]>
Commit | Line | Data |
---|---|---|
1 | ||
2 | /* | |
3 | * Copyright (c) 1996-1997 Sam Leffler | |
4 | * Copyright (c) 1996 Pixar | |
5 | * | |
6 | * Permission to use, copy, modify, distribute, and sell this software and | |
7 | * its documentation for any purpose is hereby granted without fee, provided | |
8 | * that (i) the above copyright notices and this permission notice appear in | |
9 | * all copies of the software and related documentation, and (ii) the names of | |
10 | * Pixar, Sam Leffler and Silicon Graphics may not be used in any advertising or | |
11 | * publicity relating to the software without the specific, prior written | |
12 | * permission of Pixar, Sam Leffler and Silicon Graphics. | |
13 | * | |
14 | * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
15 | * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
16 | * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
17 | * | |
18 | * IN NO EVENT SHALL PIXAR, SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR | |
19 | * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, | |
20 | * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, | |
21 | * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF | |
22 | * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE | |
23 | * OF THIS SOFTWARE. | |
24 | */ | |
25 | ||
26 | #include "tiffiop.h" | |
27 | #ifdef PIXARLOG_SUPPORT | |
28 | ||
29 | /* | |
30 | * TIFF Library. | |
31 | * PixarLog Compression Support | |
32 | * | |
33 | * Contributed by Dan McCoy. | |
34 | * | |
35 | * PixarLog film support uses the TIFF library to store companded | |
36 | * 11 bit values into a tiff file, which are compressed using the | |
37 | * zip compressor. | |
38 | * | |
39 | * The codec can take as input and produce as output 32-bit IEEE float values | |
40 | * as well as 16-bit or 8-bit unsigned integer values. | |
41 | * | |
42 | * On writing any of the above are converted into the internal | |
43 | * 11-bit log format. In the case of 8 and 16 bit values, the | |
44 | * input is assumed to be unsigned linear color values that represent | |
45 | * the range 0-1. In the case of IEEE values, the 0-1 range is assumed to | |
46 | * be the normal linear color range, in addition over 1 values are | |
47 | * accepted up to a value of about 25.0 to encode "hot" hightlights and such. | |
48 | * The encoding is lossless for 8-bit values, slightly lossy for the | |
49 | * other bit depths. The actual color precision should be better | |
50 | * than the human eye can perceive with extra room to allow for | |
51 | * error introduced by further image computation. As with any quantized | |
52 | * color format, it is possible to perform image calculations which | |
53 | * expose the quantization error. This format should certainly be less | |
54 | * susceptable to such errors than standard 8-bit encodings, but more | |
55 | * susceptable than straight 16-bit or 32-bit encodings. | |
56 | * | |
57 | * On reading the internal format is converted to the desired output format. | |
58 | * The program can request which format it desires by setting the internal | |
59 | * pseudo tag TIFFTAG_PIXARLOGDATAFMT to one of these possible values: | |
60 | * PIXARLOGDATAFMT_FLOAT = provide IEEE float values. | |
61 | * PIXARLOGDATAFMT_16BIT = provide unsigned 16-bit integer values | |
62 | * PIXARLOGDATAFMT_8BIT = provide unsigned 8-bit integer values | |
63 | * | |
64 | * alternately PIXARLOGDATAFMT_8BITABGR provides unsigned 8-bit integer | |
65 | * values with the difference that if there are exactly three or four channels | |
66 | * (rgb or rgba) it swaps the channel order (bgr or abgr). | |
67 | * | |
68 | * PIXARLOGDATAFMT_11BITLOG provides the internal encoding directly | |
69 | * packed in 16-bit values. However no tools are supplied for interpreting | |
70 | * these values. | |
71 | * | |
72 | * "hot" (over 1.0) areas written in floating point get clamped to | |
73 | * 1.0 in the integer data types. | |
74 | * | |
75 | * When the file is closed after writing, the bit depth and sample format | |
76 | * are set always to appear as if 8-bit data has been written into it. | |
77 | * That way a naive program unaware of the particulars of the encoding | |
78 | * gets the format it is most likely able to handle. | |
79 | * | |
80 | * The codec does it's own horizontal differencing step on the coded | |
81 | * values so the libraries predictor stuff should be turned off. | |
82 | * The codec also handle byte swapping the encoded values as necessary | |
83 | * since the library does not have the information necessary | |
84 | * to know the bit depth of the raw unencoded buffer. | |
85 | * | |
86 | * NOTE: This decoder does not appear to update tif_rawcp, and tif_rawcc. | |
87 | * This can cause problems with the implementation of CHUNKY_STRIP_READ_SUPPORT | |
88 | * as noted in http://trac.osgeo.org/gdal/ticket/3894. FrankW - Jan'11 | |
89 | */ | |
90 | ||
91 | #include "tif_predict.h" | |
92 | #include "zlib.h" | |
93 | ||
94 | #include <stdio.h> | |
95 | #include <stdlib.h> | |
96 | #include <math.h> | |
97 | ||
98 | /* Tables for converting to/from 11 bit coded values */ | |
99 | ||
100 | #define TSIZE 2048 /* decode table size (11-bit tokens) */ | |
101 | #define TSIZEP1 2049 /* Plus one for slop */ | |
102 | #define ONE 1250 /* token value of 1.0 exactly */ | |
103 | #define RATIO 1.004 /* nominal ratio for log part */ | |
104 | ||
105 | #define CODE_MASK 0x7ff /* 11 bits. */ | |
106 | ||
107 | static float Fltsize; | |
108 | static float LogK1, LogK2; | |
109 | ||
110 | #define REPEAT(n, op) { int i; i=n; do { i--; op; } while (i>0); } | |
111 | ||
112 | static void | |
113 | horizontalAccumulateF(uint16 *wp, int n, int stride, float *op, | |
114 | float *ToLinearF) | |
115 | { | |
116 | register unsigned int cr, cg, cb, ca, mask; | |
117 | register float t0, t1, t2, t3; | |
118 | ||
119 | if (n >= stride) { | |
120 | mask = CODE_MASK; | |
121 | if (stride == 3) { | |
122 | t0 = ToLinearF[cr = (wp[0] & mask)]; | |
123 | t1 = ToLinearF[cg = (wp[1] & mask)]; | |
124 | t2 = ToLinearF[cb = (wp[2] & mask)]; | |
125 | op[0] = t0; | |
126 | op[1] = t1; | |
127 | op[2] = t2; | |
128 | n -= 3; | |
129 | while (n > 0) { | |
130 | wp += 3; | |
131 | op += 3; | |
132 | n -= 3; | |
133 | t0 = ToLinearF[(cr += wp[0]) & mask]; | |
134 | t1 = ToLinearF[(cg += wp[1]) & mask]; | |
135 | t2 = ToLinearF[(cb += wp[2]) & mask]; | |
136 | op[0] = t0; | |
137 | op[1] = t1; | |
138 | op[2] = t2; | |
139 | } | |
140 | } else if (stride == 4) { | |
141 | t0 = ToLinearF[cr = (wp[0] & mask)]; | |
142 | t1 = ToLinearF[cg = (wp[1] & mask)]; | |
143 | t2 = ToLinearF[cb = (wp[2] & mask)]; | |
144 | t3 = ToLinearF[ca = (wp[3] & mask)]; | |
145 | op[0] = t0; | |
146 | op[1] = t1; | |
147 | op[2] = t2; | |
148 | op[3] = t3; | |
149 | n -= 4; | |
150 | while (n > 0) { | |
151 | wp += 4; | |
152 | op += 4; | |
153 | n -= 4; | |
154 | t0 = ToLinearF[(cr += wp[0]) & mask]; | |
155 | t1 = ToLinearF[(cg += wp[1]) & mask]; | |
156 | t2 = ToLinearF[(cb += wp[2]) & mask]; | |
157 | t3 = ToLinearF[(ca += wp[3]) & mask]; | |
158 | op[0] = t0; | |
159 | op[1] = t1; | |
160 | op[2] = t2; | |
161 | op[3] = t3; | |
162 | } | |
163 | } else { | |
164 | REPEAT(stride, *op = ToLinearF[*wp&mask]; wp++; op++) | |
165 | n -= stride; | |
166 | while (n > 0) { | |
167 | REPEAT(stride, | |
168 | wp[stride] += *wp; *op = ToLinearF[*wp&mask]; wp++; op++) | |
169 | n -= stride; | |
170 | } | |
171 | } | |
172 | } | |
173 | } | |
174 | ||
175 | static void | |
176 | horizontalAccumulate12(uint16 *wp, int n, int stride, int16 *op, | |
177 | float *ToLinearF) | |
178 | { | |
179 | register unsigned int cr, cg, cb, ca, mask; | |
180 | register float t0, t1, t2, t3; | |
181 | ||
182 | #define SCALE12 2048.0F | |
183 | #define CLAMP12(t) (((t) < 3071) ? (uint16) (t) : 3071) | |
184 | ||
185 | if (n >= stride) { | |
186 | mask = CODE_MASK; | |
187 | if (stride == 3) { | |
188 | t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12; | |
189 | t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12; | |
190 | t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12; | |
191 | op[0] = CLAMP12(t0); | |
192 | op[1] = CLAMP12(t1); | |
193 | op[2] = CLAMP12(t2); | |
194 | n -= 3; | |
195 | while (n > 0) { | |
196 | wp += 3; | |
197 | op += 3; | |
198 | n -= 3; | |
199 | t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12; | |
200 | t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12; | |
201 | t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12; | |
202 | op[0] = CLAMP12(t0); | |
203 | op[1] = CLAMP12(t1); | |
204 | op[2] = CLAMP12(t2); | |
205 | } | |
206 | } else if (stride == 4) { | |
207 | t0 = ToLinearF[cr = (wp[0] & mask)] * SCALE12; | |
208 | t1 = ToLinearF[cg = (wp[1] & mask)] * SCALE12; | |
209 | t2 = ToLinearF[cb = (wp[2] & mask)] * SCALE12; | |
210 | t3 = ToLinearF[ca = (wp[3] & mask)] * SCALE12; | |
211 | op[0] = CLAMP12(t0); | |
212 | op[1] = CLAMP12(t1); | |
213 | op[2] = CLAMP12(t2); | |
214 | op[3] = CLAMP12(t3); | |
215 | n -= 4; | |
216 | while (n > 0) { | |
217 | wp += 4; | |
218 | op += 4; | |
219 | n -= 4; | |
220 | t0 = ToLinearF[(cr += wp[0]) & mask] * SCALE12; | |
221 | t1 = ToLinearF[(cg += wp[1]) & mask] * SCALE12; | |
222 | t2 = ToLinearF[(cb += wp[2]) & mask] * SCALE12; | |
223 | t3 = ToLinearF[(ca += wp[3]) & mask] * SCALE12; | |
224 | op[0] = CLAMP12(t0); | |
225 | op[1] = CLAMP12(t1); | |
226 | op[2] = CLAMP12(t2); | |
227 | op[3] = CLAMP12(t3); | |
228 | } | |
229 | } else { | |
230 | REPEAT(stride, t0 = ToLinearF[*wp&mask] * SCALE12; | |
231 | *op = CLAMP12(t0); wp++; op++) | |
232 | n -= stride; | |
233 | while (n > 0) { | |
234 | REPEAT(stride, | |
235 | wp[stride] += *wp; t0 = ToLinearF[wp[stride]&mask]*SCALE12; | |
236 | *op = CLAMP12(t0); wp++; op++) | |
237 | n -= stride; | |
238 | } | |
239 | } | |
240 | } | |
241 | } | |
242 | ||
243 | static void | |
244 | horizontalAccumulate16(uint16 *wp, int n, int stride, uint16 *op, | |
245 | uint16 *ToLinear16) | |
246 | { | |
247 | register unsigned int cr, cg, cb, ca, mask; | |
248 | ||
249 | if (n >= stride) { | |
250 | mask = CODE_MASK; | |
251 | if (stride == 3) { | |
252 | op[0] = ToLinear16[cr = (wp[0] & mask)]; | |
253 | op[1] = ToLinear16[cg = (wp[1] & mask)]; | |
254 | op[2] = ToLinear16[cb = (wp[2] & mask)]; | |
255 | n -= 3; | |
256 | while (n > 0) { | |
257 | wp += 3; | |
258 | op += 3; | |
259 | n -= 3; | |
260 | op[0] = ToLinear16[(cr += wp[0]) & mask]; | |
261 | op[1] = ToLinear16[(cg += wp[1]) & mask]; | |
262 | op[2] = ToLinear16[(cb += wp[2]) & mask]; | |
263 | } | |
264 | } else if (stride == 4) { | |
265 | op[0] = ToLinear16[cr = (wp[0] & mask)]; | |
266 | op[1] = ToLinear16[cg = (wp[1] & mask)]; | |
267 | op[2] = ToLinear16[cb = (wp[2] & mask)]; | |
268 | op[3] = ToLinear16[ca = (wp[3] & mask)]; | |
269 | n -= 4; | |
270 | while (n > 0) { | |
271 | wp += 4; | |
272 | op += 4; | |
273 | n -= 4; | |
274 | op[0] = ToLinear16[(cr += wp[0]) & mask]; | |
275 | op[1] = ToLinear16[(cg += wp[1]) & mask]; | |
276 | op[2] = ToLinear16[(cb += wp[2]) & mask]; | |
277 | op[3] = ToLinear16[(ca += wp[3]) & mask]; | |
278 | } | |
279 | } else { | |
280 | REPEAT(stride, *op = ToLinear16[*wp&mask]; wp++; op++) | |
281 | n -= stride; | |
282 | while (n > 0) { | |
283 | REPEAT(stride, | |
284 | wp[stride] += *wp; *op = ToLinear16[*wp&mask]; wp++; op++) | |
285 | n -= stride; | |
286 | } | |
287 | } | |
288 | } | |
289 | } | |
290 | ||
291 | /* | |
292 | * Returns the log encoded 11-bit values with the horizontal | |
293 | * differencing undone. | |
294 | */ | |
295 | static void | |
296 | horizontalAccumulate11(uint16 *wp, int n, int stride, uint16 *op) | |
297 | { | |
298 | register unsigned int cr, cg, cb, ca, mask; | |
299 | ||
300 | if (n >= stride) { | |
301 | mask = CODE_MASK; | |
302 | if (stride == 3) { | |
303 | op[0] = cr = wp[0]; op[1] = cg = wp[1]; op[2] = cb = wp[2]; | |
304 | n -= 3; | |
305 | while (n > 0) { | |
306 | wp += 3; | |
307 | op += 3; | |
308 | n -= 3; | |
309 | op[0] = (cr += wp[0]) & mask; | |
310 | op[1] = (cg += wp[1]) & mask; | |
311 | op[2] = (cb += wp[2]) & mask; | |
312 | } | |
313 | } else if (stride == 4) { | |
314 | op[0] = cr = wp[0]; op[1] = cg = wp[1]; | |
315 | op[2] = cb = wp[2]; op[3] = ca = wp[3]; | |
316 | n -= 4; | |
317 | while (n > 0) { | |
318 | wp += 4; | |
319 | op += 4; | |
320 | n -= 4; | |
321 | op[0] = (cr += wp[0]) & mask; | |
322 | op[1] = (cg += wp[1]) & mask; | |
323 | op[2] = (cb += wp[2]) & mask; | |
324 | op[3] = (ca += wp[3]) & mask; | |
325 | } | |
326 | } else { | |
327 | REPEAT(stride, *op = *wp&mask; wp++; op++) | |
328 | n -= stride; | |
329 | while (n > 0) { | |
330 | REPEAT(stride, | |
331 | wp[stride] += *wp; *op = *wp&mask; wp++; op++) | |
332 | n -= stride; | |
333 | } | |
334 | } | |
335 | } | |
336 | } | |
337 | ||
338 | static void | |
339 | horizontalAccumulate8(uint16 *wp, int n, int stride, unsigned char *op, | |
340 | unsigned char *ToLinear8) | |
341 | { | |
342 | register unsigned int cr, cg, cb, ca, mask; | |
343 | ||
344 | if (n >= stride) { | |
345 | mask = CODE_MASK; | |
346 | if (stride == 3) { | |
347 | op[0] = ToLinear8[cr = (wp[0] & mask)]; | |
348 | op[1] = ToLinear8[cg = (wp[1] & mask)]; | |
349 | op[2] = ToLinear8[cb = (wp[2] & mask)]; | |
350 | n -= 3; | |
351 | while (n > 0) { | |
352 | n -= 3; | |
353 | wp += 3; | |
354 | op += 3; | |
355 | op[0] = ToLinear8[(cr += wp[0]) & mask]; | |
356 | op[1] = ToLinear8[(cg += wp[1]) & mask]; | |
357 | op[2] = ToLinear8[(cb += wp[2]) & mask]; | |
358 | } | |
359 | } else if (stride == 4) { | |
360 | op[0] = ToLinear8[cr = (wp[0] & mask)]; | |
361 | op[1] = ToLinear8[cg = (wp[1] & mask)]; | |
362 | op[2] = ToLinear8[cb = (wp[2] & mask)]; | |
363 | op[3] = ToLinear8[ca = (wp[3] & mask)]; | |
364 | n -= 4; | |
365 | while (n > 0) { | |
366 | n -= 4; | |
367 | wp += 4; | |
368 | op += 4; | |
369 | op[0] = ToLinear8[(cr += wp[0]) & mask]; | |
370 | op[1] = ToLinear8[(cg += wp[1]) & mask]; | |
371 | op[2] = ToLinear8[(cb += wp[2]) & mask]; | |
372 | op[3] = ToLinear8[(ca += wp[3]) & mask]; | |
373 | } | |
374 | } else { | |
375 | REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++) | |
376 | n -= stride; | |
377 | while (n > 0) { | |
378 | REPEAT(stride, | |
379 | wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++) | |
380 | n -= stride; | |
381 | } | |
382 | } | |
383 | } | |
384 | } | |
385 | ||
386 | ||
387 | static void | |
388 | horizontalAccumulate8abgr(uint16 *wp, int n, int stride, unsigned char *op, | |
389 | unsigned char *ToLinear8) | |
390 | { | |
391 | register unsigned int cr, cg, cb, ca, mask; | |
392 | register unsigned char t0, t1, t2, t3; | |
393 | ||
394 | if (n >= stride) { | |
395 | mask = CODE_MASK; | |
396 | if (stride == 3) { | |
397 | op[0] = 0; | |
398 | t1 = ToLinear8[cb = (wp[2] & mask)]; | |
399 | t2 = ToLinear8[cg = (wp[1] & mask)]; | |
400 | t3 = ToLinear8[cr = (wp[0] & mask)]; | |
401 | op[1] = t1; | |
402 | op[2] = t2; | |
403 | op[3] = t3; | |
404 | n -= 3; | |
405 | while (n > 0) { | |
406 | n -= 3; | |
407 | wp += 3; | |
408 | op += 4; | |
409 | op[0] = 0; | |
410 | t1 = ToLinear8[(cb += wp[2]) & mask]; | |
411 | t2 = ToLinear8[(cg += wp[1]) & mask]; | |
412 | t3 = ToLinear8[(cr += wp[0]) & mask]; | |
413 | op[1] = t1; | |
414 | op[2] = t2; | |
415 | op[3] = t3; | |
416 | } | |
417 | } else if (stride == 4) { | |
418 | t0 = ToLinear8[ca = (wp[3] & mask)]; | |
419 | t1 = ToLinear8[cb = (wp[2] & mask)]; | |
420 | t2 = ToLinear8[cg = (wp[1] & mask)]; | |
421 | t3 = ToLinear8[cr = (wp[0] & mask)]; | |
422 | op[0] = t0; | |
423 | op[1] = t1; | |
424 | op[2] = t2; | |
425 | op[3] = t3; | |
426 | n -= 4; | |
427 | while (n > 0) { | |
428 | n -= 4; | |
429 | wp += 4; | |
430 | op += 4; | |
431 | t0 = ToLinear8[(ca += wp[3]) & mask]; | |
432 | t1 = ToLinear8[(cb += wp[2]) & mask]; | |
433 | t2 = ToLinear8[(cg += wp[1]) & mask]; | |
434 | t3 = ToLinear8[(cr += wp[0]) & mask]; | |
435 | op[0] = t0; | |
436 | op[1] = t1; | |
437 | op[2] = t2; | |
438 | op[3] = t3; | |
439 | } | |
440 | } else { | |
441 | REPEAT(stride, *op = ToLinear8[*wp&mask]; wp++; op++) | |
442 | n -= stride; | |
443 | while (n > 0) { | |
444 | REPEAT(stride, | |
445 | wp[stride] += *wp; *op = ToLinear8[*wp&mask]; wp++; op++) | |
446 | n -= stride; | |
447 | } | |
448 | } | |
449 | } | |
450 | } | |
451 | ||
452 | /* | |
453 | * State block for each open TIFF | |
454 | * file using PixarLog compression/decompression. | |
455 | */ | |
456 | typedef struct { | |
457 | TIFFPredictorState predict; | |
458 | z_stream stream; | |
459 | uint16 *tbuf; | |
460 | uint16 stride; | |
461 | int state; | |
462 | int user_datafmt; | |
463 | int quality; | |
464 | #define PLSTATE_INIT 1 | |
465 | ||
466 | TIFFVSetMethod vgetparent; /* super-class method */ | |
467 | TIFFVSetMethod vsetparent; /* super-class method */ | |
468 | ||
469 | float *ToLinearF; | |
470 | uint16 *ToLinear16; | |
471 | unsigned char *ToLinear8; | |
472 | uint16 *FromLT2; | |
473 | uint16 *From14; /* Really for 16-bit data, but we shift down 2 */ | |
474 | uint16 *From8; | |
475 | ||
476 | } PixarLogState; | |
477 | ||
478 | static int | |
479 | PixarLogMakeTables(PixarLogState *sp) | |
480 | { | |
481 | ||
482 | /* | |
483 | * We make several tables here to convert between various external | |
484 | * representations (float, 16-bit, and 8-bit) and the internal | |
485 | * 11-bit companded representation. The 11-bit representation has two | |
486 | * distinct regions. A linear bottom end up through .018316 in steps | |
487 | * of about .000073, and a region of constant ratio up to about 25. | |
488 | * These floating point numbers are stored in the main table ToLinearF. | |
489 | * All other tables are derived from this one. The tables (and the | |
490 | * ratios) are continuous at the internal seam. | |
491 | */ | |
492 | ||
493 | int nlin, lt2size; | |
494 | int i, j; | |
495 | double b, c, linstep, v; | |
496 | float *ToLinearF; | |
497 | uint16 *ToLinear16; | |
498 | unsigned char *ToLinear8; | |
499 | uint16 *FromLT2; | |
500 | uint16 *From14; /* Really for 16-bit data, but we shift down 2 */ | |
501 | uint16 *From8; | |
502 | ||
503 | c = log(RATIO); | |
504 | nlin = (int)(1./c); /* nlin must be an integer */ | |
505 | c = 1./nlin; | |
506 | b = exp(-c*ONE); /* multiplicative scale factor [b*exp(c*ONE) = 1] */ | |
507 | linstep = b*c*exp(1.); | |
508 | ||
509 | LogK1 = (float)(1./c); /* if (v >= 2) token = k1*log(v*k2) */ | |
510 | LogK2 = (float)(1./b); | |
511 | lt2size = (int)(2./linstep) + 1; | |
512 | FromLT2 = (uint16 *)_TIFFmalloc(lt2size*sizeof(uint16)); | |
513 | From14 = (uint16 *)_TIFFmalloc(16384*sizeof(uint16)); | |
514 | From8 = (uint16 *)_TIFFmalloc(256*sizeof(uint16)); | |
515 | ToLinearF = (float *)_TIFFmalloc(TSIZEP1 * sizeof(float)); | |
516 | ToLinear16 = (uint16 *)_TIFFmalloc(TSIZEP1 * sizeof(uint16)); | |
517 | ToLinear8 = (unsigned char *)_TIFFmalloc(TSIZEP1 * sizeof(unsigned char)); | |
518 | if (FromLT2 == NULL || From14 == NULL || From8 == NULL || | |
519 | ToLinearF == NULL || ToLinear16 == NULL || ToLinear8 == NULL) { | |
520 | if (FromLT2) _TIFFfree(FromLT2); | |
521 | if (From14) _TIFFfree(From14); | |
522 | if (From8) _TIFFfree(From8); | |
523 | if (ToLinearF) _TIFFfree(ToLinearF); | |
524 | if (ToLinear16) _TIFFfree(ToLinear16); | |
525 | if (ToLinear8) _TIFFfree(ToLinear8); | |
526 | sp->FromLT2 = NULL; | |
527 | sp->From14 = NULL; | |
528 | sp->From8 = NULL; | |
529 | sp->ToLinearF = NULL; | |
530 | sp->ToLinear16 = NULL; | |
531 | sp->ToLinear8 = NULL; | |
532 | return 0; | |
533 | } | |
534 | ||
535 | j = 0; | |
536 | ||
537 | for (i = 0; i < nlin; i++) { | |
538 | v = i * linstep; | |
539 | ToLinearF[j++] = (float)v; | |
540 | } | |
541 | ||
542 | for (i = nlin; i < TSIZE; i++) | |
543 | ToLinearF[j++] = (float)(b*exp(c*i)); | |
544 | ||
545 | ToLinearF[2048] = ToLinearF[2047]; | |
546 | ||
547 | for (i = 0; i < TSIZEP1; i++) { | |
548 | v = ToLinearF[i]*65535.0 + 0.5; | |
549 | ToLinear16[i] = (v > 65535.0) ? 65535 : (uint16)v; | |
550 | v = ToLinearF[i]*255.0 + 0.5; | |
551 | ToLinear8[i] = (v > 255.0) ? 255 : (unsigned char)v; | |
552 | } | |
553 | ||
554 | j = 0; | |
555 | for (i = 0; i < lt2size; i++) { | |
556 | if ((i*linstep)*(i*linstep) > ToLinearF[j]*ToLinearF[j+1]) | |
557 | j++; | |
558 | FromLT2[i] = j; | |
559 | } | |
560 | ||
561 | /* | |
562 | * Since we lose info anyway on 16-bit data, we set up a 14-bit | |
563 | * table and shift 16-bit values down two bits on input. | |
564 | * saves a little table space. | |
565 | */ | |
566 | j = 0; | |
567 | for (i = 0; i < 16384; i++) { | |
568 | while ((i/16383.)*(i/16383.) > ToLinearF[j]*ToLinearF[j+1]) | |
569 | j++; | |
570 | From14[i] = j; | |
571 | } | |
572 | ||
573 | j = 0; | |
574 | for (i = 0; i < 256; i++) { | |
575 | while ((i/255.)*(i/255.) > ToLinearF[j]*ToLinearF[j+1]) | |
576 | j++; | |
577 | From8[i] = j; | |
578 | } | |
579 | ||
580 | Fltsize = (float)(lt2size/2); | |
581 | ||
582 | sp->ToLinearF = ToLinearF; | |
583 | sp->ToLinear16 = ToLinear16; | |
584 | sp->ToLinear8 = ToLinear8; | |
585 | sp->FromLT2 = FromLT2; | |
586 | sp->From14 = From14; | |
587 | sp->From8 = From8; | |
588 | ||
589 | return 1; | |
590 | } | |
591 | ||
592 | #define DecoderState(tif) ((PixarLogState*) (tif)->tif_data) | |
593 | #define EncoderState(tif) ((PixarLogState*) (tif)->tif_data) | |
594 | ||
595 | static int PixarLogEncode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s); | |
596 | static int PixarLogDecode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s); | |
597 | ||
598 | #define PIXARLOGDATAFMT_UNKNOWN -1 | |
599 | ||
600 | static int | |
601 | PixarLogGuessDataFmt(TIFFDirectory *td) | |
602 | { | |
603 | int guess = PIXARLOGDATAFMT_UNKNOWN; | |
604 | int format = td->td_sampleformat; | |
605 | ||
606 | /* If the user didn't tell us his datafmt, | |
607 | * take our best guess from the bitspersample. | |
608 | */ | |
609 | switch (td->td_bitspersample) { | |
610 | case 32: | |
611 | if (format == SAMPLEFORMAT_IEEEFP) | |
612 | guess = PIXARLOGDATAFMT_FLOAT; | |
613 | break; | |
614 | case 16: | |
615 | if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT) | |
616 | guess = PIXARLOGDATAFMT_16BIT; | |
617 | break; | |
618 | case 12: | |
619 | if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_INT) | |
620 | guess = PIXARLOGDATAFMT_12BITPICIO; | |
621 | break; | |
622 | case 11: | |
623 | if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT) | |
624 | guess = PIXARLOGDATAFMT_11BITLOG; | |
625 | break; | |
626 | case 8: | |
627 | if (format == SAMPLEFORMAT_VOID || format == SAMPLEFORMAT_UINT) | |
628 | guess = PIXARLOGDATAFMT_8BIT; | |
629 | break; | |
630 | } | |
631 | ||
632 | return guess; | |
633 | } | |
634 | ||
635 | static tmsize_t | |
636 | multiply_ms(tmsize_t m1, tmsize_t m2) | |
637 | { | |
638 | tmsize_t bytes = m1 * m2; | |
639 | ||
640 | if (m1 && bytes / m1 != m2) | |
641 | bytes = 0; | |
642 | ||
643 | return bytes; | |
644 | } | |
645 | ||
646 | static int | |
647 | PixarLogFixupTags(TIFF* tif) | |
648 | { | |
649 | (void) tif; | |
650 | return (1); | |
651 | } | |
652 | ||
653 | static int | |
654 | PixarLogSetupDecode(TIFF* tif) | |
655 | { | |
656 | static const char module[] = "PixarLogSetupDecode"; | |
657 | TIFFDirectory *td = &tif->tif_dir; | |
658 | PixarLogState* sp = DecoderState(tif); | |
659 | tmsize_t tbuf_size; | |
660 | ||
661 | assert(sp != NULL); | |
662 | ||
663 | /* Make sure no byte swapping happens on the data | |
664 | * after decompression. */ | |
665 | tif->tif_postdecode = _TIFFNoPostDecode; | |
666 | ||
667 | /* for some reason, we can't do this in TIFFInitPixarLog */ | |
668 | ||
669 | sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ? | |
670 | td->td_samplesperpixel : 1); | |
671 | tbuf_size = multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth), | |
672 | td->td_rowsperstrip), sizeof(uint16)); | |
673 | if (tbuf_size == 0) | |
674 | return (0); /* TODO: this is an error return without error report through TIFFErrorExt */ | |
675 | sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size+sizeof(uint16)*sp->stride); | |
676 | if (sp->tbuf == NULL) | |
677 | return (0); | |
678 | if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) | |
679 | sp->user_datafmt = PixarLogGuessDataFmt(td); | |
680 | if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) { | |
681 | TIFFErrorExt(tif->tif_clientdata, module, | |
682 | "PixarLog compression can't handle bits depth/data format combination (depth: %d)", | |
683 | td->td_bitspersample); | |
684 | return (0); | |
685 | } | |
686 | ||
687 | if (inflateInit(&sp->stream) != Z_OK) { | |
688 | TIFFErrorExt(tif->tif_clientdata, module, "%s", sp->stream.msg); | |
689 | return (0); | |
690 | } else { | |
691 | sp->state |= PLSTATE_INIT; | |
692 | return (1); | |
693 | } | |
694 | } | |
695 | ||
696 | /* | |
697 | * Setup state for decoding a strip. | |
698 | */ | |
699 | static int | |
700 | PixarLogPreDecode(TIFF* tif, uint16 s) | |
701 | { | |
702 | static const char module[] = "PixarLogPreDecode"; | |
703 | PixarLogState* sp = DecoderState(tif); | |
704 | ||
705 | (void) s; | |
706 | assert(sp != NULL); | |
707 | sp->stream.next_in = tif->tif_rawdata; | |
708 | assert(sizeof(sp->stream.avail_in)==4); /* if this assert gets raised, | |
709 | we need to simplify this code to reflect a ZLib that is likely updated | |
710 | to deal with 8byte memory sizes, though this code will respond | |
711 | apropriately even before we simplify it */ | |
712 | sp->stream.avail_in = (uInt) tif->tif_rawcc; | |
713 | if ((tmsize_t)sp->stream.avail_in != tif->tif_rawcc) | |
714 | { | |
715 | TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size"); | |
716 | return (0); | |
717 | } | |
718 | return (inflateReset(&sp->stream) == Z_OK); | |
719 | } | |
720 | ||
721 | static int | |
722 | PixarLogDecode(TIFF* tif, uint8* op, tmsize_t occ, uint16 s) | |
723 | { | |
724 | static const char module[] = "PixarLogDecode"; | |
725 | TIFFDirectory *td = &tif->tif_dir; | |
726 | PixarLogState* sp = DecoderState(tif); | |
727 | tmsize_t i; | |
728 | tmsize_t nsamples; | |
729 | int llen; | |
730 | uint16 *up; | |
731 | ||
732 | switch (sp->user_datafmt) { | |
733 | case PIXARLOGDATAFMT_FLOAT: | |
734 | nsamples = occ / sizeof(float); /* XXX float == 32 bits */ | |
735 | break; | |
736 | case PIXARLOGDATAFMT_16BIT: | |
737 | case PIXARLOGDATAFMT_12BITPICIO: | |
738 | case PIXARLOGDATAFMT_11BITLOG: | |
739 | nsamples = occ / sizeof(uint16); /* XXX uint16 == 16 bits */ | |
740 | break; | |
741 | case PIXARLOGDATAFMT_8BIT: | |
742 | case PIXARLOGDATAFMT_8BITABGR: | |
743 | nsamples = occ; | |
744 | break; | |
745 | default: | |
746 | TIFFErrorExt(tif->tif_clientdata, module, | |
747 | "%d bit input not supported in PixarLog", | |
748 | td->td_bitspersample); | |
749 | return 0; | |
750 | } | |
751 | ||
752 | llen = sp->stride * td->td_imagewidth; | |
753 | ||
754 | (void) s; | |
755 | assert(sp != NULL); | |
756 | sp->stream.next_out = (unsigned char *) sp->tbuf; | |
757 | assert(sizeof(sp->stream.avail_out)==4); /* if this assert gets raised, | |
758 | we need to simplify this code to reflect a ZLib that is likely updated | |
759 | to deal with 8byte memory sizes, though this code will respond | |
760 | apropriately even before we simplify it */ | |
761 | sp->stream.avail_out = (uInt) (nsamples * sizeof(uint16)); | |
762 | if (sp->stream.avail_out != nsamples * sizeof(uint16)) | |
763 | { | |
764 | TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size"); | |
765 | return (0); | |
766 | } | |
767 | do { | |
768 | int state = inflate(&sp->stream, Z_PARTIAL_FLUSH); | |
769 | if (state == Z_STREAM_END) { | |
770 | break; /* XXX */ | |
771 | } | |
772 | if (state == Z_DATA_ERROR) { | |
773 | TIFFErrorExt(tif->tif_clientdata, module, | |
774 | "Decoding error at scanline %lu, %s", | |
775 | (unsigned long) tif->tif_row, sp->stream.msg); | |
776 | if (inflateSync(&sp->stream) != Z_OK) | |
777 | return (0); | |
778 | continue; | |
779 | } | |
780 | if (state != Z_OK) { | |
781 | TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s", | |
782 | sp->stream.msg); | |
783 | return (0); | |
784 | } | |
785 | } while (sp->stream.avail_out > 0); | |
786 | ||
787 | /* hopefully, we got all the bytes we needed */ | |
788 | if (sp->stream.avail_out != 0) { | |
789 | TIFFErrorExt(tif->tif_clientdata, module, | |
790 | "Not enough data at scanline %lu (short " TIFF_UINT64_FORMAT " bytes)", | |
791 | (unsigned long) tif->tif_row, (TIFF_UINT64_T) sp->stream.avail_out); | |
792 | return (0); | |
793 | } | |
794 | ||
795 | up = sp->tbuf; | |
796 | /* Swap bytes in the data if from a different endian machine. */ | |
797 | if (tif->tif_flags & TIFF_SWAB) | |
798 | TIFFSwabArrayOfShort(up, nsamples); | |
799 | ||
800 | /* | |
801 | * if llen is not an exact multiple of nsamples, the decode operation | |
802 | * may overflow the output buffer, so truncate it enough to prevent | |
803 | * that but still salvage as much data as possible. | |
804 | */ | |
805 | if (nsamples % llen) { | |
806 | TIFFWarningExt(tif->tif_clientdata, module, | |
807 | "stride %lu is not a multiple of sample count, " | |
808 | "%lu, data truncated.", (unsigned long) llen, (unsigned long) nsamples); | |
809 | nsamples -= nsamples % llen; | |
810 | } | |
811 | ||
812 | for (i = 0; i < nsamples; i += llen, up += llen) { | |
813 | switch (sp->user_datafmt) { | |
814 | case PIXARLOGDATAFMT_FLOAT: | |
815 | horizontalAccumulateF(up, llen, sp->stride, | |
816 | (float *)op, sp->ToLinearF); | |
817 | op += llen * sizeof(float); | |
818 | break; | |
819 | case PIXARLOGDATAFMT_16BIT: | |
820 | horizontalAccumulate16(up, llen, sp->stride, | |
821 | (uint16 *)op, sp->ToLinear16); | |
822 | op += llen * sizeof(uint16); | |
823 | break; | |
824 | case PIXARLOGDATAFMT_12BITPICIO: | |
825 | horizontalAccumulate12(up, llen, sp->stride, | |
826 | (int16 *)op, sp->ToLinearF); | |
827 | op += llen * sizeof(int16); | |
828 | break; | |
829 | case PIXARLOGDATAFMT_11BITLOG: | |
830 | horizontalAccumulate11(up, llen, sp->stride, | |
831 | (uint16 *)op); | |
832 | op += llen * sizeof(uint16); | |
833 | break; | |
834 | case PIXARLOGDATAFMT_8BIT: | |
835 | horizontalAccumulate8(up, llen, sp->stride, | |
836 | (unsigned char *)op, sp->ToLinear8); | |
837 | op += llen * sizeof(unsigned char); | |
838 | break; | |
839 | case PIXARLOGDATAFMT_8BITABGR: | |
840 | horizontalAccumulate8abgr(up, llen, sp->stride, | |
841 | (unsigned char *)op, sp->ToLinear8); | |
842 | op += llen * sizeof(unsigned char); | |
843 | break; | |
844 | default: | |
845 | TIFFErrorExt(tif->tif_clientdata, module, | |
846 | "Unsupported bits/sample: %d", | |
847 | td->td_bitspersample); | |
848 | return (0); | |
849 | } | |
850 | } | |
851 | ||
852 | return (1); | |
853 | } | |
854 | ||
855 | static int | |
856 | PixarLogSetupEncode(TIFF* tif) | |
857 | { | |
858 | static const char module[] = "PixarLogSetupEncode"; | |
859 | TIFFDirectory *td = &tif->tif_dir; | |
860 | PixarLogState* sp = EncoderState(tif); | |
861 | tmsize_t tbuf_size; | |
862 | ||
863 | assert(sp != NULL); | |
864 | ||
865 | /* for some reason, we can't do this in TIFFInitPixarLog */ | |
866 | ||
867 | sp->stride = (td->td_planarconfig == PLANARCONFIG_CONTIG ? | |
868 | td->td_samplesperpixel : 1); | |
869 | tbuf_size = multiply_ms(multiply_ms(multiply_ms(sp->stride, td->td_imagewidth), | |
870 | td->td_rowsperstrip), sizeof(uint16)); | |
871 | if (tbuf_size == 0) | |
872 | return (0); /* TODO: this is an error return without error report through TIFFErrorExt */ | |
873 | sp->tbuf = (uint16 *) _TIFFmalloc(tbuf_size); | |
874 | if (sp->tbuf == NULL) | |
875 | return (0); | |
876 | if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) | |
877 | sp->user_datafmt = PixarLogGuessDataFmt(td); | |
878 | if (sp->user_datafmt == PIXARLOGDATAFMT_UNKNOWN) { | |
879 | TIFFErrorExt(tif->tif_clientdata, module, "PixarLog compression can't handle %d bit linear encodings", td->td_bitspersample); | |
880 | return (0); | |
881 | } | |
882 | ||
883 | if (deflateInit(&sp->stream, sp->quality) != Z_OK) { | |
884 | TIFFErrorExt(tif->tif_clientdata, module, "%s", sp->stream.msg); | |
885 | return (0); | |
886 | } else { | |
887 | sp->state |= PLSTATE_INIT; | |
888 | return (1); | |
889 | } | |
890 | } | |
891 | ||
892 | /* | |
893 | * Reset encoding state at the start of a strip. | |
894 | */ | |
895 | static int | |
896 | PixarLogPreEncode(TIFF* tif, uint16 s) | |
897 | { | |
898 | static const char module[] = "PixarLogPreEncode"; | |
899 | PixarLogState *sp = EncoderState(tif); | |
900 | ||
901 | (void) s; | |
902 | assert(sp != NULL); | |
903 | sp->stream.next_out = tif->tif_rawdata; | |
904 | assert(sizeof(sp->stream.avail_out)==4); /* if this assert gets raised, | |
905 | we need to simplify this code to reflect a ZLib that is likely updated | |
906 | to deal with 8byte memory sizes, though this code will respond | |
907 | apropriately even before we simplify it */ | |
908 | sp->stream.avail_out = tif->tif_rawdatasize; | |
909 | if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize) | |
910 | { | |
911 | TIFFErrorExt(tif->tif_clientdata, module, "ZLib cannot deal with buffers this size"); | |
912 | return (0); | |
913 | } | |
914 | return (deflateReset(&sp->stream) == Z_OK); | |
915 | } | |
916 | ||
917 | static void | |
918 | horizontalDifferenceF(float *ip, int n, int stride, uint16 *wp, uint16 *FromLT2) | |
919 | { | |
920 | int32 r1, g1, b1, a1, r2, g2, b2, a2, mask; | |
921 | float fltsize = Fltsize; | |
922 | ||
923 | #define CLAMP(v) ( (v<(float)0.) ? 0 \ | |
924 | : (v<(float)2.) ? FromLT2[(int)(v*fltsize)] \ | |
925 | : (v>(float)24.2) ? 2047 \ | |
926 | : LogK1*log(v*LogK2) + 0.5 ) | |
927 | ||
928 | mask = CODE_MASK; | |
929 | if (n >= stride) { | |
930 | if (stride == 3) { | |
931 | r2 = wp[0] = (uint16) CLAMP(ip[0]); | |
932 | g2 = wp[1] = (uint16) CLAMP(ip[1]); | |
933 | b2 = wp[2] = (uint16) CLAMP(ip[2]); | |
934 | n -= 3; | |
935 | while (n > 0) { | |
936 | n -= 3; | |
937 | wp += 3; | |
938 | ip += 3; | |
939 | r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1; | |
940 | g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1; | |
941 | b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1; | |
942 | } | |
943 | } else if (stride == 4) { | |
944 | r2 = wp[0] = (uint16) CLAMP(ip[0]); | |
945 | g2 = wp[1] = (uint16) CLAMP(ip[1]); | |
946 | b2 = wp[2] = (uint16) CLAMP(ip[2]); | |
947 | a2 = wp[3] = (uint16) CLAMP(ip[3]); | |
948 | n -= 4; | |
949 | while (n > 0) { | |
950 | n -= 4; | |
951 | wp += 4; | |
952 | ip += 4; | |
953 | r1 = (int32) CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1; | |
954 | g1 = (int32) CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1; | |
955 | b1 = (int32) CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1; | |
956 | a1 = (int32) CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1; | |
957 | } | |
958 | } else { | |
959 | ip += n - 1; /* point to last one */ | |
960 | wp += n - 1; /* point to last one */ | |
961 | n -= stride; | |
962 | while (n > 0) { | |
963 | REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]); | |
964 | wp[stride] -= wp[0]; | |
965 | wp[stride] &= mask; | |
966 | wp--; ip--) | |
967 | n -= stride; | |
968 | } | |
969 | REPEAT(stride, wp[0] = (uint16) CLAMP(ip[0]); wp--; ip--) | |
970 | } | |
971 | } | |
972 | } | |
973 | ||
974 | static void | |
975 | horizontalDifference16(unsigned short *ip, int n, int stride, | |
976 | unsigned short *wp, uint16 *From14) | |
977 | { | |
978 | register int r1, g1, b1, a1, r2, g2, b2, a2, mask; | |
979 | ||
980 | /* assumption is unsigned pixel values */ | |
981 | #undef CLAMP | |
982 | #define CLAMP(v) From14[(v) >> 2] | |
983 | ||
984 | mask = CODE_MASK; | |
985 | if (n >= stride) { | |
986 | if (stride == 3) { | |
987 | r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]); | |
988 | b2 = wp[2] = CLAMP(ip[2]); | |
989 | n -= 3; | |
990 | while (n > 0) { | |
991 | n -= 3; | |
992 | wp += 3; | |
993 | ip += 3; | |
994 | r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1; | |
995 | g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1; | |
996 | b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1; | |
997 | } | |
998 | } else if (stride == 4) { | |
999 | r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]); | |
1000 | b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]); | |
1001 | n -= 4; | |
1002 | while (n > 0) { | |
1003 | n -= 4; | |
1004 | wp += 4; | |
1005 | ip += 4; | |
1006 | r1 = CLAMP(ip[0]); wp[0] = (r1-r2) & mask; r2 = r1; | |
1007 | g1 = CLAMP(ip[1]); wp[1] = (g1-g2) & mask; g2 = g1; | |
1008 | b1 = CLAMP(ip[2]); wp[2] = (b1-b2) & mask; b2 = b1; | |
1009 | a1 = CLAMP(ip[3]); wp[3] = (a1-a2) & mask; a2 = a1; | |
1010 | } | |
1011 | } else { | |
1012 | ip += n - 1; /* point to last one */ | |
1013 | wp += n - 1; /* point to last one */ | |
1014 | n -= stride; | |
1015 | while (n > 0) { | |
1016 | REPEAT(stride, wp[0] = CLAMP(ip[0]); | |
1017 | wp[stride] -= wp[0]; | |
1018 | wp[stride] &= mask; | |
1019 | wp--; ip--) | |
1020 | n -= stride; | |
1021 | } | |
1022 | REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--) | |
1023 | } | |
1024 | } | |
1025 | } | |
1026 | ||
1027 | ||
1028 | static void | |
1029 | horizontalDifference8(unsigned char *ip, int n, int stride, | |
1030 | unsigned short *wp, uint16 *From8) | |
1031 | { | |
1032 | register int r1, g1, b1, a1, r2, g2, b2, a2, mask; | |
1033 | ||
1034 | #undef CLAMP | |
1035 | #define CLAMP(v) (From8[(v)]) | |
1036 | ||
1037 | mask = CODE_MASK; | |
1038 | if (n >= stride) { | |
1039 | if (stride == 3) { | |
1040 | r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]); | |
1041 | b2 = wp[2] = CLAMP(ip[2]); | |
1042 | n -= 3; | |
1043 | while (n > 0) { | |
1044 | n -= 3; | |
1045 | r1 = CLAMP(ip[3]); wp[3] = (r1-r2) & mask; r2 = r1; | |
1046 | g1 = CLAMP(ip[4]); wp[4] = (g1-g2) & mask; g2 = g1; | |
1047 | b1 = CLAMP(ip[5]); wp[5] = (b1-b2) & mask; b2 = b1; | |
1048 | wp += 3; | |
1049 | ip += 3; | |
1050 | } | |
1051 | } else if (stride == 4) { | |
1052 | r2 = wp[0] = CLAMP(ip[0]); g2 = wp[1] = CLAMP(ip[1]); | |
1053 | b2 = wp[2] = CLAMP(ip[2]); a2 = wp[3] = CLAMP(ip[3]); | |
1054 | n -= 4; | |
1055 | while (n > 0) { | |
1056 | n -= 4; | |
1057 | r1 = CLAMP(ip[4]); wp[4] = (r1-r2) & mask; r2 = r1; | |
1058 | g1 = CLAMP(ip[5]); wp[5] = (g1-g2) & mask; g2 = g1; | |
1059 | b1 = CLAMP(ip[6]); wp[6] = (b1-b2) & mask; b2 = b1; | |
1060 | a1 = CLAMP(ip[7]); wp[7] = (a1-a2) & mask; a2 = a1; | |
1061 | wp += 4; | |
1062 | ip += 4; | |
1063 | } | |
1064 | } else { | |
1065 | wp += n + stride - 1; /* point to last one */ | |
1066 | ip += n + stride - 1; /* point to last one */ | |
1067 | n -= stride; | |
1068 | while (n > 0) { | |
1069 | REPEAT(stride, wp[0] = CLAMP(ip[0]); | |
1070 | wp[stride] -= wp[0]; | |
1071 | wp[stride] &= mask; | |
1072 | wp--; ip--) | |
1073 | n -= stride; | |
1074 | } | |
1075 | REPEAT(stride, wp[0] = CLAMP(ip[0]); wp--; ip--) | |
1076 | } | |
1077 | } | |
1078 | } | |
1079 | ||
1080 | /* | |
1081 | * Encode a chunk of pixels. | |
1082 | */ | |
1083 | static int | |
1084 | PixarLogEncode(TIFF* tif, uint8* bp, tmsize_t cc, uint16 s) | |
1085 | { | |
1086 | static const char module[] = "PixarLogEncode"; | |
1087 | TIFFDirectory *td = &tif->tif_dir; | |
1088 | PixarLogState *sp = EncoderState(tif); | |
1089 | tmsize_t i; | |
1090 | tmsize_t n; | |
1091 | int llen; | |
1092 | unsigned short * up; | |
1093 | ||
1094 | (void) s; | |
1095 | ||
1096 | switch (sp->user_datafmt) { | |
1097 | case PIXARLOGDATAFMT_FLOAT: | |
1098 | n = cc / sizeof(float); /* XXX float == 32 bits */ | |
1099 | break; | |
1100 | case PIXARLOGDATAFMT_16BIT: | |
1101 | case PIXARLOGDATAFMT_12BITPICIO: | |
1102 | case PIXARLOGDATAFMT_11BITLOG: | |
1103 | n = cc / sizeof(uint16); /* XXX uint16 == 16 bits */ | |
1104 | break; | |
1105 | case PIXARLOGDATAFMT_8BIT: | |
1106 | case PIXARLOGDATAFMT_8BITABGR: | |
1107 | n = cc; | |
1108 | break; | |
1109 | default: | |
1110 | TIFFErrorExt(tif->tif_clientdata, module, | |
1111 | "%d bit input not supported in PixarLog", | |
1112 | td->td_bitspersample); | |
1113 | return 0; | |
1114 | } | |
1115 | ||
1116 | llen = sp->stride * td->td_imagewidth; | |
1117 | ||
1118 | for (i = 0, up = sp->tbuf; i < n; i += llen, up += llen) { | |
1119 | switch (sp->user_datafmt) { | |
1120 | case PIXARLOGDATAFMT_FLOAT: | |
1121 | horizontalDifferenceF((float *)bp, llen, | |
1122 | sp->stride, up, sp->FromLT2); | |
1123 | bp += llen * sizeof(float); | |
1124 | break; | |
1125 | case PIXARLOGDATAFMT_16BIT: | |
1126 | horizontalDifference16((uint16 *)bp, llen, | |
1127 | sp->stride, up, sp->From14); | |
1128 | bp += llen * sizeof(uint16); | |
1129 | break; | |
1130 | case PIXARLOGDATAFMT_8BIT: | |
1131 | horizontalDifference8((unsigned char *)bp, llen, | |
1132 | sp->stride, up, sp->From8); | |
1133 | bp += llen * sizeof(unsigned char); | |
1134 | break; | |
1135 | default: | |
1136 | TIFFErrorExt(tif->tif_clientdata, module, | |
1137 | "%d bit input not supported in PixarLog", | |
1138 | td->td_bitspersample); | |
1139 | return 0; | |
1140 | } | |
1141 | } | |
1142 | ||
1143 | sp->stream.next_in = (unsigned char *) sp->tbuf; | |
1144 | assert(sizeof(sp->stream.avail_in)==4); /* if this assert gets raised, | |
1145 | we need to simplify this code to reflect a ZLib that is likely updated | |
1146 | to deal with 8byte memory sizes, though this code will respond | |
1147 | apropriately even before we simplify it */ | |
1148 | sp->stream.avail_in = (uInt) (n * sizeof(uint16)); | |
1149 | if ((sp->stream.avail_in / sizeof(uint16)) != (uInt) n) | |
1150 | { | |
1151 | TIFFErrorExt(tif->tif_clientdata, module, | |
1152 | "ZLib cannot deal with buffers this size"); | |
1153 | return (0); | |
1154 | } | |
1155 | ||
1156 | do { | |
1157 | if (deflate(&sp->stream, Z_NO_FLUSH) != Z_OK) { | |
1158 | TIFFErrorExt(tif->tif_clientdata, module, "Encoder error: %s", | |
1159 | sp->stream.msg); | |
1160 | return (0); | |
1161 | } | |
1162 | if (sp->stream.avail_out == 0) { | |
1163 | tif->tif_rawcc = tif->tif_rawdatasize; | |
1164 | TIFFFlushData1(tif); | |
1165 | sp->stream.next_out = tif->tif_rawdata; | |
1166 | sp->stream.avail_out = (uInt) tif->tif_rawdatasize; /* this is a safe typecast, as check is made already in PixarLogPreEncode */ | |
1167 | } | |
1168 | } while (sp->stream.avail_in > 0); | |
1169 | return (1); | |
1170 | } | |
1171 | ||
1172 | /* | |
1173 | * Finish off an encoded strip by flushing the last | |
1174 | * string and tacking on an End Of Information code. | |
1175 | */ | |
1176 | ||
1177 | static int | |
1178 | PixarLogPostEncode(TIFF* tif) | |
1179 | { | |
1180 | static const char module[] = "PixarLogPostEncode"; | |
1181 | PixarLogState *sp = EncoderState(tif); | |
1182 | int state; | |
1183 | ||
1184 | sp->stream.avail_in = 0; | |
1185 | ||
1186 | do { | |
1187 | state = deflate(&sp->stream, Z_FINISH); | |
1188 | switch (state) { | |
1189 | case Z_STREAM_END: | |
1190 | case Z_OK: | |
1191 | if ((tmsize_t)sp->stream.avail_out != tif->tif_rawdatasize) { | |
1192 | tif->tif_rawcc = | |
1193 | tif->tif_rawdatasize - sp->stream.avail_out; | |
1194 | TIFFFlushData1(tif); | |
1195 | sp->stream.next_out = tif->tif_rawdata; | |
1196 | sp->stream.avail_out = (uInt) tif->tif_rawdatasize; /* this is a safe typecast, as check is made already in PixarLogPreEncode */ | |
1197 | } | |
1198 | break; | |
1199 | default: | |
1200 | TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s", | |
1201 | sp->stream.msg); | |
1202 | return (0); | |
1203 | } | |
1204 | } while (state != Z_STREAM_END); | |
1205 | return (1); | |
1206 | } | |
1207 | ||
1208 | static void | |
1209 | PixarLogClose(TIFF* tif) | |
1210 | { | |
1211 | TIFFDirectory *td = &tif->tif_dir; | |
1212 | ||
1213 | /* In a really sneaky (and really incorrect, and untruthfull, and | |
1214 | * troublesome, and error-prone) maneuver that completely goes against | |
1215 | * the spirit of TIFF, and breaks TIFF, on close, we covertly | |
1216 | * modify both bitspersample and sampleformat in the directory to | |
1217 | * indicate 8-bit linear. This way, the decode "just works" even for | |
1218 | * readers that don't know about PixarLog, or how to set | |
1219 | * the PIXARLOGDATFMT pseudo-tag. | |
1220 | */ | |
1221 | td->td_bitspersample = 8; | |
1222 | td->td_sampleformat = SAMPLEFORMAT_UINT; | |
1223 | } | |
1224 | ||
1225 | static void | |
1226 | PixarLogCleanup(TIFF* tif) | |
1227 | { | |
1228 | PixarLogState* sp = (PixarLogState*) tif->tif_data; | |
1229 | ||
1230 | assert(sp != 0); | |
1231 | ||
1232 | (void)TIFFPredictorCleanup(tif); | |
1233 | ||
1234 | tif->tif_tagmethods.vgetfield = sp->vgetparent; | |
1235 | tif->tif_tagmethods.vsetfield = sp->vsetparent; | |
1236 | ||
1237 | if (sp->FromLT2) _TIFFfree(sp->FromLT2); | |
1238 | if (sp->From14) _TIFFfree(sp->From14); | |
1239 | if (sp->From8) _TIFFfree(sp->From8); | |
1240 | if (sp->ToLinearF) _TIFFfree(sp->ToLinearF); | |
1241 | if (sp->ToLinear16) _TIFFfree(sp->ToLinear16); | |
1242 | if (sp->ToLinear8) _TIFFfree(sp->ToLinear8); | |
1243 | if (sp->state&PLSTATE_INIT) { | |
1244 | if (tif->tif_mode == O_RDONLY) | |
1245 | inflateEnd(&sp->stream); | |
1246 | else | |
1247 | deflateEnd(&sp->stream); | |
1248 | } | |
1249 | if (sp->tbuf) | |
1250 | _TIFFfree(sp->tbuf); | |
1251 | _TIFFfree(sp); | |
1252 | tif->tif_data = NULL; | |
1253 | ||
1254 | _TIFFSetDefaultCompressionState(tif); | |
1255 | } | |
1256 | ||
1257 | static int | |
1258 | PixarLogVSetField(TIFF* tif, uint32 tag, va_list ap) | |
1259 | { | |
1260 | static const char module[] = "PixarLogVSetField"; | |
1261 | PixarLogState *sp = (PixarLogState *)tif->tif_data; | |
1262 | int result; | |
1263 | ||
1264 | switch (tag) { | |
1265 | case TIFFTAG_PIXARLOGQUALITY: | |
1266 | sp->quality = (int) va_arg(ap, int); | |
1267 | if (tif->tif_mode != O_RDONLY && (sp->state&PLSTATE_INIT)) { | |
1268 | if (deflateParams(&sp->stream, | |
1269 | sp->quality, Z_DEFAULT_STRATEGY) != Z_OK) { | |
1270 | TIFFErrorExt(tif->tif_clientdata, module, "ZLib error: %s", | |
1271 | sp->stream.msg); | |
1272 | return (0); | |
1273 | } | |
1274 | } | |
1275 | return (1); | |
1276 | case TIFFTAG_PIXARLOGDATAFMT: | |
1277 | sp->user_datafmt = (int) va_arg(ap, int); | |
1278 | /* Tweak the TIFF header so that the rest of libtiff knows what | |
1279 | * size of data will be passed between app and library, and | |
1280 | * assume that the app knows what it is doing and is not | |
1281 | * confused by these header manipulations... | |
1282 | */ | |
1283 | switch (sp->user_datafmt) { | |
1284 | case PIXARLOGDATAFMT_8BIT: | |
1285 | case PIXARLOGDATAFMT_8BITABGR: | |
1286 | TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 8); | |
1287 | TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT); | |
1288 | break; | |
1289 | case PIXARLOGDATAFMT_11BITLOG: | |
1290 | TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16); | |
1291 | TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT); | |
1292 | break; | |
1293 | case PIXARLOGDATAFMT_12BITPICIO: | |
1294 | TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16); | |
1295 | TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_INT); | |
1296 | break; | |
1297 | case PIXARLOGDATAFMT_16BIT: | |
1298 | TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 16); | |
1299 | TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_UINT); | |
1300 | break; | |
1301 | case PIXARLOGDATAFMT_FLOAT: | |
1302 | TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, 32); | |
1303 | TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, SAMPLEFORMAT_IEEEFP); | |
1304 | break; | |
1305 | } | |
1306 | /* | |
1307 | * Must recalculate sizes should bits/sample change. | |
1308 | */ | |
1309 | tif->tif_tilesize = isTiled(tif) ? TIFFTileSize(tif) : (tmsize_t)(-1); | |
1310 | tif->tif_scanlinesize = TIFFScanlineSize(tif); | |
1311 | result = 1; /* NB: pseudo tag */ | |
1312 | break; | |
1313 | default: | |
1314 | result = (*sp->vsetparent)(tif, tag, ap); | |
1315 | } | |
1316 | return (result); | |
1317 | } | |
1318 | ||
1319 | static int | |
1320 | PixarLogVGetField(TIFF* tif, uint32 tag, va_list ap) | |
1321 | { | |
1322 | PixarLogState *sp = (PixarLogState *)tif->tif_data; | |
1323 | ||
1324 | switch (tag) { | |
1325 | case TIFFTAG_PIXARLOGQUALITY: | |
1326 | *va_arg(ap, int*) = sp->quality; | |
1327 | break; | |
1328 | case TIFFTAG_PIXARLOGDATAFMT: | |
1329 | *va_arg(ap, int*) = sp->user_datafmt; | |
1330 | break; | |
1331 | default: | |
1332 | return (*sp->vgetparent)(tif, tag, ap); | |
1333 | } | |
1334 | return (1); | |
1335 | } | |
1336 | ||
1337 | static const TIFFField pixarlogFields[] = { | |
1338 | {TIFFTAG_PIXARLOGDATAFMT, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL}, | |
1339 | {TIFFTAG_PIXARLOGQUALITY, 0, 0, TIFF_ANY, 0, TIFF_SETGET_INT, TIFF_SETGET_UNDEFINED, FIELD_PSEUDO, FALSE, FALSE, "", NULL} | |
1340 | }; | |
1341 | ||
1342 | int | |
1343 | TIFFInitPixarLog(TIFF* tif, int scheme) | |
1344 | { | |
1345 | static const char module[] = "TIFFInitPixarLog"; | |
1346 | ||
1347 | PixarLogState* sp; | |
1348 | ||
1349 | assert(scheme == COMPRESSION_PIXARLOG); | |
1350 | ||
1351 | /* | |
1352 | * Merge codec-specific tag information. | |
1353 | */ | |
1354 | if (!_TIFFMergeFields(tif, pixarlogFields, | |
1355 | TIFFArrayCount(pixarlogFields))) { | |
1356 | TIFFErrorExt(tif->tif_clientdata, module, | |
1357 | "Merging PixarLog codec-specific tags failed"); | |
1358 | return 0; | |
1359 | } | |
1360 | ||
1361 | /* | |
1362 | * Allocate state block so tag methods have storage to record values. | |
1363 | */ | |
1364 | tif->tif_data = (uint8*) _TIFFmalloc(sizeof (PixarLogState)); | |
1365 | if (tif->tif_data == NULL) | |
1366 | goto bad; | |
1367 | sp = (PixarLogState*) tif->tif_data; | |
1368 | _TIFFmemset(sp, 0, sizeof (*sp)); | |
1369 | sp->stream.data_type = Z_BINARY; | |
1370 | sp->user_datafmt = PIXARLOGDATAFMT_UNKNOWN; | |
1371 | ||
1372 | /* | |
1373 | * Install codec methods. | |
1374 | */ | |
1375 | tif->tif_fixuptags = PixarLogFixupTags; | |
1376 | tif->tif_setupdecode = PixarLogSetupDecode; | |
1377 | tif->tif_predecode = PixarLogPreDecode; | |
1378 | tif->tif_decoderow = PixarLogDecode; | |
1379 | tif->tif_decodestrip = PixarLogDecode; | |
1380 | tif->tif_decodetile = PixarLogDecode; | |
1381 | tif->tif_setupencode = PixarLogSetupEncode; | |
1382 | tif->tif_preencode = PixarLogPreEncode; | |
1383 | tif->tif_postencode = PixarLogPostEncode; | |
1384 | tif->tif_encoderow = PixarLogEncode; | |
1385 | tif->tif_encodestrip = PixarLogEncode; | |
1386 | tif->tif_encodetile = PixarLogEncode; | |
1387 | tif->tif_close = PixarLogClose; | |
1388 | tif->tif_cleanup = PixarLogCleanup; | |
1389 | ||
1390 | /* Override SetField so we can handle our private pseudo-tag */ | |
1391 | sp->vgetparent = tif->tif_tagmethods.vgetfield; | |
1392 | tif->tif_tagmethods.vgetfield = PixarLogVGetField; /* hook for codec tags */ | |
1393 | sp->vsetparent = tif->tif_tagmethods.vsetfield; | |
1394 | tif->tif_tagmethods.vsetfield = PixarLogVSetField; /* hook for codec tags */ | |
1395 | ||
1396 | /* Default values for codec-specific fields */ | |
1397 | sp->quality = Z_DEFAULT_COMPRESSION; /* default comp. level */ | |
1398 | sp->state = 0; | |
1399 | ||
1400 | /* we don't wish to use the predictor, | |
1401 | * the default is none, which predictor value 1 | |
1402 | */ | |
1403 | (void) TIFFPredictorInit(tif); | |
1404 | ||
1405 | /* | |
1406 | * build the companding tables | |
1407 | */ | |
1408 | PixarLogMakeTables(sp); | |
1409 | ||
1410 | return (1); | |
1411 | bad: | |
1412 | TIFFErrorExt(tif->tif_clientdata, module, | |
1413 | "No space for PixarLog state block"); | |
1414 | return (0); | |
1415 | } | |
1416 | #endif /* PIXARLOG_SUPPORT */ | |
1417 | ||
1418 | /* vim: set ts=8 sts=8 sw=8 noet: */ | |
1419 | /* | |
1420 | * Local Variables: | |
1421 | * mode: c | |
1422 | * c-basic-offset: 8 | |
1423 | * fill-column: 78 | |
1424 | * End: | |
1425 | */ |