]> git.saurik.com Git - wxWidgets.git/blame_incremental - src/common/quantize.cpp
added back 2 extra pixels for the best size under XP
[wxWidgets.git] / src / common / quantize.cpp
... / ...
CommitLineData
1/////////////////////////////////////////////////////////////////////////////
2// Name: src/common/quantize.cpp
3// Purpose: wxQuantize implementation
4// Author: Julian Smart
5// Modified by:
6// Created: 22/6/2000
7// RCS-ID: $Id$
8// Copyright: (c) Thomas G. Lane, Vaclav Slavik, Julian Smart
9// Licence: wxWindows licence + JPEG library licence
10/////////////////////////////////////////////////////////////////////////////
11
12/*
13 * jquant2.c
14 *
15 * Copyright (C) 1991-1996, Thomas G. Lane.
16 * This file is part of the Independent JPEG Group's software.
17 * For conditions of distribution and use, see the accompanying README file.
18 *
19 * This file contains 2-pass color quantization (color mapping) routines.
20 * These routines provide selection of a custom color map for an image,
21 * followed by mapping of the image to that color map, with optional
22 * Floyd-Steinberg dithering.
23 * It is also possible to use just the second pass to map to an arbitrary
24 * externally-given color map.
25 *
26 * Note: ordered dithering is not supported, since there isn't any fast
27 * way to compute intercolor distances; it's unclear that ordered dither's
28 * fundamental assumptions even hold with an irregularly spaced color map.
29 */
30
31/* modified by Vaclav Slavik for use as jpeglib-independent module */
32
33// For compilers that support precompilation, includes "wx/wx.h".
34#include "wx/wxprec.h"
35
36#ifdef __BORLANDC__
37#pragma hdrstop
38#endif
39
40#if wxUSE_IMAGE
41
42#include "wx/quantize.h"
43
44#ifndef WX_PRECOMP
45 #include "wx/palette.h"
46#endif
47
48#include "wx/image.h"
49
50#ifdef __WXMSW__
51#include "wx/msw/private.h"
52#endif
53
54#include <stdlib.h>
55#include <string.h>
56
57#if defined(__OS2__)
58#define RGB_RED_OS2 0
59#define RGB_GREEN_OS2 1
60#define RGB_BLUE_OS2 2
61#else
62#define RGB_RED 0
63#define RGB_GREEN 1
64#define RGB_BLUE 2
65#endif
66#define RGB_PIXELSIZE 3
67
68#define MAXJSAMPLE 255
69#define CENTERJSAMPLE 128
70#define BITS_IN_JSAMPLE 8
71#define GETJSAMPLE(value) ((int) (value))
72
73#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
74
75typedef unsigned short UINT16;
76typedef signed short INT16;
77#if !(defined(__WATCOMC__) && (defined(__WXMSW__) || defined(__WXMOTIF__)))
78typedef signed int INT32;
79#endif
80
81typedef unsigned char JSAMPLE;
82typedef JSAMPLE *JSAMPROW;
83typedef JSAMPROW *JSAMPARRAY;
84typedef unsigned int JDIMENSION;
85
86typedef struct {
87 void *cquantize;
88 JDIMENSION output_width;
89 JSAMPARRAY colormap;
90 int actual_number_of_colors;
91 int desired_number_of_colors;
92 JSAMPLE *sample_range_limit, *srl_orig;
93} j_decompress;
94
95#if defined(__WINDOWS__) && !defined(__WXMICROWIN__)
96 #define JMETHOD(type,methodname,arglist) type (__cdecl methodname) arglist
97#else
98 #define JMETHOD(type,methodname,arglist) type (methodname) arglist
99#endif
100
101typedef j_decompress *j_decompress_ptr;
102struct jpeg_color_quantizer {
103 JMETHOD(void, start_pass, (j_decompress_ptr cinfo, bool is_pre_scan));
104 JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
105 JSAMPARRAY input_buf, JSAMPARRAY output_buf,
106 int num_rows));
107 JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
108 JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
109};
110
111
112
113
114/*
115 * This module implements the well-known Heckbert paradigm for color
116 * quantization. Most of the ideas used here can be traced back to
117 * Heckbert's seminal paper
118 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
119 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
120 *
121 * In the first pass over the image, we accumulate a histogram showing the
122 * usage count of each possible color. To keep the histogram to a reasonable
123 * size, we reduce the precision of the input; typical practice is to retain
124 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
125 * in the same histogram cell.
126 *
127 * Next, the color-selection step begins with a box representing the whole
128 * color space, and repeatedly splits the "largest" remaining box until we
129 * have as many boxes as desired colors. Then the mean color in each
130 * remaining box becomes one of the possible output colors.
131 *
132 * The second pass over the image maps each input pixel to the closest output
133 * color (optionally after applying a Floyd-Steinberg dithering correction).
134 * This mapping is logically trivial, but making it go fast enough requires
135 * considerable care.
136 *
137 * Heckbert-style quantizers vary a good deal in their policies for choosing
138 * the "largest" box and deciding where to cut it. The particular policies
139 * used here have proved out well in experimental comparisons, but better ones
140 * may yet be found.
141 *
142 * In earlier versions of the IJG code, this module quantized in YCbCr color
143 * space, processing the raw upsampled data without a color conversion step.
144 * This allowed the color conversion math to be done only once per colormap
145 * entry, not once per pixel. However, that optimization precluded other
146 * useful optimizations (such as merging color conversion with upsampling)
147 * and it also interfered with desired capabilities such as quantizing to an
148 * externally-supplied colormap. We have therefore abandoned that approach.
149 * The present code works in the post-conversion color space, typically RGB.
150 *
151 * To improve the visual quality of the results, we actually work in scaled
152 * RGB space, giving G distances more weight than R, and R in turn more than
153 * B. To do everything in integer math, we must use integer scale factors.
154 * The 2/3/1 scale factors used here correspond loosely to the relative
155 * weights of the colors in the NTSC grayscale equation.
156 * If you want to use this code to quantize a non-RGB color space, you'll
157 * probably need to change these scale factors.
158 */
159
160#define R_SCALE 2 /* scale R distances by this much */
161#define G_SCALE 3 /* scale G distances by this much */
162#define B_SCALE 1 /* and B by this much */
163
164/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
165 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
166 * and B,G,R orders. If you define some other weird order in jmorecfg.h,
167 * you'll get compile errors until you extend this logic. In that case
168 * you'll probably want to tweak the histogram sizes too.
169 */
170
171#if defined(__OS2__)
172
173#if RGB_RED_OS2 == 0
174#define C0_SCALE R_SCALE
175#endif
176#if RGB_BLUE_OS2 == 0
177#define C0_SCALE B_SCALE
178#endif
179#if RGB_GREEN_OS2 == 1
180#define C1_SCALE G_SCALE
181#endif
182#if RGB_RED_OS2 == 2
183#define C2_SCALE R_SCALE
184#endif
185#if RGB_BLUE_OS2 == 2
186#define C2_SCALE B_SCALE
187#endif
188
189#else
190
191#if RGB_RED == 0
192#define C0_SCALE R_SCALE
193#endif
194#if RGB_BLUE == 0
195#define C0_SCALE B_SCALE
196#endif
197#if RGB_GREEN == 1
198#define C1_SCALE G_SCALE
199#endif
200#if RGB_RED == 2
201#define C2_SCALE R_SCALE
202#endif
203#if RGB_BLUE == 2
204#define C2_SCALE B_SCALE
205#endif
206
207#endif
208
209/*
210 * First we have the histogram data structure and routines for creating it.
211 *
212 * The number of bits of precision can be adjusted by changing these symbols.
213 * We recommend keeping 6 bits for G and 5 each for R and B.
214 * If you have plenty of memory and cycles, 6 bits all around gives marginally
215 * better results; if you are short of memory, 5 bits all around will save
216 * some space but degrade the results.
217 * To maintain a fully accurate histogram, we'd need to allocate a "long"
218 * (preferably unsigned long) for each cell. In practice this is overkill;
219 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
220 * and clamping those that do overflow to the maximum value will give close-
221 * enough results. This reduces the recommended histogram size from 256Kb
222 * to 128Kb, which is a useful savings on PC-class machines.
223 * (In the second pass the histogram space is re-used for pixel mapping data;
224 * in that capacity, each cell must be able to store zero to the number of
225 * desired colors. 16 bits/cell is plenty for that too.)
226 * Since the JPEG code is intended to run in small memory model on 80x86
227 * machines, we can't just allocate the histogram in one chunk. Instead
228 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
229 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
230 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
231 * on 80x86 machines, the pointer row is in near memory but the actual
232 * arrays are in far memory (same arrangement as we use for image arrays).
233 */
234
235#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
236
237/* These will do the right thing for either R,G,B or B,G,R color order,
238 * but you may not like the results for other color orders.
239 */
240#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
241#define HIST_C1_BITS 6 /* bits of precision in G histogram */
242#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
243
244/* Number of elements along histogram axes. */
245#define HIST_C0_ELEMS (1<<HIST_C0_BITS)
246#define HIST_C1_ELEMS (1<<HIST_C1_BITS)
247#define HIST_C2_ELEMS (1<<HIST_C2_BITS)
248
249/* These are the amounts to shift an input value to get a histogram index. */
250#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
251#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
252#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
253
254
255typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
256
257typedef histcell * histptr; /* for pointers to histogram cells */
258
259typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
260typedef hist1d * hist2d; /* type for the 2nd-level pointers */
261typedef hist2d * hist3d; /* type for top-level pointer */
262
263
264/* Declarations for Floyd-Steinberg dithering.
265 *
266 * Errors are accumulated into the array fserrors[], at a resolution of
267 * 1/16th of a pixel count. The error at a given pixel is propagated
268 * to its not-yet-processed neighbors using the standard F-S fractions,
269 * ... (here) 7/16
270 * 3/16 5/16 1/16
271 * We work left-to-right on even rows, right-to-left on odd rows.
272 *
273 * We can get away with a single array (holding one row's worth of errors)
274 * by using it to store the current row's errors at pixel columns not yet
275 * processed, but the next row's errors at columns already processed. We
276 * need only a few extra variables to hold the errors immediately around the
277 * current column. (If we are lucky, those variables are in registers, but
278 * even if not, they're probably cheaper to access than array elements are.)
279 *
280 * The fserrors[] array has (#columns + 2) entries; the extra entry at
281 * each end saves us from special-casing the first and last pixels.
282 * Each entry is three values long, one value for each color component.
283 *
284 * Note: on a wide image, we might not have enough room in a PC's near data
285 * segment to hold the error array; so it is allocated with alloc_large.
286 */
287
288#if BITS_IN_JSAMPLE == 8
289typedef INT16 FSERROR; /* 16 bits should be enough */
290typedef int LOCFSERROR; /* use 'int' for calculation temps */
291#else
292typedef INT32 FSERROR; /* may need more than 16 bits */
293typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
294#endif
295
296typedef FSERROR *FSERRPTR; /* pointer to error array (in storage!) */
297
298
299/* Private subobject */
300
301typedef struct {
302
303 struct {
304 void (*finish_pass)(j_decompress_ptr);
305 void (*color_quantize)(j_decompress_ptr, JSAMPARRAY, JSAMPARRAY, int);
306 void (*start_pass)(j_decompress_ptr, bool);
307 void (*new_color_map)(j_decompress_ptr);
308 } pub;
309
310 /* Space for the eventually created colormap is stashed here */
311 JSAMPARRAY sv_colormap; /* colormap allocated at init time */
312 int desired; /* desired # of colors = size of colormap */
313
314 /* Variables for accumulating image statistics */
315 hist3d histogram; /* pointer to the histogram */
316
317 bool needs_zeroed; /* true if next pass must zero histogram */
318
319 /* Variables for Floyd-Steinberg dithering */
320 FSERRPTR fserrors; /* accumulated errors */
321 bool on_odd_row; /* flag to remember which row we are on */
322 int * error_limiter; /* table for clamping the applied error */
323} my_cquantizer;
324
325typedef my_cquantizer * my_cquantize_ptr;
326
327
328/*
329 * Prescan some rows of pixels.
330 * In this module the prescan simply updates the histogram, which has been
331 * initialized to zeroes by start_pass.
332 * An output_buf parameter is required by the method signature, but no data
333 * is actually output (in fact the buffer controller is probably passing a
334 * NULL pointer).
335 */
336
337void
338prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
339 JSAMPARRAY WXUNUSED(output_buf), int num_rows)
340{
341 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
342 register JSAMPROW ptr;
343 register histptr histp;
344 register hist3d histogram = cquantize->histogram;
345 int row;
346 JDIMENSION col;
347 JDIMENSION width = cinfo->output_width;
348
349 for (row = 0; row < num_rows; row++) {
350 ptr = input_buf[row];
351 for (col = width; col > 0; col--) {
352
353 {
354
355 /* get pixel value and index into the histogram */
356 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
357 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
358 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
359 /* increment, check for overflow and undo increment if so. */
360 if (++(*histp) <= 0)
361 (*histp)--;
362 }
363 ptr += 3;
364 }
365 }
366}
367
368
369/*
370 * Next we have the really interesting routines: selection of a colormap
371 * given the completed histogram.
372 * These routines work with a list of "boxes", each representing a rectangular
373 * subset of the input color space (to histogram precision).
374 */
375
376typedef struct {
377 /* The bounds of the box (inclusive); expressed as histogram indexes */
378 int c0min, c0max;
379 int c1min, c1max;
380 int c2min, c2max;
381 /* The volume (actually 2-norm) of the box */
382 INT32 volume;
383 /* The number of nonzero histogram cells within this box */
384 long colorcount;
385} box;
386
387typedef box * boxptr;
388
389
390boxptr
391find_biggest_color_pop (boxptr boxlist, int numboxes)
392/* Find the splittable box with the largest color population */
393/* Returns NULL if no splittable boxes remain */
394{
395 register boxptr boxp;
396 register int i;
397 register long maxc = 0;
398 boxptr which = NULL;
399
400 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
401 if (boxp->colorcount > maxc && boxp->volume > 0) {
402 which = boxp;
403 maxc = boxp->colorcount;
404 }
405 }
406 return which;
407}
408
409
410boxptr
411find_biggest_volume (boxptr boxlist, int numboxes)
412/* Find the splittable box with the largest (scaled) volume */
413/* Returns NULL if no splittable boxes remain */
414{
415 register boxptr boxp;
416 register int i;
417 register INT32 maxv = 0;
418 boxptr which = NULL;
419
420 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
421 if (boxp->volume > maxv) {
422 which = boxp;
423 maxv = boxp->volume;
424 }
425 }
426 return which;
427}
428
429
430void
431update_box (j_decompress_ptr cinfo, boxptr boxp)
432/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
433/* and recompute its volume and population */
434{
435 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
436 hist3d histogram = cquantize->histogram;
437 histptr histp;
438 int c0,c1,c2;
439 int c0min,c0max,c1min,c1max,c2min,c2max;
440 INT32 dist0,dist1,dist2;
441 long ccount;
442
443 c0min = boxp->c0min; c0max = boxp->c0max;
444 c1min = boxp->c1min; c1max = boxp->c1max;
445 c2min = boxp->c2min; c2max = boxp->c2max;
446
447 if (c0max > c0min)
448 for (c0 = c0min; c0 <= c0max; c0++)
449 for (c1 = c1min; c1 <= c1max; c1++) {
450 histp = & histogram[c0][c1][c2min];
451 for (c2 = c2min; c2 <= c2max; c2++)
452 if (*histp++ != 0) {
453 boxp->c0min = c0min = c0;
454 goto have_c0min;
455 }
456 }
457 have_c0min:
458 if (c0max > c0min)
459 for (c0 = c0max; c0 >= c0min; c0--)
460 for (c1 = c1min; c1 <= c1max; c1++) {
461 histp = & histogram[c0][c1][c2min];
462 for (c2 = c2min; c2 <= c2max; c2++)
463 if (*histp++ != 0) {
464 boxp->c0max = c0max = c0;
465 goto have_c0max;
466 }
467 }
468 have_c0max:
469 if (c1max > c1min)
470 for (c1 = c1min; c1 <= c1max; c1++)
471 for (c0 = c0min; c0 <= c0max; c0++) {
472 histp = & histogram[c0][c1][c2min];
473 for (c2 = c2min; c2 <= c2max; c2++)
474 if (*histp++ != 0) {
475 boxp->c1min = c1min = c1;
476 goto have_c1min;
477 }
478 }
479 have_c1min:
480 if (c1max > c1min)
481 for (c1 = c1max; c1 >= c1min; c1--)
482 for (c0 = c0min; c0 <= c0max; c0++) {
483 histp = & histogram[c0][c1][c2min];
484 for (c2 = c2min; c2 <= c2max; c2++)
485 if (*histp++ != 0) {
486 boxp->c1max = c1max = c1;
487 goto have_c1max;
488 }
489 }
490 have_c1max:
491 if (c2max > c2min)
492 for (c2 = c2min; c2 <= c2max; c2++)
493 for (c0 = c0min; c0 <= c0max; c0++) {
494 histp = & histogram[c0][c1min][c2];
495 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
496 if (*histp != 0) {
497 boxp->c2min = c2min = c2;
498 goto have_c2min;
499 }
500 }
501 have_c2min:
502 if (c2max > c2min)
503 for (c2 = c2max; c2 >= c2min; c2--)
504 for (c0 = c0min; c0 <= c0max; c0++) {
505 histp = & histogram[c0][c1min][c2];
506 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
507 if (*histp != 0) {
508 boxp->c2max = c2max = c2;
509 goto have_c2max;
510 }
511 }
512 have_c2max:
513
514 /* Update box volume.
515 * We use 2-norm rather than real volume here; this biases the method
516 * against making long narrow boxes, and it has the side benefit that
517 * a box is splittable iff norm > 0.
518 * Since the differences are expressed in histogram-cell units,
519 * we have to shift back to JSAMPLE units to get consistent distances;
520 * after which, we scale according to the selected distance scale factors.
521 */
522 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
523 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
524 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
525 boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
526
527 /* Now scan remaining volume of box and compute population */
528 ccount = 0;
529 for (c0 = c0min; c0 <= c0max; c0++)
530 for (c1 = c1min; c1 <= c1max; c1++) {
531 histp = & histogram[c0][c1][c2min];
532 for (c2 = c2min; c2 <= c2max; c2++, histp++)
533 if (*histp != 0) {
534 ccount++;
535 }
536 }
537 boxp->colorcount = ccount;
538}
539
540
541int
542median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
543 int desired_colors)
544/* Repeatedly select and split the largest box until we have enough boxes */
545{
546 int n,lb;
547 int c0,c1,c2,cmax;
548 register boxptr b1,b2;
549
550 while (numboxes < desired_colors) {
551 /* Select box to split.
552 * Current algorithm: by population for first half, then by volume.
553 */
554 if ((numboxes*2) <= desired_colors) {
555 b1 = find_biggest_color_pop(boxlist, numboxes);
556 } else {
557 b1 = find_biggest_volume(boxlist, numboxes);
558 }
559 if (b1 == NULL) /* no splittable boxes left! */
560 break;
561 b2 = &boxlist[numboxes]; /* where new box will go */
562 /* Copy the color bounds to the new box. */
563 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
564 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
565 /* Choose which axis to split the box on.
566 * Current algorithm: longest scaled axis.
567 * See notes in update_box about scaling distances.
568 */
569 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
570 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
571 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
572 /* We want to break any ties in favor of green, then red, blue last.
573 * This code does the right thing for R,G,B or B,G,R color orders only.
574 */
575#if defined(__VISAGECPP__)
576
577#if RGB_RED_OS2 == 0
578 cmax = c1; n = 1;
579 if (c0 > cmax) { cmax = c0; n = 0; }
580 if (c2 > cmax) { n = 2; }
581#else
582 cmax = c1; n = 1;
583 if (c2 > cmax) { cmax = c2; n = 2; }
584 if (c0 > cmax) { n = 0; }
585#endif
586
587#else
588
589#if RGB_RED == 0
590 cmax = c1; n = 1;
591 if (c0 > cmax) { cmax = c0; n = 0; }
592 if (c2 > cmax) { n = 2; }
593#else
594 cmax = c1; n = 1;
595 if (c2 > cmax) { cmax = c2; n = 2; }
596 if (c0 > cmax) { n = 0; }
597#endif
598
599#endif
600 /* Choose split point along selected axis, and update box bounds.
601 * Current algorithm: split at halfway point.
602 * (Since the box has been shrunk to minimum volume,
603 * any split will produce two nonempty subboxes.)
604 * Note that lb value is max for lower box, so must be < old max.
605 */
606 switch (n) {
607 case 0:
608 lb = (b1->c0max + b1->c0min) / 2;
609 b1->c0max = lb;
610 b2->c0min = lb+1;
611 break;
612 case 1:
613 lb = (b1->c1max + b1->c1min) / 2;
614 b1->c1max = lb;
615 b2->c1min = lb+1;
616 break;
617 case 2:
618 lb = (b1->c2max + b1->c2min) / 2;
619 b1->c2max = lb;
620 b2->c2min = lb+1;
621 break;
622 }
623 /* Update stats for boxes */
624 update_box(cinfo, b1);
625 update_box(cinfo, b2);
626 numboxes++;
627 }
628 return numboxes;
629}
630
631
632void
633compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
634/* Compute representative color for a box, put it in colormap[icolor] */
635{
636 /* Current algorithm: mean weighted by pixels (not colors) */
637 /* Note it is important to get the rounding correct! */
638 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
639 hist3d histogram = cquantize->histogram;
640 histptr histp;
641 int c0,c1,c2;
642 int c0min,c0max,c1min,c1max,c2min,c2max;
643 long count;
644 long total = 0;
645 long c0total = 0;
646 long c1total = 0;
647 long c2total = 0;
648
649 c0min = boxp->c0min; c0max = boxp->c0max;
650 c1min = boxp->c1min; c1max = boxp->c1max;
651 c2min = boxp->c2min; c2max = boxp->c2max;
652
653 for (c0 = c0min; c0 <= c0max; c0++)
654 for (c1 = c1min; c1 <= c1max; c1++) {
655 histp = & histogram[c0][c1][c2min];
656 for (c2 = c2min; c2 <= c2max; c2++) {
657 if ((count = *histp++) != 0) {
658 total += count;
659 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
660 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
661 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
662 }
663 }
664 }
665
666 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
667 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
668 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
669}
670
671
672static void
673select_colors (j_decompress_ptr cinfo, int desired_colors)
674/* Master routine for color selection */
675{
676 boxptr boxlist;
677 int numboxes;
678 int i;
679
680 /* Allocate workspace for box list */
681 boxlist = (boxptr) malloc(desired_colors * sizeof(box));
682 /* Initialize one box containing whole space */
683 numboxes = 1;
684 boxlist[0].c0min = 0;
685 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
686 boxlist[0].c1min = 0;
687 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
688 boxlist[0].c2min = 0;
689 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
690 /* Shrink it to actually-used volume and set its statistics */
691 update_box(cinfo, & boxlist[0]);
692 /* Perform median-cut to produce final box list */
693 numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
694 /* Compute the representative color for each box, fill colormap */
695 for (i = 0; i < numboxes; i++)
696 compute_color(cinfo, & boxlist[i], i);
697 cinfo->actual_number_of_colors = numboxes;
698
699 free(boxlist); //FIXME?? I don't know if this is correct - VS
700}
701
702
703/*
704 * These routines are concerned with the time-critical task of mapping input
705 * colors to the nearest color in the selected colormap.
706 *
707 * We re-use the histogram space as an "inverse color map", essentially a
708 * cache for the results of nearest-color searches. All colors within a
709 * histogram cell will be mapped to the same colormap entry, namely the one
710 * closest to the cell's center. This may not be quite the closest entry to
711 * the actual input color, but it's almost as good. A zero in the cache
712 * indicates we haven't found the nearest color for that cell yet; the array
713 * is cleared to zeroes before starting the mapping pass. When we find the
714 * nearest color for a cell, its colormap index plus one is recorded in the
715 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
716 * when they need to use an unfilled entry in the cache.
717 *
718 * Our method of efficiently finding nearest colors is based on the "locally
719 * sorted search" idea described by Heckbert and on the incremental distance
720 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
721 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
722 * the distances from a given colormap entry to each cell of the histogram can
723 * be computed quickly using an incremental method: the differences between
724 * distances to adjacent cells themselves differ by a constant. This allows a
725 * fairly fast implementation of the "brute force" approach of computing the
726 * distance from every colormap entry to every histogram cell. Unfortunately,
727 * it needs a work array to hold the best-distance-so-far for each histogram
728 * cell (because the inner loop has to be over cells, not colormap entries).
729 * The work array elements have to be INT32s, so the work array would need
730 * 256Kb at our recommended precision. This is not feasible in DOS machines.
731 *
732 * To get around these problems, we apply Thomas' method to compute the
733 * nearest colors for only the cells within a small subbox of the histogram.
734 * The work array need be only as big as the subbox, so the memory usage
735 * problem is solved. Furthermore, we need not fill subboxes that are never
736 * referenced in pass2; many images use only part of the color gamut, so a
737 * fair amount of work is saved. An additional advantage of this
738 * approach is that we can apply Heckbert's locality criterion to quickly
739 * eliminate colormap entries that are far away from the subbox; typically
740 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
741 * and we need not compute their distances to individual cells in the subbox.
742 * The speed of this approach is heavily influenced by the subbox size: too
743 * small means too much overhead, too big loses because Heckbert's criterion
744 * can't eliminate as many colormap entries. Empirically the best subbox
745 * size seems to be about 1/512th of the histogram (1/8th in each direction).
746 *
747 * Thomas' article also describes a refined method which is asymptotically
748 * faster than the brute-force method, but it is also far more complex and
749 * cannot efficiently be applied to small subboxes. It is therefore not
750 * useful for programs intended to be portable to DOS machines. On machines
751 * with plenty of memory, filling the whole histogram in one shot with Thomas'
752 * refined method might be faster than the present code --- but then again,
753 * it might not be any faster, and it's certainly more complicated.
754 */
755
756
757/* log2(histogram cells in update box) for each axis; this can be adjusted */
758#define BOX_C0_LOG (HIST_C0_BITS-3)
759#define BOX_C1_LOG (HIST_C1_BITS-3)
760#define BOX_C2_LOG (HIST_C2_BITS-3)
761
762#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
763#define BOX_C1_ELEMS (1<<BOX_C1_LOG)
764#define BOX_C2_ELEMS (1<<BOX_C2_LOG)
765
766#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
767#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
768#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
769
770
771/*
772 * The next three routines implement inverse colormap filling. They could
773 * all be folded into one big routine, but splitting them up this way saves
774 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
775 * and may allow some compilers to produce better code by registerizing more
776 * inner-loop variables.
777 */
778
779static int
780find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
781 JSAMPLE colorlist[])
782/* Locate the colormap entries close enough to an update box to be candidates
783 * for the nearest entry to some cell(s) in the update box. The update box
784 * is specified by the center coordinates of its first cell. The number of
785 * candidate colormap entries is returned, and their colormap indexes are
786 * placed in colorlist[].
787 * This routine uses Heckbert's "locally sorted search" criterion to select
788 * the colors that need further consideration.
789 */
790{
791 int numcolors = cinfo->actual_number_of_colors;
792 int maxc0, maxc1, maxc2;
793 int centerc0, centerc1, centerc2;
794 int i, x, ncolors;
795 INT32 minmaxdist, min_dist, max_dist, tdist;
796 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
797
798 /* Compute true coordinates of update box's upper corner and center.
799 * Actually we compute the coordinates of the center of the upper-corner
800 * histogram cell, which are the upper bounds of the volume we care about.
801 * Note that since ">>" rounds down, the "center" values may be closer to
802 * min than to max; hence comparisons to them must be "<=", not "<".
803 */
804 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
805 centerc0 = (minc0 + maxc0) >> 1;
806 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
807 centerc1 = (minc1 + maxc1) >> 1;
808 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
809 centerc2 = (minc2 + maxc2) >> 1;
810
811 /* For each color in colormap, find:
812 * 1. its minimum squared-distance to any point in the update box
813 * (zero if color is within update box);
814 * 2. its maximum squared-distance to any point in the update box.
815 * Both of these can be found by considering only the corners of the box.
816 * We save the minimum distance for each color in mindist[];
817 * only the smallest maximum distance is of interest.
818 */
819 minmaxdist = 0x7FFFFFFFL;
820
821 for (i = 0; i < numcolors; i++) {
822 /* We compute the squared-c0-distance term, then add in the other two. */
823 x = GETJSAMPLE(cinfo->colormap[0][i]);
824 if (x < minc0) {
825 tdist = (x - minc0) * C0_SCALE;
826 min_dist = tdist*tdist;
827 tdist = (x - maxc0) * C0_SCALE;
828 max_dist = tdist*tdist;
829 } else if (x > maxc0) {
830 tdist = (x - maxc0) * C0_SCALE;
831 min_dist = tdist*tdist;
832 tdist = (x - minc0) * C0_SCALE;
833 max_dist = tdist*tdist;
834 } else {
835 /* within cell range so no contribution to min_dist */
836 min_dist = 0;
837 if (x <= centerc0) {
838 tdist = (x - maxc0) * C0_SCALE;
839 max_dist = tdist*tdist;
840 } else {
841 tdist = (x - minc0) * C0_SCALE;
842 max_dist = tdist*tdist;
843 }
844 }
845
846 x = GETJSAMPLE(cinfo->colormap[1][i]);
847 if (x < minc1) {
848 tdist = (x - minc1) * C1_SCALE;
849 min_dist += tdist*tdist;
850 tdist = (x - maxc1) * C1_SCALE;
851 max_dist += tdist*tdist;
852 } else if (x > maxc1) {
853 tdist = (x - maxc1) * C1_SCALE;
854 min_dist += tdist*tdist;
855 tdist = (x - minc1) * C1_SCALE;
856 max_dist += tdist*tdist;
857 } else {
858 /* within cell range so no contribution to min_dist */
859 if (x <= centerc1) {
860 tdist = (x - maxc1) * C1_SCALE;
861 max_dist += tdist*tdist;
862 } else {
863 tdist = (x - minc1) * C1_SCALE;
864 max_dist += tdist*tdist;
865 }
866 }
867
868 x = GETJSAMPLE(cinfo->colormap[2][i]);
869 if (x < minc2) {
870 tdist = (x - minc2) * C2_SCALE;
871 min_dist += tdist*tdist;
872 tdist = (x - maxc2) * C2_SCALE;
873 max_dist += tdist*tdist;
874 } else if (x > maxc2) {
875 tdist = (x - maxc2) * C2_SCALE;
876 min_dist += tdist*tdist;
877 tdist = (x - minc2) * C2_SCALE;
878 max_dist += tdist*tdist;
879 } else {
880 /* within cell range so no contribution to min_dist */
881 if (x <= centerc2) {
882 tdist = (x - maxc2) * C2_SCALE;
883 max_dist += tdist*tdist;
884 } else {
885 tdist = (x - minc2) * C2_SCALE;
886 max_dist += tdist*tdist;
887 }
888 }
889
890 mindist[i] = min_dist; /* save away the results */
891 if (max_dist < minmaxdist)
892 minmaxdist = max_dist;
893 }
894
895 /* Now we know that no cell in the update box is more than minmaxdist
896 * away from some colormap entry. Therefore, only colors that are
897 * within minmaxdist of some part of the box need be considered.
898 */
899 ncolors = 0;
900 for (i = 0; i < numcolors; i++) {
901 if (mindist[i] <= minmaxdist)
902 colorlist[ncolors++] = (JSAMPLE) i;
903 }
904 return ncolors;
905}
906
907
908static void
909find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
910 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
911/* Find the closest colormap entry for each cell in the update box,
912 * given the list of candidate colors prepared by find_nearby_colors.
913 * Return the indexes of the closest entries in the bestcolor[] array.
914 * This routine uses Thomas' incremental distance calculation method to
915 * find the distance from a colormap entry to successive cells in the box.
916 */
917{
918 int ic0, ic1, ic2;
919 int i, icolor;
920 register INT32 * bptr; /* pointer into bestdist[] array */
921 JSAMPLE * cptr; /* pointer into bestcolor[] array */
922 INT32 dist0, dist1; /* initial distance values */
923 register INT32 dist2; /* current distance in inner loop */
924 INT32 xx0, xx1; /* distance increments */
925 register INT32 xx2;
926 INT32 inc0, inc1, inc2; /* initial values for increments */
927 /* This array holds the distance to the nearest-so-far color for each cell */
928 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
929
930 /* Initialize best-distance for each cell of the update box */
931 bptr = bestdist;
932 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
933 *bptr++ = 0x7FFFFFFFL;
934
935 /* For each color selected by find_nearby_colors,
936 * compute its distance to the center of each cell in the box.
937 * If that's less than best-so-far, update best distance and color number.
938 */
939
940 /* Nominal steps between cell centers ("x" in Thomas article) */
941#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
942#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
943#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
944
945 for (i = 0; i < numcolors; i++) {
946 icolor = GETJSAMPLE(colorlist[i]);
947 /* Compute (square of) distance from minc0/c1/c2 to this color */
948 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
949 dist0 = inc0*inc0;
950 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
951 dist0 += inc1*inc1;
952 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
953 dist0 += inc2*inc2;
954 /* Form the initial difference increments */
955 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
956 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
957 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
958 /* Now loop over all cells in box, updating distance per Thomas method */
959 bptr = bestdist;
960 cptr = bestcolor;
961 xx0 = inc0;
962 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
963 dist1 = dist0;
964 xx1 = inc1;
965 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
966 dist2 = dist1;
967 xx2 = inc2;
968 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
969 if (dist2 < *bptr) {
970 *bptr = dist2;
971 *cptr = (JSAMPLE) icolor;
972 }
973 dist2 += xx2;
974 xx2 += 2 * STEP_C2 * STEP_C2;
975 bptr++;
976 cptr++;
977 }
978 dist1 += xx1;
979 xx1 += 2 * STEP_C1 * STEP_C1;
980 }
981 dist0 += xx0;
982 xx0 += 2 * STEP_C0 * STEP_C0;
983 }
984 }
985}
986
987
988static void
989fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
990/* Fill the inverse-colormap entries in the update box that contains */
991/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
992/* we can fill as many others as we wish.) */
993{
994 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
995 hist3d histogram = cquantize->histogram;
996 int minc0, minc1, minc2; /* lower left corner of update box */
997 int ic0, ic1, ic2;
998 register JSAMPLE * cptr; /* pointer into bestcolor[] array */
999 register histptr cachep; /* pointer into main cache array */
1000 /* This array lists the candidate colormap indexes. */
1001 JSAMPLE colorlist[MAXNUMCOLORS];
1002 int numcolors; /* number of candidate colors */
1003 /* This array holds the actually closest colormap index for each cell. */
1004 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
1005
1006 /* Convert cell coordinates to update box ID */
1007 c0 >>= BOX_C0_LOG;
1008 c1 >>= BOX_C1_LOG;
1009 c2 >>= BOX_C2_LOG;
1010
1011 /* Compute true coordinates of update box's origin corner.
1012 * Actually we compute the coordinates of the center of the corner
1013 * histogram cell, which are the lower bounds of the volume we care about.
1014 */
1015 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
1016 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
1017 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
1018
1019 /* Determine which colormap entries are close enough to be candidates
1020 * for the nearest entry to some cell in the update box.
1021 */
1022 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
1023
1024 /* Determine the actually nearest colors. */
1025 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
1026 bestcolor);
1027
1028 /* Save the best color numbers (plus 1) in the main cache array */
1029 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
1030 c1 <<= BOX_C1_LOG;
1031 c2 <<= BOX_C2_LOG;
1032 cptr = bestcolor;
1033 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
1034 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
1035 cachep = & histogram[c0+ic0][c1+ic1][c2];
1036 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
1037 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
1038 }
1039 }
1040 }
1041}
1042
1043
1044/*
1045 * Map some rows of pixels to the output colormapped representation.
1046 */
1047
1048void
1049pass2_no_dither (j_decompress_ptr cinfo,
1050 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
1051/* This version performs no dithering */
1052{
1053 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1054 hist3d histogram = cquantize->histogram;
1055 register JSAMPROW inptr, outptr;
1056 register histptr cachep;
1057 register int c0, c1, c2;
1058 int row;
1059 JDIMENSION col;
1060 JDIMENSION width = cinfo->output_width;
1061
1062 for (row = 0; row < num_rows; row++) {
1063 inptr = input_buf[row];
1064 outptr = output_buf[row];
1065 for (col = width; col > 0; col--) {
1066 /* get pixel value and index into the cache */
1067 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
1068 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
1069 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
1070 cachep = & histogram[c0][c1][c2];
1071 /* If we have not seen this color before, find nearest colormap entry */
1072 /* and update the cache */
1073 if (*cachep == 0)
1074 fill_inverse_cmap(cinfo, c0,c1,c2);
1075 /* Now emit the colormap index for this cell */
1076 *outptr++ = (JSAMPLE) (*cachep - 1);
1077 }
1078 }
1079}
1080
1081
1082void
1083pass2_fs_dither (j_decompress_ptr cinfo,
1084 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
1085/* This version performs Floyd-Steinberg dithering */
1086{
1087 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1088 hist3d histogram = cquantize->histogram;
1089 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
1090 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
1091 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
1092 register FSERRPTR errorptr; /* => fserrors[] at column before current */
1093 JSAMPROW inptr; /* => current input pixel */
1094 JSAMPROW outptr; /* => current output pixel */
1095 histptr cachep;
1096 int dir; /* +1 or -1 depending on direction */
1097 int dir3; /* 3*dir, for advancing inptr & errorptr */
1098 int row;
1099 JDIMENSION col;
1100 JDIMENSION width = cinfo->output_width;
1101 JSAMPLE *range_limit = cinfo->sample_range_limit;
1102 int *error_limit = cquantize->error_limiter;
1103 JSAMPROW colormap0 = cinfo->colormap[0];
1104 JSAMPROW colormap1 = cinfo->colormap[1];
1105 JSAMPROW colormap2 = cinfo->colormap[2];
1106
1107
1108 for (row = 0; row < num_rows; row++) {
1109 inptr = input_buf[row];
1110 outptr = output_buf[row];
1111 if (cquantize->on_odd_row) {
1112 /* work right to left in this row */
1113 inptr += (width-1) * 3; /* so point to rightmost pixel */
1114 outptr += width-1;
1115 dir = -1;
1116 dir3 = -3;
1117 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
1118 cquantize->on_odd_row = false; /* flip for next time */
1119 } else {
1120 /* work left to right in this row */
1121 dir = 1;
1122 dir3 = 3;
1123 errorptr = cquantize->fserrors; /* => entry before first real column */
1124 cquantize->on_odd_row = true; /* flip for next time */
1125 }
1126 /* Preset error values: no error propagated to first pixel from left */
1127 cur0 = cur1 = cur2 = 0;
1128 /* and no error propagated to row below yet */
1129 belowerr0 = belowerr1 = belowerr2 = 0;
1130 bpreverr0 = bpreverr1 = bpreverr2 = 0;
1131
1132 for (col = width; col > 0; col--) {
1133 /* curN holds the error propagated from the previous pixel on the
1134 * current line. Add the error propagated from the previous line
1135 * to form the complete error correction term for this pixel, and
1136 * round the error term (which is expressed * 16) to an integer.
1137 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1138 * for either sign of the error value.
1139 * Note: errorptr points to *previous* column's array entry.
1140 */
1141 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1142 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1143 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1144 /* Limit the error using transfer function set by init_error_limit.
1145 * See comments with init_error_limit for rationale.
1146 */
1147 cur0 = error_limit[cur0];
1148 cur1 = error_limit[cur1];
1149 cur2 = error_limit[cur2];
1150 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1151 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1152 * this sets the required size of the range_limit array.
1153 */
1154 cur0 += GETJSAMPLE(inptr[0]);
1155 cur1 += GETJSAMPLE(inptr[1]);
1156 cur2 += GETJSAMPLE(inptr[2]);
1157 cur0 = GETJSAMPLE(range_limit[cur0]);
1158 cur1 = GETJSAMPLE(range_limit[cur1]);
1159 cur2 = GETJSAMPLE(range_limit[cur2]);
1160 /* Index into the cache with adjusted pixel value */
1161 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1162 /* If we have not seen this color before, find nearest colormap */
1163 /* entry and update the cache */
1164 if (*cachep == 0)
1165 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1166 /* Now emit the colormap index for this cell */
1167 { register int pixcode = *cachep - 1;
1168 *outptr = (JSAMPLE) pixcode;
1169 /* Compute representation error for this pixel */
1170 cur0 -= GETJSAMPLE(colormap0[pixcode]);
1171 cur1 -= GETJSAMPLE(colormap1[pixcode]);
1172 cur2 -= GETJSAMPLE(colormap2[pixcode]);
1173 }
1174 /* Compute error fractions to be propagated to adjacent pixels.
1175 * Add these into the running sums, and simultaneously shift the
1176 * next-line error sums left by 1 column.
1177 */
1178 { register LOCFSERROR bnexterr, delta;
1179
1180 bnexterr = cur0; /* Process component 0 */
1181 delta = cur0 * 2;
1182 cur0 += delta; /* form error * 3 */
1183 errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1184 cur0 += delta; /* form error * 5 */
1185 bpreverr0 = belowerr0 + cur0;
1186 belowerr0 = bnexterr;
1187 cur0 += delta; /* form error * 7 */
1188 bnexterr = cur1; /* Process component 1 */
1189 delta = cur1 * 2;
1190 cur1 += delta; /* form error * 3 */
1191 errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1192 cur1 += delta; /* form error * 5 */
1193 bpreverr1 = belowerr1 + cur1;
1194 belowerr1 = bnexterr;
1195 cur1 += delta; /* form error * 7 */
1196 bnexterr = cur2; /* Process component 2 */
1197 delta = cur2 * 2;
1198 cur2 += delta; /* form error * 3 */
1199 errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1200 cur2 += delta; /* form error * 5 */
1201 bpreverr2 = belowerr2 + cur2;
1202 belowerr2 = bnexterr;
1203 cur2 += delta; /* form error * 7 */
1204 }
1205 /* At this point curN contains the 7/16 error value to be propagated
1206 * to the next pixel on the current line, and all the errors for the
1207 * next line have been shifted over. We are therefore ready to move on.
1208 */
1209 inptr += dir3; /* Advance pixel pointers to next column */
1210 outptr += dir;
1211 errorptr += dir3; /* advance errorptr to current column */
1212 }
1213 /* Post-loop cleanup: we must unload the final error values into the
1214 * final fserrors[] entry. Note we need not unload belowerrN because
1215 * it is for the dummy column before or after the actual array.
1216 */
1217 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1218 errorptr[1] = (FSERROR) bpreverr1;
1219 errorptr[2] = (FSERROR) bpreverr2;
1220 }
1221}
1222
1223
1224/*
1225 * Initialize the error-limiting transfer function (lookup table).
1226 * The raw F-S error computation can potentially compute error values of up to
1227 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1228 * much less, otherwise obviously wrong pixels will be created. (Typical
1229 * effects include weird fringes at color-area boundaries, isolated bright
1230 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1231 * is to ensure that the "corners" of the color cube are allocated as output
1232 * colors; then repeated errors in the same direction cannot cause cascading
1233 * error buildup. However, that only prevents the error from getting
1234 * completely out of hand; Aaron Giles reports that error limiting improves
1235 * the results even with corner colors allocated.
1236 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1237 * well, but the smoother transfer function used below is even better. Thanks
1238 * to Aaron Giles for this idea.
1239 */
1240
1241static void
1242init_error_limit (j_decompress_ptr cinfo)
1243/* Allocate and fill in the error_limiter table */
1244{
1245 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1246 int * table;
1247 int in, out;
1248
1249 table = (int *) malloc((MAXJSAMPLE*2+1) * sizeof(int));
1250 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1251 cquantize->error_limiter = table;
1252
1253#define STEPSIZE ((MAXJSAMPLE+1)/16)
1254 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1255 out = 0;
1256 for (in = 0; in < STEPSIZE; in++, out++) {
1257 table[in] = out; table[-in] = -out;
1258 }
1259 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1260 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1261 table[in] = out; table[-in] = -out;
1262 }
1263 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1264 for (; in <= MAXJSAMPLE; in++) {
1265 table[in] = out; table[-in] = -out;
1266 }
1267#undef STEPSIZE
1268}
1269
1270
1271/*
1272 * Finish up at the end of each pass.
1273 */
1274
1275void
1276finish_pass1 (j_decompress_ptr cinfo)
1277{
1278 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1279
1280 /* Select the representative colors and fill in cinfo->colormap */
1281 cinfo->colormap = cquantize->sv_colormap;
1282 select_colors(cinfo, cquantize->desired);
1283 /* Force next pass to zero the color index table */
1284 cquantize->needs_zeroed = true;
1285}
1286
1287
1288void
1289finish_pass2 (j_decompress_ptr WXUNUSED(cinfo))
1290{
1291 /* no work */
1292}
1293
1294
1295/*
1296 * Initialize for each processing pass.
1297 */
1298
1299void
1300start_pass_2_quant (j_decompress_ptr cinfo, bool is_pre_scan)
1301{
1302 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1303 hist3d histogram = cquantize->histogram;
1304
1305 if (is_pre_scan) {
1306 /* Set up method pointers */
1307 cquantize->pub.color_quantize = prescan_quantize;
1308 cquantize->pub.finish_pass = finish_pass1;
1309 cquantize->needs_zeroed = true; /* Always zero histogram */
1310 } else {
1311 /* Set up method pointers */
1312 cquantize->pub.color_quantize = pass2_fs_dither;
1313 cquantize->pub.finish_pass = finish_pass2;
1314
1315 {
1316 size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1317 (3 * sizeof(FSERROR)));
1318 /* Allocate Floyd-Steinberg workspace if we didn't already. */
1319 if (cquantize->fserrors == NULL)
1320 cquantize->fserrors = (INT16*) malloc(arraysize);
1321 /* Initialize the propagated errors to zero. */
1322 memset((void *) cquantize->fserrors, 0, arraysize);
1323 /* Make the error-limit table if we didn't already. */
1324 if (cquantize->error_limiter == NULL)
1325 init_error_limit(cinfo);
1326 cquantize->on_odd_row = false;
1327 }
1328
1329 }
1330 /* Zero the histogram or inverse color map, if necessary */
1331 if (cquantize->needs_zeroed) {
1332 for (int i = 0; i < HIST_C0_ELEMS; i++) {
1333 memset((void *) histogram[i], 0,
1334 HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1335 }
1336 cquantize->needs_zeroed = false;
1337 }
1338}
1339
1340
1341/*
1342 * Switch to a new external colormap between output passes.
1343 */
1344
1345void
1346new_color_map_2_quant (j_decompress_ptr cinfo)
1347{
1348 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1349
1350 /* Reset the inverse color map */
1351 cquantize->needs_zeroed = true;
1352}
1353
1354
1355/*
1356 * Module initialization routine for 2-pass color quantization.
1357 */
1358
1359void
1360jinit_2pass_quantizer (j_decompress_ptr cinfo)
1361{
1362 my_cquantize_ptr cquantize;
1363 int i;
1364
1365 cquantize = (my_cquantize_ptr) malloc(sizeof(my_cquantizer));
1366 cinfo->cquantize = (jpeg_color_quantizer *) cquantize;
1367 cquantize->pub.start_pass = start_pass_2_quant;
1368 cquantize->pub.new_color_map = new_color_map_2_quant;
1369 cquantize->fserrors = NULL; /* flag optional arrays not allocated */
1370 cquantize->error_limiter = NULL;
1371
1372
1373 /* Allocate the histogram/inverse colormap storage */
1374 cquantize->histogram = (hist3d) malloc(HIST_C0_ELEMS * sizeof(hist2d));
1375 for (i = 0; i < HIST_C0_ELEMS; i++) {
1376 cquantize->histogram[i] = (hist2d) malloc(HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1377 }
1378 cquantize->needs_zeroed = true; /* histogram is garbage now */
1379
1380 /* Allocate storage for the completed colormap, if required.
1381 * We do this now since it is storage and may affect
1382 * the memory manager's space calculations.
1383 */
1384 {
1385 /* Make sure color count is acceptable */
1386 int desired = cinfo->desired_number_of_colors;
1387
1388 cquantize->sv_colormap = (JSAMPARRAY) malloc(sizeof(JSAMPROW) * 3);
1389 cquantize->sv_colormap[0] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired);
1390 cquantize->sv_colormap[1] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired);
1391 cquantize->sv_colormap[2] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired);
1392
1393 cquantize->desired = desired;
1394 }
1395
1396 /* Allocate Floyd-Steinberg workspace if necessary.
1397 * This isn't really needed until pass 2, but again it is storage.
1398 * Although we will cope with a later change in dither_mode,
1399 * we do not promise to honor max_memory_to_use if dither_mode changes.
1400 */
1401 {
1402 cquantize->fserrors = (FSERRPTR) malloc(
1403 (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
1404 /* Might as well create the error-limiting table too. */
1405 init_error_limit(cinfo);
1406 }
1407}
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418void
1419prepare_range_limit_table (j_decompress_ptr cinfo)
1420/* Allocate and fill in the sample_range_limit table */
1421{
1422 JSAMPLE * table;
1423 int i;
1424
1425 table = (JSAMPLE *) malloc((5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * sizeof(JSAMPLE));
1426 cinfo->srl_orig = table;
1427 table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
1428 cinfo->sample_range_limit = table;
1429 /* First segment of "simple" table: limit[x] = 0 for x < 0 */
1430 memset(table - (MAXJSAMPLE+1), 0, (MAXJSAMPLE+1) * sizeof(JSAMPLE));
1431 /* Main part of "simple" table: limit[x] = x */
1432 for (i = 0; i <= MAXJSAMPLE; i++)
1433 table[i] = (JSAMPLE) i;
1434 table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
1435 /* End of simple table, rest of first half of post-IDCT table */
1436 for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
1437 table[i] = MAXJSAMPLE;
1438 /* Second half of post-IDCT table */
1439 memset(table + (2 * (MAXJSAMPLE+1)), 0,
1440 (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * sizeof(JSAMPLE));
1441 memcpy(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
1442 cinfo->sample_range_limit, CENTERJSAMPLE * sizeof(JSAMPLE));
1443}
1444
1445
1446
1447
1448/*
1449 * wxQuantize
1450 */
1451
1452IMPLEMENT_DYNAMIC_CLASS(wxQuantize, wxObject)
1453
1454void wxQuantize::DoQuantize(unsigned w, unsigned h, unsigned char **in_rows, unsigned char **out_rows,
1455 unsigned char *palette, int desiredNoColours)
1456{
1457 j_decompress dec;
1458 my_cquantize_ptr cquantize;
1459
1460 dec.output_width = w;
1461 dec.desired_number_of_colors = desiredNoColours;
1462 prepare_range_limit_table(&dec);
1463 jinit_2pass_quantizer(&dec);
1464 cquantize = (my_cquantize_ptr) dec.cquantize;
1465
1466
1467 cquantize->pub.start_pass(&dec, true);
1468 cquantize->pub.color_quantize(&dec, in_rows, out_rows, h);
1469 cquantize->pub.finish_pass(&dec);
1470
1471 cquantize->pub.start_pass(&dec, false);
1472 cquantize->pub.color_quantize(&dec, in_rows, out_rows, h);
1473 cquantize->pub.finish_pass(&dec);
1474
1475
1476 for (int i = 0; i < dec.desired_number_of_colors; i++) {
1477 palette[3 * i + 0] = dec.colormap[0][i];
1478 palette[3 * i + 1] = dec.colormap[1][i];
1479 palette[3 * i + 2] = dec.colormap[2][i];
1480 }
1481
1482 for (int ii = 0; ii < HIST_C0_ELEMS; ii++) free(cquantize->histogram[ii]);
1483 free(cquantize->histogram);
1484 free(dec.colormap[0]);
1485 free(dec.colormap[1]);
1486 free(dec.colormap[2]);
1487 free(dec.colormap);
1488 free(dec.srl_orig);
1489
1490 //free(cquantize->error_limiter);
1491 free((void*)(cquantize->error_limiter - MAXJSAMPLE)); // To reverse what was done to it
1492
1493 free(cquantize->fserrors);
1494 free(cquantize);
1495}
1496
1497// TODO: somehow make use of the Windows system colours, rather than ignoring them for the
1498// purposes of quantization.
1499
1500bool wxQuantize::Quantize(const wxImage& src, wxImage& dest,
1501 wxPalette** pPalette,
1502 int desiredNoColours,
1503 unsigned char** eightBitData,
1504 int flags)
1505
1506{
1507 int i;
1508
1509 int windowsSystemColourCount = 20;
1510
1511 int paletteShift = 0;
1512
1513 // Shift the palette up by the number of Windows system colours,
1514 // if necessary
1515 if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS)
1516 paletteShift = windowsSystemColourCount;
1517
1518 // Make room for the Windows system colours
1519#ifdef __WXMSW__
1520 if ((flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS) && (desiredNoColours > (256 - windowsSystemColourCount)))
1521 desiredNoColours = 256 - windowsSystemColourCount;
1522#endif
1523
1524 // create rows info:
1525 int h = src.GetHeight();
1526 int w = src.GetWidth();
1527 unsigned char **rows = new unsigned char *[h];
1528 unsigned char *imgdt = src.GetData();
1529 for (i = 0; i < h; i++)
1530 rows[i] = imgdt + 3/*RGB*/ * w * i;
1531
1532 unsigned char palette[3*256];
1533
1534 // This is the image as represented by palette indexes.
1535 unsigned char *data8bit = new unsigned char[w * h];
1536 unsigned char **outrows = new unsigned char *[h];
1537 for (i = 0; i < h; i++)
1538 outrows[i] = data8bit + w * i;
1539
1540 //RGB->palette
1541 DoQuantize(w, h, rows, outrows, palette, desiredNoColours);
1542
1543 delete[] rows;
1544 delete[] outrows;
1545
1546 // palette->RGB(max.256)
1547
1548 if (flags & wxQUANTIZE_FILL_DESTINATION_IMAGE)
1549 {
1550 if (!dest.Ok())
1551 dest.Create(w, h);
1552
1553 imgdt = dest.GetData();
1554 for (i = 0; i < w * h; i++)
1555 {
1556 unsigned char c = data8bit[i];
1557 imgdt[3 * i + 0/*R*/] = palette[3 * c + 0];
1558 imgdt[3 * i + 1/*G*/] = palette[3 * c + 1];
1559 imgdt[3 * i + 2/*B*/] = palette[3 * c + 2];
1560 }
1561 }
1562
1563 if (eightBitData && (flags & wxQUANTIZE_RETURN_8BIT_DATA))
1564 {
1565#ifdef __WXMSW__
1566 if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS)
1567 {
1568 // We need to shift the palette entries up
1569 // to make room for the Windows system colours.
1570 for (i = 0; i < w * h; i++)
1571 data8bit[i] = (unsigned char)(data8bit[i] + paletteShift);
1572 }
1573#endif
1574 *eightBitData = data8bit;
1575 }
1576 else
1577 delete[] data8bit;
1578
1579#if wxUSE_PALETTE
1580 // Make a wxWidgets palette
1581 if (pPalette)
1582 {
1583 unsigned char* r = new unsigned char[256];
1584 unsigned char* g = new unsigned char[256];
1585 unsigned char* b = new unsigned char[256];
1586
1587#ifdef __WXMSW__
1588 // Fill the first 20 entries with Windows system colours
1589 if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS)
1590 {
1591 HDC hDC = ::GetDC(NULL);
1592 PALETTEENTRY* entries = new PALETTEENTRY[windowsSystemColourCount];
1593 ::GetSystemPaletteEntries(hDC, 0, windowsSystemColourCount, entries);
1594 ::ReleaseDC(NULL, hDC);
1595
1596 for (i = 0; i < windowsSystemColourCount; i++)
1597 {
1598 r[i] = entries[i].peRed;
1599 g[i] = entries[i].peGreen;
1600 b[i] = entries[i].peBlue;
1601 }
1602 delete[] entries;
1603 }
1604#endif
1605
1606 for (i = 0; i < desiredNoColours; i++)
1607 {
1608 r[i+paletteShift] = palette[i*3 + 0];
1609 g[i+paletteShift] = palette[i*3 + 1];
1610 b[i+paletteShift] = palette[i*3 + 2];
1611 }
1612
1613 // Blank out any remaining palette entries
1614 for (i = desiredNoColours+paletteShift; i < 256; i++)
1615 {
1616 r[i] = 0;
1617 g[i] = 0;
1618 b[i] = 0;
1619 }
1620 *pPalette = new wxPalette(256, r, g, b);
1621 delete[] r;
1622 delete[] g;
1623 delete[] b;
1624 }
1625#endif // wxUSE_PALETTE
1626
1627 return true;
1628}
1629
1630// This version sets a palette in the destination image so you don't
1631// have to manage it yourself.
1632
1633bool wxQuantize::Quantize(const wxImage& src,
1634 wxImage& dest,
1635 int desiredNoColours,
1636 unsigned char** eightBitData,
1637 int flags)
1638{
1639 wxPalette* palette = NULL;
1640 if ( !Quantize(src, dest, & palette, desiredNoColours, eightBitData, flags) )
1641 return false;
1642
1643#if wxUSE_PALETTE
1644 if (palette)
1645 {
1646 dest.SetPalette(* palette);
1647 delete palette;
1648 }
1649#endif // wxUSE_PALETTE
1650
1651 return true;
1652}
1653
1654#endif
1655 // wxUSE_IMAGE