiate to use it so they are described | |
65 | here: | |
66 | ||
67 | \docparam{window}{The window to be added to the sizer. Its initial size (either set explicitly by the | |
68 | user or calculated internally when using wxDefaultSize) is interpreted as the minimal and in many | |
69 | cases also the initial size. This is particularly useful in connection with \helpref{SetSizeHints}{wxsizersetsizehints}.} | |
70 | ||
71 | \docparam{sizer}{The (child-)sizer to be added to the sizer. This allows placing a child sizer in a | |
72 | sizer and thus to create hierarchies of sizers (typically a vertical box as the top sizer and several | |
73 | horizontal boxes on the level beneath).} | |
74 | ||
75 | \docparam{width and height}{The dimension of a spacer to be added to the sizer. Adding spacers to sizers | |
76 | gives more flexibility in the design of dialogs; imagine for example a horizontal box with two buttons at the | |
77 | bottom of a dialog: you might want to insert a space between the two buttons and make that space stretchable | |
78 | using the {\it proportion} flag and the result will be that the left button will be aligned with the left | |
79 | side of the dialog and the right button with the right side - the space in between will shrink and grow with | |
80 | the dialog.} | |
81 | ||
82 | \docparam{proportion}{Although the meaning of this parameter is undefined in wxSizer, it is used in wxBoxSizer | |
83 | to indicate if a child of a sizer can change its size in the main orientation of the wxBoxSizer - where | |
84 | 0 stands for not changeable and a value of more than zero is interpreted relative to the value of other | |
85 | children of the same wxBoxSizer. For example, you might have a horizontal wxBoxSizer with three children, two | |
86 | of which are supposed to change their size with the sizer. Then the two stretchable windows would get a | |
87 | value of 1 each to make them grow and shrink equally with the sizer's horizontal dimension.} | |
88 | ||
89 | \docparam{flag}{This parameter can be used to set a number of flags which can | |
90 | be combined using the binary OR operator |. Two main behaviours are defined | |
91 | using these flags. One is the border around a window: the {\it border} | |
92 | parameter determines the border width whereas the flags given here determine | |
93 | where the border may be (wxTOP, wxBOTTOM, wxLEFT, wxRIGHT or wxALL). The other | |
94 | flags determine the child window's behaviour if the size of the sizer changes. | |
95 | However this is not - in contrast to the {\it proportion} flag - in the main | |
96 | orientation, but in the respectively other orientation. So if you created a | |
97 | wxBoxSizer with the wxVERTICAL option, these flags will be relevant if the | |
98 | sizer changes its horizontal size. A child may get resized to completely fill | |
99 | out the new size (using either wxGROW or wxEXPAND), it may get proportionally | |
100 | resized (wxSHAPED), it may get centered (wxALIGN\_CENTER or wxALIGN\_CENTRE) | |
101 | or it may get aligned to either side (wxALIGN\_LEFT and wxALIGN\_TOP are set | |
102 | to 0 and thus represent the default, wxALIGN\_RIGHT and wxALIGN\_BOTTOM have | |
103 | their obvious meaning). With proportional resize, a child may also be centered | |
104 | in the main orientation using wxALIGN\_CENTER\_VERTICAL (same as | |
105 | wxALIGN\_CENTRE\_VERTICAL) and wxALIGN\_CENTER\_HORIZONTAL (same as | |
106 | wxALIGN\_CENTRE\_HORIZONTAL) flags. Finally, you can also specify | |
107 | wxADJUST\_MINSIZE flag to make the minimal size of the control dynamically adjust | |
108 | to the value returned by its \helpref{GetAdjustedBestSize()}{wxwindowgetadjustedbestsize} | |
109 | method - this allows, for example, for correct relayouting of a static text | |
110 | control even if its text is changed during run-time.} | |
111 | ||
112 | \docparam{border}{Determines the border width, if the {\it flag} parameter is set to any border.} | |
113 | ||
114 | \docparam{userData}{Allows an extra object to be attached to the sizer | |
115 | item, for use in derived classes when sizing information is more | |
116 | complex than the {\it proportion} and {\it flag} will allow for.} | |
117 | ||
118 | \membersection{wxSizer::CalcMin}\label{wxsizercalcmin} | |
119 | ||
120 | \func{wxSize}{CalcMin}{\void} | |
121 | ||
122 | This method is abstract and has to be overwritten by any derived class. | |
123 | Here, the sizer will do the actual calculation of its children minimal sizes. | |
124 | ||
125 | \membersection{wxSizer::Detach}\label{wxsizerdetach} | |
126 | ||
127 | \func{bool}{Detach}{\param{wxWindow* }{window}} | |
128 | ||
129 | \func{bool}{Detach}{\param{wxSizer* }{sizer}} | |
130 | ||
131 | \func{bool}{Detach}{\param{size\_t }{index}} | |
132 | ||
133 | Detach a child from the sizer without destroying it. {\it window} is the window to be | |
134 | detached, {\it sizer} is the equivalent sizer and {\it index} is the position of | |
135 | the child in the sizer, typically 0 for the first item. This method does not | |
136 | cause any layout or resizing to take place, call \helpref{wxSizer::Layout}{wxsizerlayout} | |
137 | to update the layout "on screen" after detaching a child from the sizer. | |
138 | ||
139 | Returns true if the child item was found and detached, false otherwise. | |
140 | ||
141 | \wxheading{See also} | |
142 | ||
143 | \helpref{wxSizer::Remove}{wxsizerremove} | |
144 | ||
145 | \membersection{wxSizer::Fit}\label{wxsizerfit} | |
146 | ||
147 | \func{wxSize}{Fit}{\param{wxWindow* }{window}} | |
148 | ||
149 | Tell the sizer to resize the {\it window} to match the sizer's minimal size. This | |
150 | is commonly done in the constructor of the window itself, see sample in the description | |
151 | of \helpref{wxBoxSizer}{wxboxsizer}. Returns the new size. | |
152 | ||
153 | \membersection{wxSizer::FitInside}\label{wxsizerfitinside} | |
154 | ||
155 | \func{void}{FitInside}{\param{wxWindow* }{window}} | |
156 | ||
157 | Tell the sizer to resize the virtual size of the {\it window} to match the sizer's | |
158 | minimal size. This will not alter the on screen size of the window, but may cause | |
159 | the addition/removal/alteration of scrollbars required to view the virtual area in | |
160 | windows which manage it. | |
161 | ||
162 | \wxheading{See also} | |
163 | ||
164 | \helpref{wxScrolledWindow::SetScrollbars}{wxscrolledwindowsetscrollbars},\rtfsp | |
165 | \helpref{wxSizer::SetVirtualSizeHints}{wxsizersetvirtualsizehints} | |
166 | ||
167 | \membersection{wxSizer::GetSize}\label{wxsizergetsize} | |
168 | ||
169 | \func{wxSize}{GetSize}{\void} | |
170 | ||
171 | Returns the current size of the sizer. | |
172 | ||
173 | \membersection{wxSizer::GetPosition}\label{wxsizergetposition} | |
174 | ||
175 | \func{wxPoint}{GetPosition}{\void} | |
176 | ||
177 | Returns the current position of the sizer. | |
178 | ||
179 | \membersection{wxSizer::GetMinSize}\label{wxsizergetminsize} | |
180 | ||
181 | \func{wxSize}{GetMinSize}{\void} | |
182 | ||
183 | Returns the minimal size of the sizer. This is either the combined minimal | |
184 | size of all the children and their borders or the minimal size set by | |
185 | \helpref{SetMinSize}{wxsizersetminsize}, depending on which is bigger. | |
186 | ||
187 | \membersection{wxSizer::Insert}\label{wxsizerinsert} | |
188 | ||
189 | \func{void}{Insert}{\param{size\_t }{index}, \param{wxWindow* }{window}, \param{int }{proportion = 0},\param{int }{flag = 0}, \param{int }{border = 0}, \param{wxObject* }{userData = NULL}} | |
190 | ||
191 | \func{void}{Insert}{\param{size\_t }{index}, \param{wxSizer* }{sizer}, \param{int }{proportion = 0}, \param{int }{flag = 0}, \param{int }{border = 0}, \param{wxObject* }{userData = NULL}} | |
192 | ||
193 | \func{void}{Insert}{\param{size\_t }{index}, \param{int }{width}, \param{int }{height}, \param{int }{proportion = 0}, \param{int }{flag = 0}, \param{int }{border = 0}, \param{wxObject* }{userData = NULL}} | |
194 | ||
195 | Insert a child into the sizer before any existing item at {\it index}. | |
196 | ||
197 | \docparam{index}{The position this child should assume in the sizer.} | |
198 | ||
199 | See \helpref{wxSizer::Add}{wxsizeradd} for the meaning of the other parameters. | |
200 | ||
201 | \membersection{wxSizer::Layout}\label{wxsizerlayout} | |
202 | ||
203 | \func{void}{Layout}{\void} | |
204 | ||
205 | Call this to force layout of the children anew, e.g. after having added a child | |
206 | to or removed a child (window, other sizer or space) from the sizer while keeping | |
207 | the current dimension. | |
208 | ||
209 | \membersection{wxSizer::Prepend}\label{wxsizerprepend} | |
210 | ||
211 | \func{void}{Prepend}{\param{wxWindow* }{window}, \param{int }{proportion = 0}, \param{int }{flag = 0}, \param{int }{border = 0}, \param{wxObject* }{userData = NULL}} | |
212 | ||
213 | \func{void}{Prepend}{\param{wxSizer* }{sizer}, \param{int }{proportion = 0}, \param{int }{flag = 0}, \param{int }{border = 0}, \param{wxObject* }{userData = NULL}} | |
214 | ||
215 | \func{void}{Prepend}{\param{int }{width}, \param{int }{height}, \param{int }{proportion = 0}, \param{int }{flag = 0}, \param{int }{border= 0}, \param{wxObject* }{userData = NULL}} | |
216 | ||
217 | Same as \helpref{wxSizer::Add}{wxsizeradd}, but prepends the items to the beginning of the | |
218 | list of items (windows, subsizers or spaces) owned by this sizer. | |
219 | ||
220 | \membersection{wxSizer::RecalcSizes}\label{wxsizerrecalcsizes} | |
221 | ||
222 | \func{void}{RecalcSizes}{\void} | |
223 | ||
224 | This method is abstract and has to be overwritten by any derived class. | |
225 | Here, the sizer will do the actual calculation of its children's positions | |
226 | and sizes. | |
227 | ||
228 | \membersection{wxSizer::Remove}\label{wxsizerremove} | |
229 | ||
230 | \func{bool}{Remove}{\param{wxWindow* }{window}} | |
231 | ||
232 | \func{bool}{Remove}{\param{wxSizer* }{sizer}} | |
233 | ||
234 | \func{bool}{Remove}{\param{size\_t }{index}} | |
235 | ||
236 | Removes a child from the sizer and destroys it. {\it sizer} is the wxSizer to be removed, | |
237 | {\it index} is the position of the child in the sizer, typically 0 for the first item. | |
238 | This method does not cause any layout or resizing to take place, call | |
239 | \helpref{wxSizer::Layout}{wxsizerlayout} to update the layout "on screen" after removing a | |
240 | child from the sizer. | |
241 | ||
242 | {\bf NB:} The method taking a wxWindow* parameter is deprecated. For historical reasons | |
243 | it does not destroy the window as would usually be expected from Remove. You should use | |
244 | \helpref{wxSizer::Detach}{wxsizerdetach} in new code instead. There is currently no wxSizer | |
245 | method that will both detach and destroy a wxWindow item. | |
246 | ||
247 | Returns true if the child item was found and removed, false otherwise. | |
248 | ||
249 | \membersection{wxSizer::SetDimension}\label{wxsizersetdimension} | |
250 | ||
251 | \func{void}{SetDimension}{\param{int }{x}, \param{int }{y}, \param{int }{width}, \param{int }{height}} | |
252 | ||
253 | Call this to force the sizer to take the given dimension and thus force the items owned | |
254 | by the sizer to resize themselves according to the rules defined by the parameter in the | |
255 | \helpref{Add}{wxsizeradd} and \helpref{Prepend}{wxsizerprepend} methods. | |
256 | ||
257 | \membersection{wxSizer::SetMinSize}\label{wxsizersetminsize} | |
258 | ||
259 | \func{void}{SetMinSize}{\param{int }{width}, \param{int }{height}} | |
260 | ||
261 | \func{void}{SetMinSize}{\param{wxSize }{size}} | |
262 | ||
263 | Call this to give the sizer a minimal size. Normally, the sizer will calculate its | |
264 | minimal size based purely on how much space its children need. After calling this | |
265 | method \helpref{GetMinSize}{wxsizergetminsize} will return either the minimal size | |
266 | as requested by its children or the minimal size set here, depending on which is | |
267 | bigger. | |
268 | ||
269 | \membersection{wxSizer::SetItemMinSize}\label{wxsizersetitemminsize} | |
270 | ||
271 | \func{void}{SetItemMinSize}{\param{wxWindow* }{window}, \param{int}{ width}, \param{int}{ height}} | |
272 | ||
273 | \func{void}{SetItemMinSize}{\param{wxSizer* }{sizer}, \param{int}{ width}, \param{int}{ height}} | |
274 | ||
275 | \func{void}{SetItemMinSize}{\param{size\_t }{index}, \param{int}{ width}, \param{int}{ height}} | |
276 | ||
277 | Set an item's minimum size by window, sizer, or position. The item will be found recursively | |
278 | in the sizer's descendants. This function enables an application to set the size of an item | |
279 | after initial creation. | |
280 | ||
281 | \membersection{wxSizer::SetSizeHints}\label{wxsizersetsizehints} | |
282 | ||
283 | \func{void}{SetSizeHints}{\param{wxWindow* }{window}} | |
284 | ||
285 | Tell the sizer to set (and \helpref{Fit}{wxsizerfit}) the minimal size of the {\it window} to | |
286 | match the sizer's minimal size. This is commonly done in the constructor of the window itself, | |
287 | see sample in the description of \helpref{wxBoxSizer}{wxboxsizer} if the window is resizable | |
288 | (as are many dialogs under Unix and frames on probably all platforms). | |
289 | ||
290 | \membersection{wxSizer::SetVirtualSizeHints}\label{wxsizersetvirtualsizehints} | |
291 | ||
292 | \func{void}{SetVirtualSizeHints}{\param{wxWindow* }{window}} | |
293 | ||
294 | Tell the sizer to set the minimal size of the {\it window} virtual area to match the sizer's | |
295 | minimal size. For windows with managed scrollbars this will set them appropriately. | |
296 | ||
297 | \wxheading{See also} | |
298 | ||
299 | \helpref{wxScrolledWindow::SetScrollbars}{wxscrolledwindowsetscrollbars} | |
300 | ||
301 | \membersection{wxSizer::Show}\label{wxsizershow} | |
302 | ||
303 | \func{void}{Show}{\param{wxWindow* }{window}, \param{bool }{show = true}} | |
304 | ||
305 | \func{void}{Show}{\param{wxSizer* }{sizer}, \param{bool }{show = true}} | |
306 | ||
307 | \func{void}{Show}{\param{size\_t }{index}, \param{bool }{show = true}} | |
308 | ||
309 | Shows or hides the {\it window}, {\it sizer}, or item at {\it index}. | |
310 | To make a sizer item disappear or reappear, use Show() followed by Layout(). | |
311 |