]>
Commit | Line | Data |
---|---|---|
1 | /* $Id$ */ | |
2 | ||
3 | /* | |
4 | * Copyright (c) 1991-1997 Sam Leffler | |
5 | * Copyright (c) 1991-1997 Silicon Graphics, Inc. | |
6 | * | |
7 | * Permission to use, copy, modify, distribute, and sell this software and | |
8 | * its documentation for any purpose is hereby granted without fee, provided | |
9 | * that (i) the above copyright notices and this permission notice appear in | |
10 | * all copies of the software and related documentation, and (ii) the names of | |
11 | * Sam Leffler and Silicon Graphics may not be used in any advertising or | |
12 | * publicity relating to the software without the specific, prior written | |
13 | * permission of Sam Leffler and Silicon Graphics. | |
14 | * | |
15 | * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
16 | * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
17 | * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
18 | * | |
19 | * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR | |
20 | * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, | |
21 | * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, | |
22 | * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF | |
23 | * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE | |
24 | * OF THIS SOFTWARE. | |
25 | */ | |
26 | ||
27 | /* | |
28 | * TIFF Library | |
29 | * | |
30 | * Read and return a packed RGBA image. | |
31 | */ | |
32 | #include "tiffiop.h" | |
33 | #include <stdio.h> | |
34 | ||
35 | static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32); | |
36 | static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | |
37 | static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32); | |
38 | static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | |
39 | static int PickContigCase(TIFFRGBAImage*); | |
40 | static int PickSeparateCase(TIFFRGBAImage*); | |
41 | ||
42 | static int BuildMapUaToAa(TIFFRGBAImage* img); | |
43 | static int BuildMapBitdepth16To8(TIFFRGBAImage* img); | |
44 | ||
45 | static const char photoTag[] = "PhotometricInterpretation"; | |
46 | ||
47 | /* | |
48 | * Helper constants used in Orientation tag handling | |
49 | */ | |
50 | #define FLIP_VERTICALLY 0x01 | |
51 | #define FLIP_HORIZONTALLY 0x02 | |
52 | ||
53 | /* | |
54 | * Color conversion constants. We will define display types here. | |
55 | */ | |
56 | ||
57 | static const TIFFDisplay display_sRGB = { | |
58 | { /* XYZ -> luminance matrix */ | |
59 | { 3.2410F, -1.5374F, -0.4986F }, | |
60 | { -0.9692F, 1.8760F, 0.0416F }, | |
61 | { 0.0556F, -0.2040F, 1.0570F } | |
62 | }, | |
63 | 100.0F, 100.0F, 100.0F, /* Light o/p for reference white */ | |
64 | 255, 255, 255, /* Pixel values for ref. white */ | |
65 | 1.0F, 1.0F, 1.0F, /* Residual light o/p for black pixel */ | |
66 | 2.4F, 2.4F, 2.4F, /* Gamma values for the three guns */ | |
67 | }; | |
68 | ||
69 | /* | |
70 | * Check the image to see if TIFFReadRGBAImage can deal with it. | |
71 | * 1/0 is returned according to whether or not the image can | |
72 | * be handled. If 0 is returned, emsg contains the reason | |
73 | * why it is being rejected. | |
74 | */ | |
75 | int | |
76 | TIFFRGBAImageOK(TIFF* tif, char emsg[1024]) | |
77 | { | |
78 | TIFFDirectory* td = &tif->tif_dir; | |
79 | uint16 photometric; | |
80 | int colorchannels; | |
81 | ||
82 | if (!tif->tif_decodestatus) { | |
83 | sprintf(emsg, "Sorry, requested compression method is not configured"); | |
84 | return (0); | |
85 | } | |
86 | switch (td->td_bitspersample) { | |
87 | case 1: | |
88 | case 2: | |
89 | case 4: | |
90 | case 8: | |
91 | case 16: | |
92 | break; | |
93 | default: | |
94 | sprintf(emsg, "Sorry, can not handle images with %d-bit samples", | |
95 | td->td_bitspersample); | |
96 | return (0); | |
97 | } | |
98 | colorchannels = td->td_samplesperpixel - td->td_extrasamples; | |
99 | if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) { | |
100 | switch (colorchannels) { | |
101 | case 1: | |
102 | photometric = PHOTOMETRIC_MINISBLACK; | |
103 | break; | |
104 | case 3: | |
105 | photometric = PHOTOMETRIC_RGB; | |
106 | break; | |
107 | default: | |
108 | sprintf(emsg, "Missing needed %s tag", photoTag); | |
109 | return (0); | |
110 | } | |
111 | } | |
112 | switch (photometric) { | |
113 | case PHOTOMETRIC_MINISWHITE: | |
114 | case PHOTOMETRIC_MINISBLACK: | |
115 | case PHOTOMETRIC_PALETTE: | |
116 | if (td->td_planarconfig == PLANARCONFIG_CONTIG | |
117 | && td->td_samplesperpixel != 1 | |
118 | && td->td_bitspersample < 8 ) { | |
119 | sprintf(emsg, | |
120 | "Sorry, can not handle contiguous data with %s=%d, " | |
121 | "and %s=%d and Bits/Sample=%d", | |
122 | photoTag, photometric, | |
123 | "Samples/pixel", td->td_samplesperpixel, | |
124 | td->td_bitspersample); | |
125 | return (0); | |
126 | } | |
127 | /* | |
128 | * We should likely validate that any extra samples are either | |
129 | * to be ignored, or are alpha, and if alpha we should try to use | |
130 | * them. But for now we won't bother with this. | |
131 | */ | |
132 | break; | |
133 | case PHOTOMETRIC_YCBCR: | |
134 | /* | |
135 | * TODO: if at all meaningful and useful, make more complete | |
136 | * support check here, or better still, refactor to let supporting | |
137 | * code decide whether there is support and what meaningfull | |
138 | * error to return | |
139 | */ | |
140 | break; | |
141 | case PHOTOMETRIC_RGB: | |
142 | if (colorchannels < 3) { | |
143 | sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", | |
144 | "Color channels", colorchannels); | |
145 | return (0); | |
146 | } | |
147 | break; | |
148 | case PHOTOMETRIC_SEPARATED: | |
149 | { | |
150 | uint16 inkset; | |
151 | TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); | |
152 | if (inkset != INKSET_CMYK) { | |
153 | sprintf(emsg, | |
154 | "Sorry, can not handle separated image with %s=%d", | |
155 | "InkSet", inkset); | |
156 | return 0; | |
157 | } | |
158 | if (td->td_samplesperpixel < 4) { | |
159 | sprintf(emsg, | |
160 | "Sorry, can not handle separated image with %s=%d", | |
161 | "Samples/pixel", td->td_samplesperpixel); | |
162 | return 0; | |
163 | } | |
164 | break; | |
165 | } | |
166 | case PHOTOMETRIC_LOGL: | |
167 | if (td->td_compression != COMPRESSION_SGILOG) { | |
168 | sprintf(emsg, "Sorry, LogL data must have %s=%d", | |
169 | "Compression", COMPRESSION_SGILOG); | |
170 | return (0); | |
171 | } | |
172 | break; | |
173 | case PHOTOMETRIC_LOGLUV: | |
174 | if (td->td_compression != COMPRESSION_SGILOG && | |
175 | td->td_compression != COMPRESSION_SGILOG24) { | |
176 | sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", | |
177 | "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); | |
178 | return (0); | |
179 | } | |
180 | if (td->td_planarconfig != PLANARCONFIG_CONTIG) { | |
181 | sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", | |
182 | "Planarconfiguration", td->td_planarconfig); | |
183 | return (0); | |
184 | } | |
185 | break; | |
186 | case PHOTOMETRIC_CIELAB: | |
187 | break; | |
188 | default: | |
189 | sprintf(emsg, "Sorry, can not handle image with %s=%d", | |
190 | photoTag, photometric); | |
191 | return (0); | |
192 | } | |
193 | return (1); | |
194 | } | |
195 | ||
196 | void | |
197 | TIFFRGBAImageEnd(TIFFRGBAImage* img) | |
198 | { | |
199 | if (img->Map) | |
200 | _TIFFfree(img->Map), img->Map = NULL; | |
201 | if (img->BWmap) | |
202 | _TIFFfree(img->BWmap), img->BWmap = NULL; | |
203 | if (img->PALmap) | |
204 | _TIFFfree(img->PALmap), img->PALmap = NULL; | |
205 | if (img->ycbcr) | |
206 | _TIFFfree(img->ycbcr), img->ycbcr = NULL; | |
207 | if (img->cielab) | |
208 | _TIFFfree(img->cielab), img->cielab = NULL; | |
209 | if (img->UaToAa) | |
210 | _TIFFfree(img->UaToAa), img->UaToAa = NULL; | |
211 | if (img->Bitdepth16To8) | |
212 | _TIFFfree(img->Bitdepth16To8), img->Bitdepth16To8 = NULL; | |
213 | ||
214 | if( img->redcmap ) { | |
215 | _TIFFfree( img->redcmap ); | |
216 | _TIFFfree( img->greencmap ); | |
217 | _TIFFfree( img->bluecmap ); | |
218 | img->redcmap = img->greencmap = img->bluecmap = NULL; | |
219 | } | |
220 | } | |
221 | ||
222 | static int | |
223 | isCCITTCompression(TIFF* tif) | |
224 | { | |
225 | uint16 compress; | |
226 | TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress); | |
227 | return (compress == COMPRESSION_CCITTFAX3 || | |
228 | compress == COMPRESSION_CCITTFAX4 || | |
229 | compress == COMPRESSION_CCITTRLE || | |
230 | compress == COMPRESSION_CCITTRLEW); | |
231 | } | |
232 | ||
233 | int | |
234 | TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024]) | |
235 | { | |
236 | uint16* sampleinfo; | |
237 | uint16 extrasamples; | |
238 | uint16 planarconfig; | |
239 | uint16 compress; | |
240 | int colorchannels; | |
241 | uint16 *red_orig, *green_orig, *blue_orig; | |
242 | int n_color; | |
243 | ||
244 | /* Initialize to normal values */ | |
245 | img->row_offset = 0; | |
246 | img->col_offset = 0; | |
247 | img->redcmap = NULL; | |
248 | img->greencmap = NULL; | |
249 | img->bluecmap = NULL; | |
250 | img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */ | |
251 | ||
252 | img->tif = tif; | |
253 | img->stoponerr = stop; | |
254 | TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample); | |
255 | switch (img->bitspersample) { | |
256 | case 1: | |
257 | case 2: | |
258 | case 4: | |
259 | case 8: | |
260 | case 16: | |
261 | break; | |
262 | default: | |
263 | sprintf(emsg, "Sorry, can not handle images with %d-bit samples", | |
264 | img->bitspersample); | |
265 | goto fail_return; | |
266 | } | |
267 | img->alpha = 0; | |
268 | TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel); | |
269 | TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, | |
270 | &extrasamples, &sampleinfo); | |
271 | if (extrasamples >= 1) | |
272 | { | |
273 | switch (sampleinfo[0]) { | |
274 | case EXTRASAMPLE_UNSPECIFIED: /* Workaround for some images without */ | |
275 | if (img->samplesperpixel > 3) /* correct info about alpha channel */ | |
276 | img->alpha = EXTRASAMPLE_ASSOCALPHA; | |
277 | break; | |
278 | case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */ | |
279 | case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */ | |
280 | img->alpha = sampleinfo[0]; | |
281 | break; | |
282 | } | |
283 | } | |
284 | ||
285 | #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA | |
286 | if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) | |
287 | img->photometric = PHOTOMETRIC_MINISWHITE; | |
288 | ||
289 | if( extrasamples == 0 | |
290 | && img->samplesperpixel == 4 | |
291 | && img->photometric == PHOTOMETRIC_RGB ) | |
292 | { | |
293 | img->alpha = EXTRASAMPLE_ASSOCALPHA; | |
294 | extrasamples = 1; | |
295 | } | |
296 | #endif | |
297 | ||
298 | colorchannels = img->samplesperpixel - extrasamples; | |
299 | TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress); | |
300 | TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig); | |
301 | if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) { | |
302 | switch (colorchannels) { | |
303 | case 1: | |
304 | if (isCCITTCompression(tif)) | |
305 | img->photometric = PHOTOMETRIC_MINISWHITE; | |
306 | else | |
307 | img->photometric = PHOTOMETRIC_MINISBLACK; | |
308 | break; | |
309 | case 3: | |
310 | img->photometric = PHOTOMETRIC_RGB; | |
311 | break; | |
312 | default: | |
313 | sprintf(emsg, "Missing needed %s tag", photoTag); | |
314 | goto fail_return; | |
315 | } | |
316 | } | |
317 | switch (img->photometric) { | |
318 | case PHOTOMETRIC_PALETTE: | |
319 | if (!TIFFGetField(tif, TIFFTAG_COLORMAP, | |
320 | &red_orig, &green_orig, &blue_orig)) { | |
321 | sprintf(emsg, "Missing required \"Colormap\" tag"); | |
322 | goto fail_return; | |
323 | } | |
324 | ||
325 | /* copy the colormaps so we can modify them */ | |
326 | n_color = (1L << img->bitspersample); | |
327 | img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | |
328 | img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | |
329 | img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | |
330 | if( !img->redcmap || !img->greencmap || !img->bluecmap ) { | |
331 | sprintf(emsg, "Out of memory for colormap copy"); | |
332 | goto fail_return; | |
333 | } | |
334 | ||
335 | _TIFFmemcpy( img->redcmap, red_orig, n_color * 2 ); | |
336 | _TIFFmemcpy( img->greencmap, green_orig, n_color * 2 ); | |
337 | _TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 ); | |
338 | ||
339 | /* fall thru... */ | |
340 | case PHOTOMETRIC_MINISWHITE: | |
341 | case PHOTOMETRIC_MINISBLACK: | |
342 | if (planarconfig == PLANARCONFIG_CONTIG | |
343 | && img->samplesperpixel != 1 | |
344 | && img->bitspersample < 8 ) { | |
345 | sprintf(emsg, | |
346 | "Sorry, can not handle contiguous data with %s=%d, " | |
347 | "and %s=%d and Bits/Sample=%d", | |
348 | photoTag, img->photometric, | |
349 | "Samples/pixel", img->samplesperpixel, | |
350 | img->bitspersample); | |
351 | goto fail_return; | |
352 | } | |
353 | break; | |
354 | case PHOTOMETRIC_YCBCR: | |
355 | /* It would probably be nice to have a reality check here. */ | |
356 | if (planarconfig == PLANARCONFIG_CONTIG) | |
357 | /* can rely on libjpeg to convert to RGB */ | |
358 | /* XXX should restore current state on exit */ | |
359 | switch (compress) { | |
360 | case COMPRESSION_JPEG: | |
361 | /* | |
362 | * TODO: when complete tests verify complete desubsampling | |
363 | * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in | |
364 | * favor of tif_getimage.c native handling | |
365 | */ | |
366 | TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB); | |
367 | img->photometric = PHOTOMETRIC_RGB; | |
368 | break; | |
369 | default: | |
370 | /* do nothing */; | |
371 | break; | |
372 | } | |
373 | /* | |
374 | * TODO: if at all meaningful and useful, make more complete | |
375 | * support check here, or better still, refactor to let supporting | |
376 | * code decide whether there is support and what meaningfull | |
377 | * error to return | |
378 | */ | |
379 | break; | |
380 | case PHOTOMETRIC_RGB: | |
381 | if (colorchannels < 3) { | |
382 | sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", | |
383 | "Color channels", colorchannels); | |
384 | goto fail_return; | |
385 | } | |
386 | break; | |
387 | case PHOTOMETRIC_SEPARATED: | |
388 | { | |
389 | uint16 inkset; | |
390 | TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); | |
391 | if (inkset != INKSET_CMYK) { | |
392 | sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | |
393 | "InkSet", inkset); | |
394 | goto fail_return; | |
395 | } | |
396 | if (img->samplesperpixel < 4) { | |
397 | sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | |
398 | "Samples/pixel", img->samplesperpixel); | |
399 | goto fail_return; | |
400 | } | |
401 | } | |
402 | break; | |
403 | case PHOTOMETRIC_LOGL: | |
404 | if (compress != COMPRESSION_SGILOG) { | |
405 | sprintf(emsg, "Sorry, LogL data must have %s=%d", | |
406 | "Compression", COMPRESSION_SGILOG); | |
407 | goto fail_return; | |
408 | } | |
409 | TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); | |
410 | img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */ | |
411 | img->bitspersample = 8; | |
412 | break; | |
413 | case PHOTOMETRIC_LOGLUV: | |
414 | if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) { | |
415 | sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", | |
416 | "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); | |
417 | goto fail_return; | |
418 | } | |
419 | if (planarconfig != PLANARCONFIG_CONTIG) { | |
420 | sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", | |
421 | "Planarconfiguration", planarconfig); | |
422 | return (0); | |
423 | } | |
424 | TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); | |
425 | img->photometric = PHOTOMETRIC_RGB; /* little white lie */ | |
426 | img->bitspersample = 8; | |
427 | break; | |
428 | case PHOTOMETRIC_CIELAB: | |
429 | break; | |
430 | default: | |
431 | sprintf(emsg, "Sorry, can not handle image with %s=%d", | |
432 | photoTag, img->photometric); | |
433 | goto fail_return; | |
434 | } | |
435 | img->Map = NULL; | |
436 | img->BWmap = NULL; | |
437 | img->PALmap = NULL; | |
438 | img->ycbcr = NULL; | |
439 | img->cielab = NULL; | |
440 | img->UaToAa = NULL; | |
441 | img->Bitdepth16To8 = NULL; | |
442 | TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width); | |
443 | TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height); | |
444 | TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation); | |
445 | img->isContig = | |
446 | !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1); | |
447 | if (img->isContig) { | |
448 | if (!PickContigCase(img)) { | |
449 | sprintf(emsg, "Sorry, can not handle image"); | |
450 | goto fail_return; | |
451 | } | |
452 | } else { | |
453 | if (!PickSeparateCase(img)) { | |
454 | sprintf(emsg, "Sorry, can not handle image"); | |
455 | goto fail_return; | |
456 | } | |
457 | } | |
458 | return 1; | |
459 | ||
460 | fail_return: | |
461 | _TIFFfree( img->redcmap ); | |
462 | _TIFFfree( img->greencmap ); | |
463 | _TIFFfree( img->bluecmap ); | |
464 | img->redcmap = img->greencmap = img->bluecmap = NULL; | |
465 | return 0; | |
466 | } | |
467 | ||
468 | int | |
469 | TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
470 | { | |
471 | if (img->get == NULL) { | |
472 | TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup"); | |
473 | return (0); | |
474 | } | |
475 | if (img->put.any == NULL) { | |
476 | TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), | |
477 | "No \"put\" routine setupl; probably can not handle image format"); | |
478 | return (0); | |
479 | } | |
480 | return (*img->get)(img, raster, w, h); | |
481 | } | |
482 | ||
483 | /* | |
484 | * Read the specified image into an ABGR-format rastertaking in account | |
485 | * specified orientation. | |
486 | */ | |
487 | int | |
488 | TIFFReadRGBAImageOriented(TIFF* tif, | |
489 | uint32 rwidth, uint32 rheight, uint32* raster, | |
490 | int orientation, int stop) | |
491 | { | |
492 | char emsg[1024] = ""; | |
493 | TIFFRGBAImage img; | |
494 | int ok; | |
495 | ||
496 | if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) { | |
497 | img.req_orientation = orientation; | |
498 | /* XXX verify rwidth and rheight against width and height */ | |
499 | ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth, | |
500 | rwidth, img.height); | |
501 | TIFFRGBAImageEnd(&img); | |
502 | } else { | |
503 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); | |
504 | ok = 0; | |
505 | } | |
506 | return (ok); | |
507 | } | |
508 | ||
509 | /* | |
510 | * Read the specified image into an ABGR-format raster. Use bottom left | |
511 | * origin for raster by default. | |
512 | */ | |
513 | int | |
514 | TIFFReadRGBAImage(TIFF* tif, | |
515 | uint32 rwidth, uint32 rheight, uint32* raster, int stop) | |
516 | { | |
517 | return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster, | |
518 | ORIENTATION_BOTLEFT, stop); | |
519 | } | |
520 | ||
521 | static int | |
522 | setorientation(TIFFRGBAImage* img) | |
523 | { | |
524 | switch (img->orientation) { | |
525 | case ORIENTATION_TOPLEFT: | |
526 | case ORIENTATION_LEFTTOP: | |
527 | if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
528 | img->req_orientation == ORIENTATION_RIGHTTOP) | |
529 | return FLIP_HORIZONTALLY; | |
530 | else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
531 | img->req_orientation == ORIENTATION_RIGHTBOT) | |
532 | return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
533 | else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
534 | img->req_orientation == ORIENTATION_LEFTBOT) | |
535 | return FLIP_VERTICALLY; | |
536 | else | |
537 | return 0; | |
538 | case ORIENTATION_TOPRIGHT: | |
539 | case ORIENTATION_RIGHTTOP: | |
540 | if (img->req_orientation == ORIENTATION_TOPLEFT || | |
541 | img->req_orientation == ORIENTATION_LEFTTOP) | |
542 | return FLIP_HORIZONTALLY; | |
543 | else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
544 | img->req_orientation == ORIENTATION_RIGHTBOT) | |
545 | return FLIP_VERTICALLY; | |
546 | else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
547 | img->req_orientation == ORIENTATION_LEFTBOT) | |
548 | return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
549 | else | |
550 | return 0; | |
551 | case ORIENTATION_BOTRIGHT: | |
552 | case ORIENTATION_RIGHTBOT: | |
553 | if (img->req_orientation == ORIENTATION_TOPLEFT || | |
554 | img->req_orientation == ORIENTATION_LEFTTOP) | |
555 | return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
556 | else if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
557 | img->req_orientation == ORIENTATION_RIGHTTOP) | |
558 | return FLIP_VERTICALLY; | |
559 | else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
560 | img->req_orientation == ORIENTATION_LEFTBOT) | |
561 | return FLIP_HORIZONTALLY; | |
562 | else | |
563 | return 0; | |
564 | case ORIENTATION_BOTLEFT: | |
565 | case ORIENTATION_LEFTBOT: | |
566 | if (img->req_orientation == ORIENTATION_TOPLEFT || | |
567 | img->req_orientation == ORIENTATION_LEFTTOP) | |
568 | return FLIP_VERTICALLY; | |
569 | else if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
570 | img->req_orientation == ORIENTATION_RIGHTTOP) | |
571 | return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
572 | else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
573 | img->req_orientation == ORIENTATION_RIGHTBOT) | |
574 | return FLIP_HORIZONTALLY; | |
575 | else | |
576 | return 0; | |
577 | default: /* NOTREACHED */ | |
578 | return 0; | |
579 | } | |
580 | } | |
581 | ||
582 | /* | |
583 | * Get an tile-organized image that has | |
584 | * PlanarConfiguration contiguous if SamplesPerPixel > 1 | |
585 | * or | |
586 | * SamplesPerPixel == 1 | |
587 | */ | |
588 | static int | |
589 | gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
590 | { | |
591 | TIFF* tif = img->tif; | |
592 | tileContigRoutine put = img->put.contig; | |
593 | uint32 col, row, y, rowstoread; | |
594 | tmsize_t pos; | |
595 | uint32 tw, th; | |
596 | unsigned char* buf; | |
597 | int32 fromskew, toskew; | |
598 | uint32 nrow; | |
599 | int ret = 1, flip; | |
600 | ||
601 | buf = (unsigned char*) _TIFFmalloc(TIFFTileSize(tif)); | |
602 | if (buf == 0) { | |
603 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer"); | |
604 | return (0); | |
605 | } | |
606 | _TIFFmemset(buf, 0, TIFFTileSize(tif)); | |
607 | TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | |
608 | TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | |
609 | ||
610 | flip = setorientation(img); | |
611 | if (flip & FLIP_VERTICALLY) { | |
612 | y = h - 1; | |
613 | toskew = -(int32)(tw + w); | |
614 | } | |
615 | else { | |
616 | y = 0; | |
617 | toskew = -(int32)(tw - w); | |
618 | } | |
619 | ||
620 | for (row = 0; row < h; row += nrow) | |
621 | { | |
622 | rowstoread = th - (row + img->row_offset) % th; | |
623 | nrow = (row + rowstoread > h ? h - row : rowstoread); | |
624 | for (col = 0; col < w; col += tw) | |
625 | { | |
626 | if (TIFFReadTile(tif, buf, col+img->col_offset, | |
627 | row+img->row_offset, 0, 0)==(tmsize_t)(-1) && img->stoponerr) | |
628 | { | |
629 | ret = 0; | |
630 | break; | |
631 | } | |
632 | ||
633 | pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif); | |
634 | ||
635 | if (col + tw > w) | |
636 | { | |
637 | /* | |
638 | * Tile is clipped horizontally. Calculate | |
639 | * visible portion and skewing factors. | |
640 | */ | |
641 | uint32 npix = w - col; | |
642 | fromskew = tw - npix; | |
643 | (*put)(img, raster+y*w+col, col, y, | |
644 | npix, nrow, fromskew, toskew + fromskew, buf + pos); | |
645 | } | |
646 | else | |
647 | { | |
648 | (*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf + pos); | |
649 | } | |
650 | } | |
651 | ||
652 | y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
653 | } | |
654 | _TIFFfree(buf); | |
655 | ||
656 | if (flip & FLIP_HORIZONTALLY) { | |
657 | uint32 line; | |
658 | ||
659 | for (line = 0; line < h; line++) { | |
660 | uint32 *left = raster + (line * w); | |
661 | uint32 *right = left + w - 1; | |
662 | ||
663 | while ( left < right ) { | |
664 | uint32 temp = *left; | |
665 | *left = *right; | |
666 | *right = temp; | |
667 | left++, right--; | |
668 | } | |
669 | } | |
670 | } | |
671 | ||
672 | return (ret); | |
673 | } | |
674 | ||
675 | /* | |
676 | * Get an tile-organized image that has | |
677 | * SamplesPerPixel > 1 | |
678 | * PlanarConfiguration separated | |
679 | * We assume that all such images are RGB. | |
680 | */ | |
681 | static int | |
682 | gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
683 | { | |
684 | TIFF* tif = img->tif; | |
685 | tileSeparateRoutine put = img->put.separate; | |
686 | uint32 col, row, y, rowstoread; | |
687 | tmsize_t pos; | |
688 | uint32 tw, th; | |
689 | unsigned char* buf; | |
690 | unsigned char* p0; | |
691 | unsigned char* p1; | |
692 | unsigned char* p2; | |
693 | unsigned char* pa; | |
694 | tmsize_t tilesize; | |
695 | tmsize_t bufsize; | |
696 | int32 fromskew, toskew; | |
697 | int alpha = img->alpha; | |
698 | uint32 nrow; | |
699 | int ret = 1, flip; | |
700 | int colorchannels; | |
701 | ||
702 | tilesize = TIFFTileSize(tif); | |
703 | bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize); | |
704 | if (bufsize == 0) { | |
705 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate"); | |
706 | return (0); | |
707 | } | |
708 | buf = (unsigned char*) _TIFFmalloc(bufsize); | |
709 | if (buf == 0) { | |
710 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer"); | |
711 | return (0); | |
712 | } | |
713 | _TIFFmemset(buf, 0, bufsize); | |
714 | p0 = buf; | |
715 | p1 = p0 + tilesize; | |
716 | p2 = p1 + tilesize; | |
717 | pa = (alpha?(p2+tilesize):NULL); | |
718 | TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | |
719 | TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | |
720 | ||
721 | flip = setorientation(img); | |
722 | if (flip & FLIP_VERTICALLY) { | |
723 | y = h - 1; | |
724 | toskew = -(int32)(tw + w); | |
725 | } | |
726 | else { | |
727 | y = 0; | |
728 | toskew = -(int32)(tw - w); | |
729 | } | |
730 | ||
731 | switch( img->photometric ) | |
732 | { | |
733 | case PHOTOMETRIC_MINISWHITE: | |
734 | case PHOTOMETRIC_MINISBLACK: | |
735 | case PHOTOMETRIC_PALETTE: | |
736 | colorchannels = 1; | |
737 | p2 = p1 = p0; | |
738 | break; | |
739 | ||
740 | default: | |
741 | colorchannels = 3; | |
742 | break; | |
743 | } | |
744 | ||
745 | for (row = 0; row < h; row += nrow) | |
746 | { | |
747 | rowstoread = th - (row + img->row_offset) % th; | |
748 | nrow = (row + rowstoread > h ? h - row : rowstoread); | |
749 | for (col = 0; col < w; col += tw) | |
750 | { | |
751 | if (TIFFReadTile(tif, p0, col+img->col_offset, | |
752 | row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr) | |
753 | { | |
754 | ret = 0; | |
755 | break; | |
756 | } | |
757 | if (colorchannels > 1 | |
758 | && TIFFReadTile(tif, p1, col+img->col_offset, | |
759 | row+img->row_offset,0,1) == (tmsize_t)(-1) | |
760 | && img->stoponerr) | |
761 | { | |
762 | ret = 0; | |
763 | break; | |
764 | } | |
765 | if (colorchannels > 1 | |
766 | && TIFFReadTile(tif, p2, col+img->col_offset, | |
767 | row+img->row_offset,0,2) == (tmsize_t)(-1) | |
768 | && img->stoponerr) | |
769 | { | |
770 | ret = 0; | |
771 | break; | |
772 | } | |
773 | if (alpha | |
774 | && TIFFReadTile(tif,pa,col+img->col_offset, | |
775 | row+img->row_offset,0,colorchannels) == (tmsize_t)(-1) | |
776 | && img->stoponerr) | |
777 | { | |
778 | ret = 0; | |
779 | break; | |
780 | } | |
781 | ||
782 | pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif); | |
783 | ||
784 | if (col + tw > w) | |
785 | { | |
786 | /* | |
787 | * Tile is clipped horizontally. Calculate | |
788 | * visible portion and skewing factors. | |
789 | */ | |
790 | uint32 npix = w - col; | |
791 | fromskew = tw - npix; | |
792 | (*put)(img, raster+y*w+col, col, y, | |
793 | npix, nrow, fromskew, toskew + fromskew, | |
794 | p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL)); | |
795 | } else { | |
796 | (*put)(img, raster+y*w+col, col, y, | |
797 | tw, nrow, 0, toskew, p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL)); | |
798 | } | |
799 | } | |
800 | ||
801 | y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow); | |
802 | } | |
803 | ||
804 | if (flip & FLIP_HORIZONTALLY) { | |
805 | uint32 line; | |
806 | ||
807 | for (line = 0; line < h; line++) { | |
808 | uint32 *left = raster + (line * w); | |
809 | uint32 *right = left + w - 1; | |
810 | ||
811 | while ( left < right ) { | |
812 | uint32 temp = *left; | |
813 | *left = *right; | |
814 | *right = temp; | |
815 | left++, right--; | |
816 | } | |
817 | } | |
818 | } | |
819 | ||
820 | _TIFFfree(buf); | |
821 | return (ret); | |
822 | } | |
823 | ||
824 | /* | |
825 | * Get a strip-organized image that has | |
826 | * PlanarConfiguration contiguous if SamplesPerPixel > 1 | |
827 | * or | |
828 | * SamplesPerPixel == 1 | |
829 | */ | |
830 | static int | |
831 | gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
832 | { | |
833 | TIFF* tif = img->tif; | |
834 | tileContigRoutine put = img->put.contig; | |
835 | uint32 row, y, nrow, nrowsub, rowstoread; | |
836 | tmsize_t pos; | |
837 | unsigned char* buf; | |
838 | uint32 rowsperstrip; | |
839 | uint16 subsamplinghor,subsamplingver; | |
840 | uint32 imagewidth = img->width; | |
841 | tmsize_t scanline; | |
842 | int32 fromskew, toskew; | |
843 | int ret = 1, flip; | |
844 | ||
845 | buf = (unsigned char*) _TIFFmalloc(TIFFStripSize(tif)); | |
846 | if (buf == 0) { | |
847 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for strip buffer"); | |
848 | return (0); | |
849 | } | |
850 | _TIFFmemset(buf, 0, TIFFStripSize(tif)); | |
851 | ||
852 | flip = setorientation(img); | |
853 | if (flip & FLIP_VERTICALLY) { | |
854 | y = h - 1; | |
855 | toskew = -(int32)(w + w); | |
856 | } else { | |
857 | y = 0; | |
858 | toskew = -(int32)(w - w); | |
859 | } | |
860 | ||
861 | TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
862 | TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver); | |
863 | scanline = TIFFScanlineSize(tif); | |
864 | fromskew = (w < imagewidth ? imagewidth - w : 0); | |
865 | for (row = 0; row < h; row += nrow) | |
866 | { | |
867 | rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; | |
868 | nrow = (row + rowstoread > h ? h - row : rowstoread); | |
869 | nrowsub = nrow; | |
870 | if ((nrowsub%subsamplingver)!=0) | |
871 | nrowsub+=subsamplingver-nrowsub%subsamplingver; | |
872 | if (TIFFReadEncodedStrip(tif, | |
873 | TIFFComputeStrip(tif,row+img->row_offset, 0), | |
874 | buf, | |
875 | ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1) | |
876 | && img->stoponerr) | |
877 | { | |
878 | ret = 0; | |
879 | break; | |
880 | } | |
881 | ||
882 | pos = ((row + img->row_offset) % rowsperstrip) * scanline; | |
883 | (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos); | |
884 | y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
885 | } | |
886 | ||
887 | if (flip & FLIP_HORIZONTALLY) { | |
888 | uint32 line; | |
889 | ||
890 | for (line = 0; line < h; line++) { | |
891 | uint32 *left = raster + (line * w); | |
892 | uint32 *right = left + w - 1; | |
893 | ||
894 | while ( left < right ) { | |
895 | uint32 temp = *left; | |
896 | *left = *right; | |
897 | *right = temp; | |
898 | left++, right--; | |
899 | } | |
900 | } | |
901 | } | |
902 | ||
903 | _TIFFfree(buf); | |
904 | return (ret); | |
905 | } | |
906 | ||
907 | /* | |
908 | * Get a strip-organized image with | |
909 | * SamplesPerPixel > 1 | |
910 | * PlanarConfiguration separated | |
911 | * We assume that all such images are RGB. | |
912 | */ | |
913 | static int | |
914 | gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
915 | { | |
916 | TIFF* tif = img->tif; | |
917 | tileSeparateRoutine put = img->put.separate; | |
918 | unsigned char *buf; | |
919 | unsigned char *p0, *p1, *p2, *pa; | |
920 | uint32 row, y, nrow, rowstoread; | |
921 | tmsize_t pos; | |
922 | tmsize_t scanline; | |
923 | uint32 rowsperstrip, offset_row; | |
924 | uint32 imagewidth = img->width; | |
925 | tmsize_t stripsize; | |
926 | tmsize_t bufsize; | |
927 | int32 fromskew, toskew; | |
928 | int alpha = img->alpha; | |
929 | int ret = 1, flip, colorchannels; | |
930 | ||
931 | stripsize = TIFFStripSize(tif); | |
932 | bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize); | |
933 | if (bufsize == 0) { | |
934 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate"); | |
935 | return (0); | |
936 | } | |
937 | p0 = buf = (unsigned char *)_TIFFmalloc(bufsize); | |
938 | if (buf == 0) { | |
939 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for tile buffer"); | |
940 | return (0); | |
941 | } | |
942 | _TIFFmemset(buf, 0, bufsize); | |
943 | p1 = p0 + stripsize; | |
944 | p2 = p1 + stripsize; | |
945 | pa = (alpha?(p2+stripsize):NULL); | |
946 | ||
947 | flip = setorientation(img); | |
948 | if (flip & FLIP_VERTICALLY) { | |
949 | y = h - 1; | |
950 | toskew = -(int32)(w + w); | |
951 | } | |
952 | else { | |
953 | y = 0; | |
954 | toskew = -(int32)(w - w); | |
955 | } | |
956 | ||
957 | switch( img->photometric ) | |
958 | { | |
959 | case PHOTOMETRIC_MINISWHITE: | |
960 | case PHOTOMETRIC_MINISBLACK: | |
961 | case PHOTOMETRIC_PALETTE: | |
962 | colorchannels = 1; | |
963 | p2 = p1 = p0; | |
964 | break; | |
965 | ||
966 | default: | |
967 | colorchannels = 3; | |
968 | break; | |
969 | } | |
970 | ||
971 | TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
972 | scanline = TIFFScanlineSize(tif); | |
973 | fromskew = (w < imagewidth ? imagewidth - w : 0); | |
974 | for (row = 0; row < h; row += nrow) | |
975 | { | |
976 | rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; | |
977 | nrow = (row + rowstoread > h ? h - row : rowstoread); | |
978 | offset_row = row + img->row_offset; | |
979 | if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0), | |
980 | p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1) | |
981 | && img->stoponerr) | |
982 | { | |
983 | ret = 0; | |
984 | break; | |
985 | } | |
986 | if (colorchannels > 1 | |
987 | && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1), | |
988 | p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1) | |
989 | && img->stoponerr) | |
990 | { | |
991 | ret = 0; | |
992 | break; | |
993 | } | |
994 | if (colorchannels > 1 | |
995 | && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2), | |
996 | p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1) | |
997 | && img->stoponerr) | |
998 | { | |
999 | ret = 0; | |
1000 | break; | |
1001 | } | |
1002 | if (alpha) | |
1003 | { | |
1004 | if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels), | |
1005 | pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1) | |
1006 | && img->stoponerr) | |
1007 | { | |
1008 | ret = 0; | |
1009 | break; | |
1010 | } | |
1011 | } | |
1012 | ||
1013 | pos = ((row + img->row_offset) % rowsperstrip) * scanline; | |
1014 | (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos, | |
1015 | p2 + pos, (alpha?(pa+pos):NULL)); | |
1016 | y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
1017 | } | |
1018 | ||
1019 | if (flip & FLIP_HORIZONTALLY) { | |
1020 | uint32 line; | |
1021 | ||
1022 | for (line = 0; line < h; line++) { | |
1023 | uint32 *left = raster + (line * w); | |
1024 | uint32 *right = left + w - 1; | |
1025 | ||
1026 | while ( left < right ) { | |
1027 | uint32 temp = *left; | |
1028 | *left = *right; | |
1029 | *right = temp; | |
1030 | left++, right--; | |
1031 | } | |
1032 | } | |
1033 | } | |
1034 | ||
1035 | _TIFFfree(buf); | |
1036 | return (ret); | |
1037 | } | |
1038 | ||
1039 | /* | |
1040 | * The following routines move decoded data returned | |
1041 | * from the TIFF library into rasters filled with packed | |
1042 | * ABGR pixels (i.e. suitable for passing to lrecwrite.) | |
1043 | * | |
1044 | * The routines have been created according to the most | |
1045 | * important cases and optimized. PickContigCase and | |
1046 | * PickSeparateCase analyze the parameters and select | |
1047 | * the appropriate "get" and "put" routine to use. | |
1048 | */ | |
1049 | #define REPEAT8(op) REPEAT4(op); REPEAT4(op) | |
1050 | #define REPEAT4(op) REPEAT2(op); REPEAT2(op) | |
1051 | #define REPEAT2(op) op; op | |
1052 | #define CASE8(x,op) \ | |
1053 | switch (x) { \ | |
1054 | case 7: op; case 6: op; case 5: op; \ | |
1055 | case 4: op; case 3: op; case 2: op; \ | |
1056 | case 1: op; \ | |
1057 | } | |
1058 | #define CASE4(x,op) switch (x) { case 3: op; case 2: op; case 1: op; } | |
1059 | #define NOP | |
1060 | ||
1061 | #define UNROLL8(w, op1, op2) { \ | |
1062 | uint32 _x; \ | |
1063 | for (_x = w; _x >= 8; _x -= 8) { \ | |
1064 | op1; \ | |
1065 | REPEAT8(op2); \ | |
1066 | } \ | |
1067 | if (_x > 0) { \ | |
1068 | op1; \ | |
1069 | CASE8(_x,op2); \ | |
1070 | } \ | |
1071 | } | |
1072 | #define UNROLL4(w, op1, op2) { \ | |
1073 | uint32 _x; \ | |
1074 | for (_x = w; _x >= 4; _x -= 4) { \ | |
1075 | op1; \ | |
1076 | REPEAT4(op2); \ | |
1077 | } \ | |
1078 | if (_x > 0) { \ | |
1079 | op1; \ | |
1080 | CASE4(_x,op2); \ | |
1081 | } \ | |
1082 | } | |
1083 | #define UNROLL2(w, op1, op2) { \ | |
1084 | uint32 _x; \ | |
1085 | for (_x = w; _x >= 2; _x -= 2) { \ | |
1086 | op1; \ | |
1087 | REPEAT2(op2); \ | |
1088 | } \ | |
1089 | if (_x) { \ | |
1090 | op1; \ | |
1091 | op2; \ | |
1092 | } \ | |
1093 | } | |
1094 | ||
1095 | #define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; } | |
1096 | #define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; } | |
1097 | ||
1098 | #define A1 (((uint32)0xffL)<<24) | |
1099 | #define PACK(r,g,b) \ | |
1100 | ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1) | |
1101 | #define PACK4(r,g,b,a) \ | |
1102 | ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24)) | |
1103 | #define W2B(v) (((v)>>8)&0xff) | |
1104 | /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */ | |
1105 | #define PACKW(r,g,b) \ | |
1106 | ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1) | |
1107 | #define PACKW4(r,g,b,a) \ | |
1108 | ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24)) | |
1109 | ||
1110 | #define DECLAREContigPutFunc(name) \ | |
1111 | static void name(\ | |
1112 | TIFFRGBAImage* img, \ | |
1113 | uint32* cp, \ | |
1114 | uint32 x, uint32 y, \ | |
1115 | uint32 w, uint32 h, \ | |
1116 | int32 fromskew, int32 toskew, \ | |
1117 | unsigned char* pp \ | |
1118 | ) | |
1119 | ||
1120 | /* | |
1121 | * 8-bit palette => colormap/RGB | |
1122 | */ | |
1123 | DECLAREContigPutFunc(put8bitcmaptile) | |
1124 | { | |
1125 | uint32** PALmap = img->PALmap; | |
1126 | int samplesperpixel = img->samplesperpixel; | |
1127 | ||
1128 | (void) y; | |
1129 | while (h-- > 0) { | |
1130 | for (x = w; x-- > 0;) | |
1131 | { | |
1132 | *cp++ = PALmap[*pp][0]; | |
1133 | pp += samplesperpixel; | |
1134 | } | |
1135 | cp += toskew; | |
1136 | pp += fromskew; | |
1137 | } | |
1138 | } | |
1139 | ||
1140 | /* | |
1141 | * 4-bit palette => colormap/RGB | |
1142 | */ | |
1143 | DECLAREContigPutFunc(put4bitcmaptile) | |
1144 | { | |
1145 | uint32** PALmap = img->PALmap; | |
1146 | ||
1147 | (void) x; (void) y; | |
1148 | fromskew /= 2; | |
1149 | while (h-- > 0) { | |
1150 | uint32* bw; | |
1151 | UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
1152 | cp += toskew; | |
1153 | pp += fromskew; | |
1154 | } | |
1155 | } | |
1156 | ||
1157 | /* | |
1158 | * 2-bit palette => colormap/RGB | |
1159 | */ | |
1160 | DECLAREContigPutFunc(put2bitcmaptile) | |
1161 | { | |
1162 | uint32** PALmap = img->PALmap; | |
1163 | ||
1164 | (void) x; (void) y; | |
1165 | fromskew /= 4; | |
1166 | while (h-- > 0) { | |
1167 | uint32* bw; | |
1168 | UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
1169 | cp += toskew; | |
1170 | pp += fromskew; | |
1171 | } | |
1172 | } | |
1173 | ||
1174 | /* | |
1175 | * 1-bit palette => colormap/RGB | |
1176 | */ | |
1177 | DECLAREContigPutFunc(put1bitcmaptile) | |
1178 | { | |
1179 | uint32** PALmap = img->PALmap; | |
1180 | ||
1181 | (void) x; (void) y; | |
1182 | fromskew /= 8; | |
1183 | while (h-- > 0) { | |
1184 | uint32* bw; | |
1185 | UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
1186 | cp += toskew; | |
1187 | pp += fromskew; | |
1188 | } | |
1189 | } | |
1190 | ||
1191 | /* | |
1192 | * 8-bit greyscale => colormap/RGB | |
1193 | */ | |
1194 | DECLAREContigPutFunc(putgreytile) | |
1195 | { | |
1196 | int samplesperpixel = img->samplesperpixel; | |
1197 | uint32** BWmap = img->BWmap; | |
1198 | ||
1199 | (void) y; | |
1200 | while (h-- > 0) { | |
1201 | for (x = w; x-- > 0;) | |
1202 | { | |
1203 | *cp++ = BWmap[*pp][0]; | |
1204 | pp += samplesperpixel; | |
1205 | } | |
1206 | cp += toskew; | |
1207 | pp += fromskew; | |
1208 | } | |
1209 | } | |
1210 | ||
1211 | /* | |
1212 | * 8-bit greyscale with associated alpha => colormap/RGBA | |
1213 | */ | |
1214 | DECLAREContigPutFunc(putagreytile) | |
1215 | { | |
1216 | int samplesperpixel = img->samplesperpixel; | |
1217 | uint32** BWmap = img->BWmap; | |
1218 | ||
1219 | (void) y; | |
1220 | while (h-- > 0) { | |
1221 | for (x = w; x-- > 0;) | |
1222 | { | |
1223 | *cp++ = BWmap[*pp][0] & (*(pp+1) << 24 | ~A1); | |
1224 | pp += samplesperpixel; | |
1225 | } | |
1226 | cp += toskew; | |
1227 | pp += fromskew; | |
1228 | } | |
1229 | } | |
1230 | ||
1231 | /* | |
1232 | * 16-bit greyscale => colormap/RGB | |
1233 | */ | |
1234 | DECLAREContigPutFunc(put16bitbwtile) | |
1235 | { | |
1236 | int samplesperpixel = img->samplesperpixel; | |
1237 | uint32** BWmap = img->BWmap; | |
1238 | ||
1239 | (void) y; | |
1240 | while (h-- > 0) { | |
1241 | uint16 *wp = (uint16 *) pp; | |
1242 | ||
1243 | for (x = w; x-- > 0;) | |
1244 | { | |
1245 | /* use high order byte of 16bit value */ | |
1246 | ||
1247 | *cp++ = BWmap[*wp >> 8][0]; | |
1248 | pp += 2 * samplesperpixel; | |
1249 | wp += samplesperpixel; | |
1250 | } | |
1251 | cp += toskew; | |
1252 | pp += fromskew; | |
1253 | } | |
1254 | } | |
1255 | ||
1256 | /* | |
1257 | * 1-bit bilevel => colormap/RGB | |
1258 | */ | |
1259 | DECLAREContigPutFunc(put1bitbwtile) | |
1260 | { | |
1261 | uint32** BWmap = img->BWmap; | |
1262 | ||
1263 | (void) x; (void) y; | |
1264 | fromskew /= 8; | |
1265 | while (h-- > 0) { | |
1266 | uint32* bw; | |
1267 | UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
1268 | cp += toskew; | |
1269 | pp += fromskew; | |
1270 | } | |
1271 | } | |
1272 | ||
1273 | /* | |
1274 | * 2-bit greyscale => colormap/RGB | |
1275 | */ | |
1276 | DECLAREContigPutFunc(put2bitbwtile) | |
1277 | { | |
1278 | uint32** BWmap = img->BWmap; | |
1279 | ||
1280 | (void) x; (void) y; | |
1281 | fromskew /= 4; | |
1282 | while (h-- > 0) { | |
1283 | uint32* bw; | |
1284 | UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
1285 | cp += toskew; | |
1286 | pp += fromskew; | |
1287 | } | |
1288 | } | |
1289 | ||
1290 | /* | |
1291 | * 4-bit greyscale => colormap/RGB | |
1292 | */ | |
1293 | DECLAREContigPutFunc(put4bitbwtile) | |
1294 | { | |
1295 | uint32** BWmap = img->BWmap; | |
1296 | ||
1297 | (void) x; (void) y; | |
1298 | fromskew /= 2; | |
1299 | while (h-- > 0) { | |
1300 | uint32* bw; | |
1301 | UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
1302 | cp += toskew; | |
1303 | pp += fromskew; | |
1304 | } | |
1305 | } | |
1306 | ||
1307 | /* | |
1308 | * 8-bit packed samples, no Map => RGB | |
1309 | */ | |
1310 | DECLAREContigPutFunc(putRGBcontig8bittile) | |
1311 | { | |
1312 | int samplesperpixel = img->samplesperpixel; | |
1313 | ||
1314 | (void) x; (void) y; | |
1315 | fromskew *= samplesperpixel; | |
1316 | while (h-- > 0) { | |
1317 | UNROLL8(w, NOP, | |
1318 | *cp++ = PACK(pp[0], pp[1], pp[2]); | |
1319 | pp += samplesperpixel); | |
1320 | cp += toskew; | |
1321 | pp += fromskew; | |
1322 | } | |
1323 | } | |
1324 | ||
1325 | /* | |
1326 | * 8-bit packed samples => RGBA w/ associated alpha | |
1327 | * (known to have Map == NULL) | |
1328 | */ | |
1329 | DECLAREContigPutFunc(putRGBAAcontig8bittile) | |
1330 | { | |
1331 | int samplesperpixel = img->samplesperpixel; | |
1332 | ||
1333 | (void) x; (void) y; | |
1334 | fromskew *= samplesperpixel; | |
1335 | while (h-- > 0) { | |
1336 | UNROLL8(w, NOP, | |
1337 | *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]); | |
1338 | pp += samplesperpixel); | |
1339 | cp += toskew; | |
1340 | pp += fromskew; | |
1341 | } | |
1342 | } | |
1343 | ||
1344 | /* | |
1345 | * 8-bit packed samples => RGBA w/ unassociated alpha | |
1346 | * (known to have Map == NULL) | |
1347 | */ | |
1348 | DECLAREContigPutFunc(putRGBUAcontig8bittile) | |
1349 | { | |
1350 | int samplesperpixel = img->samplesperpixel; | |
1351 | (void) y; | |
1352 | fromskew *= samplesperpixel; | |
1353 | while (h-- > 0) { | |
1354 | uint32 r, g, b, a; | |
1355 | uint8* m; | |
1356 | for (x = w; x-- > 0;) { | |
1357 | a = pp[3]; | |
1358 | m = img->UaToAa+(a<<8); | |
1359 | r = m[pp[0]]; | |
1360 | g = m[pp[1]]; | |
1361 | b = m[pp[2]]; | |
1362 | *cp++ = PACK4(r,g,b,a); | |
1363 | pp += samplesperpixel; | |
1364 | } | |
1365 | cp += toskew; | |
1366 | pp += fromskew; | |
1367 | } | |
1368 | } | |
1369 | ||
1370 | /* | |
1371 | * 16-bit packed samples => RGB | |
1372 | */ | |
1373 | DECLAREContigPutFunc(putRGBcontig16bittile) | |
1374 | { | |
1375 | int samplesperpixel = img->samplesperpixel; | |
1376 | uint16 *wp = (uint16 *)pp; | |
1377 | (void) y; | |
1378 | fromskew *= samplesperpixel; | |
1379 | while (h-- > 0) { | |
1380 | for (x = w; x-- > 0;) { | |
1381 | *cp++ = PACK(img->Bitdepth16To8[wp[0]], | |
1382 | img->Bitdepth16To8[wp[1]], | |
1383 | img->Bitdepth16To8[wp[2]]); | |
1384 | wp += samplesperpixel; | |
1385 | } | |
1386 | cp += toskew; | |
1387 | wp += fromskew; | |
1388 | } | |
1389 | } | |
1390 | ||
1391 | /* | |
1392 | * 16-bit packed samples => RGBA w/ associated alpha | |
1393 | * (known to have Map == NULL) | |
1394 | */ | |
1395 | DECLAREContigPutFunc(putRGBAAcontig16bittile) | |
1396 | { | |
1397 | int samplesperpixel = img->samplesperpixel; | |
1398 | uint16 *wp = (uint16 *)pp; | |
1399 | (void) y; | |
1400 | fromskew *= samplesperpixel; | |
1401 | while (h-- > 0) { | |
1402 | for (x = w; x-- > 0;) { | |
1403 | *cp++ = PACK4(img->Bitdepth16To8[wp[0]], | |
1404 | img->Bitdepth16To8[wp[1]], | |
1405 | img->Bitdepth16To8[wp[2]], | |
1406 | img->Bitdepth16To8[wp[3]]); | |
1407 | wp += samplesperpixel; | |
1408 | } | |
1409 | cp += toskew; | |
1410 | wp += fromskew; | |
1411 | } | |
1412 | } | |
1413 | ||
1414 | /* | |
1415 | * 16-bit packed samples => RGBA w/ unassociated alpha | |
1416 | * (known to have Map == NULL) | |
1417 | */ | |
1418 | DECLAREContigPutFunc(putRGBUAcontig16bittile) | |
1419 | { | |
1420 | int samplesperpixel = img->samplesperpixel; | |
1421 | uint16 *wp = (uint16 *)pp; | |
1422 | (void) y; | |
1423 | fromskew *= samplesperpixel; | |
1424 | while (h-- > 0) { | |
1425 | uint32 r,g,b,a; | |
1426 | uint8* m; | |
1427 | for (x = w; x-- > 0;) { | |
1428 | a = img->Bitdepth16To8[wp[3]]; | |
1429 | m = img->UaToAa+(a<<8); | |
1430 | r = m[img->Bitdepth16To8[wp[0]]]; | |
1431 | g = m[img->Bitdepth16To8[wp[1]]]; | |
1432 | b = m[img->Bitdepth16To8[wp[2]]]; | |
1433 | *cp++ = PACK4(r,g,b,a); | |
1434 | wp += samplesperpixel; | |
1435 | } | |
1436 | cp += toskew; | |
1437 | wp += fromskew; | |
1438 | } | |
1439 | } | |
1440 | ||
1441 | /* | |
1442 | * 8-bit packed CMYK samples w/o Map => RGB | |
1443 | * | |
1444 | * NB: The conversion of CMYK->RGB is *very* crude. | |
1445 | */ | |
1446 | DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) | |
1447 | { | |
1448 | int samplesperpixel = img->samplesperpixel; | |
1449 | uint16 r, g, b, k; | |
1450 | ||
1451 | (void) x; (void) y; | |
1452 | fromskew *= samplesperpixel; | |
1453 | while (h-- > 0) { | |
1454 | UNROLL8(w, NOP, | |
1455 | k = 255 - pp[3]; | |
1456 | r = (k*(255-pp[0]))/255; | |
1457 | g = (k*(255-pp[1]))/255; | |
1458 | b = (k*(255-pp[2]))/255; | |
1459 | *cp++ = PACK(r, g, b); | |
1460 | pp += samplesperpixel); | |
1461 | cp += toskew; | |
1462 | pp += fromskew; | |
1463 | } | |
1464 | } | |
1465 | ||
1466 | /* | |
1467 | * 8-bit packed CMYK samples w/Map => RGB | |
1468 | * | |
1469 | * NB: The conversion of CMYK->RGB is *very* crude. | |
1470 | */ | |
1471 | DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) | |
1472 | { | |
1473 | int samplesperpixel = img->samplesperpixel; | |
1474 | TIFFRGBValue* Map = img->Map; | |
1475 | uint16 r, g, b, k; | |
1476 | ||
1477 | (void) y; | |
1478 | fromskew *= samplesperpixel; | |
1479 | while (h-- > 0) { | |
1480 | for (x = w; x-- > 0;) { | |
1481 | k = 255 - pp[3]; | |
1482 | r = (k*(255-pp[0]))/255; | |
1483 | g = (k*(255-pp[1]))/255; | |
1484 | b = (k*(255-pp[2]))/255; | |
1485 | *cp++ = PACK(Map[r], Map[g], Map[b]); | |
1486 | pp += samplesperpixel; | |
1487 | } | |
1488 | pp += fromskew; | |
1489 | cp += toskew; | |
1490 | } | |
1491 | } | |
1492 | ||
1493 | #define DECLARESepPutFunc(name) \ | |
1494 | static void name(\ | |
1495 | TIFFRGBAImage* img,\ | |
1496 | uint32* cp,\ | |
1497 | uint32 x, uint32 y, \ | |
1498 | uint32 w, uint32 h,\ | |
1499 | int32 fromskew, int32 toskew,\ | |
1500 | unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\ | |
1501 | ) | |
1502 | ||
1503 | /* | |
1504 | * 8-bit unpacked samples => RGB | |
1505 | */ | |
1506 | DECLARESepPutFunc(putRGBseparate8bittile) | |
1507 | { | |
1508 | (void) img; (void) x; (void) y; (void) a; | |
1509 | while (h-- > 0) { | |
1510 | UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++)); | |
1511 | SKEW(r, g, b, fromskew); | |
1512 | cp += toskew; | |
1513 | } | |
1514 | } | |
1515 | ||
1516 | /* | |
1517 | * 8-bit unpacked samples => RGBA w/ associated alpha | |
1518 | */ | |
1519 | DECLARESepPutFunc(putRGBAAseparate8bittile) | |
1520 | { | |
1521 | (void) img; (void) x; (void) y; | |
1522 | while (h-- > 0) { | |
1523 | UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++)); | |
1524 | SKEW4(r, g, b, a, fromskew); | |
1525 | cp += toskew; | |
1526 | } | |
1527 | } | |
1528 | ||
1529 | /* | |
1530 | * 8-bit unpacked CMYK samples => RGBA | |
1531 | */ | |
1532 | DECLARESepPutFunc(putCMYKseparate8bittile) | |
1533 | { | |
1534 | (void) img; (void) y; | |
1535 | while (h-- > 0) { | |
1536 | uint32 rv, gv, bv, kv; | |
1537 | for (x = w; x-- > 0;) { | |
1538 | kv = 255 - *a++; | |
1539 | rv = (kv*(255-*r++))/255; | |
1540 | gv = (kv*(255-*g++))/255; | |
1541 | bv = (kv*(255-*b++))/255; | |
1542 | *cp++ = PACK4(rv,gv,bv,255); | |
1543 | } | |
1544 | SKEW4(r, g, b, a, fromskew); | |
1545 | cp += toskew; | |
1546 | } | |
1547 | } | |
1548 | ||
1549 | /* | |
1550 | * 8-bit unpacked samples => RGBA w/ unassociated alpha | |
1551 | */ | |
1552 | DECLARESepPutFunc(putRGBUAseparate8bittile) | |
1553 | { | |
1554 | (void) img; (void) y; | |
1555 | while (h-- > 0) { | |
1556 | uint32 rv, gv, bv, av; | |
1557 | uint8* m; | |
1558 | for (x = w; x-- > 0;) { | |
1559 | av = *a++; | |
1560 | m = img->UaToAa+(av<<8); | |
1561 | rv = m[*r++]; | |
1562 | gv = m[*g++]; | |
1563 | bv = m[*b++]; | |
1564 | *cp++ = PACK4(rv,gv,bv,av); | |
1565 | } | |
1566 | SKEW4(r, g, b, a, fromskew); | |
1567 | cp += toskew; | |
1568 | } | |
1569 | } | |
1570 | ||
1571 | /* | |
1572 | * 16-bit unpacked samples => RGB | |
1573 | */ | |
1574 | DECLARESepPutFunc(putRGBseparate16bittile) | |
1575 | { | |
1576 | uint16 *wr = (uint16*) r; | |
1577 | uint16 *wg = (uint16*) g; | |
1578 | uint16 *wb = (uint16*) b; | |
1579 | (void) img; (void) y; (void) a; | |
1580 | while (h-- > 0) { | |
1581 | for (x = 0; x < w; x++) | |
1582 | *cp++ = PACK(img->Bitdepth16To8[*wr++], | |
1583 | img->Bitdepth16To8[*wg++], | |
1584 | img->Bitdepth16To8[*wb++]); | |
1585 | SKEW(wr, wg, wb, fromskew); | |
1586 | cp += toskew; | |
1587 | } | |
1588 | } | |
1589 | ||
1590 | /* | |
1591 | * 16-bit unpacked samples => RGBA w/ associated alpha | |
1592 | */ | |
1593 | DECLARESepPutFunc(putRGBAAseparate16bittile) | |
1594 | { | |
1595 | uint16 *wr = (uint16*) r; | |
1596 | uint16 *wg = (uint16*) g; | |
1597 | uint16 *wb = (uint16*) b; | |
1598 | uint16 *wa = (uint16*) a; | |
1599 | (void) img; (void) y; | |
1600 | while (h-- > 0) { | |
1601 | for (x = 0; x < w; x++) | |
1602 | *cp++ = PACK4(img->Bitdepth16To8[*wr++], | |
1603 | img->Bitdepth16To8[*wg++], | |
1604 | img->Bitdepth16To8[*wb++], | |
1605 | img->Bitdepth16To8[*wa++]); | |
1606 | SKEW4(wr, wg, wb, wa, fromskew); | |
1607 | cp += toskew; | |
1608 | } | |
1609 | } | |
1610 | ||
1611 | /* | |
1612 | * 16-bit unpacked samples => RGBA w/ unassociated alpha | |
1613 | */ | |
1614 | DECLARESepPutFunc(putRGBUAseparate16bittile) | |
1615 | { | |
1616 | uint16 *wr = (uint16*) r; | |
1617 | uint16 *wg = (uint16*) g; | |
1618 | uint16 *wb = (uint16*) b; | |
1619 | uint16 *wa = (uint16*) a; | |
1620 | (void) img; (void) y; | |
1621 | while (h-- > 0) { | |
1622 | uint32 r,g,b,a; | |
1623 | uint8* m; | |
1624 | for (x = w; x-- > 0;) { | |
1625 | a = img->Bitdepth16To8[*wa++]; | |
1626 | m = img->UaToAa+(a<<8); | |
1627 | r = m[img->Bitdepth16To8[*wr++]]; | |
1628 | g = m[img->Bitdepth16To8[*wg++]]; | |
1629 | b = m[img->Bitdepth16To8[*wb++]]; | |
1630 | *cp++ = PACK4(r,g,b,a); | |
1631 | } | |
1632 | SKEW4(wr, wg, wb, wa, fromskew); | |
1633 | cp += toskew; | |
1634 | } | |
1635 | } | |
1636 | ||
1637 | /* | |
1638 | * 8-bit packed CIE L*a*b 1976 samples => RGB | |
1639 | */ | |
1640 | DECLAREContigPutFunc(putcontig8bitCIELab) | |
1641 | { | |
1642 | float X, Y, Z; | |
1643 | uint32 r, g, b; | |
1644 | (void) y; | |
1645 | fromskew *= 3; | |
1646 | while (h-- > 0) { | |
1647 | for (x = w; x-- > 0;) { | |
1648 | TIFFCIELabToXYZ(img->cielab, | |
1649 | (unsigned char)pp[0], | |
1650 | (signed char)pp[1], | |
1651 | (signed char)pp[2], | |
1652 | &X, &Y, &Z); | |
1653 | TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b); | |
1654 | *cp++ = PACK(r, g, b); | |
1655 | pp += 3; | |
1656 | } | |
1657 | cp += toskew; | |
1658 | pp += fromskew; | |
1659 | } | |
1660 | } | |
1661 | ||
1662 | /* | |
1663 | * YCbCr -> RGB conversion and packing routines. | |
1664 | */ | |
1665 | ||
1666 | #define YCbCrtoRGB(dst, Y) { \ | |
1667 | uint32 r, g, b; \ | |
1668 | TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \ | |
1669 | dst = PACK(r, g, b); \ | |
1670 | } | |
1671 | ||
1672 | /* | |
1673 | * 8-bit packed YCbCr samples => RGB | |
1674 | * This function is generic for different sampling sizes, | |
1675 | * and can handle blocks sizes that aren't multiples of the | |
1676 | * sampling size. However, it is substantially less optimized | |
1677 | * than the specific sampling cases. It is used as a fallback | |
1678 | * for difficult blocks. | |
1679 | */ | |
1680 | #ifdef notdef | |
1681 | static void putcontig8bitYCbCrGenericTile( | |
1682 | TIFFRGBAImage* img, | |
1683 | uint32* cp, | |
1684 | uint32 x, uint32 y, | |
1685 | uint32 w, uint32 h, | |
1686 | int32 fromskew, int32 toskew, | |
1687 | unsigned char* pp, | |
1688 | int h_group, | |
1689 | int v_group ) | |
1690 | ||
1691 | { | |
1692 | uint32* cp1 = cp+w+toskew; | |
1693 | uint32* cp2 = cp1+w+toskew; | |
1694 | uint32* cp3 = cp2+w+toskew; | |
1695 | int32 incr = 3*w+4*toskew; | |
1696 | int32 Cb, Cr; | |
1697 | int group_size = v_group * h_group + 2; | |
1698 | ||
1699 | (void) y; | |
1700 | fromskew = (fromskew * group_size) / h_group; | |
1701 | ||
1702 | for( yy = 0; yy < h; yy++ ) | |
1703 | { | |
1704 | unsigned char *pp_line; | |
1705 | int y_line_group = yy / v_group; | |
1706 | int y_remainder = yy - y_line_group * v_group; | |
1707 | ||
1708 | pp_line = pp + v_line_group * | |
1709 | ||
1710 | ||
1711 | for( xx = 0; xx < w; xx++ ) | |
1712 | { | |
1713 | Cb = pp | |
1714 | } | |
1715 | } | |
1716 | for (; h >= 4; h -= 4) { | |
1717 | x = w>>2; | |
1718 | do { | |
1719 | Cb = pp[16]; | |
1720 | Cr = pp[17]; | |
1721 | ||
1722 | YCbCrtoRGB(cp [0], pp[ 0]); | |
1723 | YCbCrtoRGB(cp [1], pp[ 1]); | |
1724 | YCbCrtoRGB(cp [2], pp[ 2]); | |
1725 | YCbCrtoRGB(cp [3], pp[ 3]); | |
1726 | YCbCrtoRGB(cp1[0], pp[ 4]); | |
1727 | YCbCrtoRGB(cp1[1], pp[ 5]); | |
1728 | YCbCrtoRGB(cp1[2], pp[ 6]); | |
1729 | YCbCrtoRGB(cp1[3], pp[ 7]); | |
1730 | YCbCrtoRGB(cp2[0], pp[ 8]); | |
1731 | YCbCrtoRGB(cp2[1], pp[ 9]); | |
1732 | YCbCrtoRGB(cp2[2], pp[10]); | |
1733 | YCbCrtoRGB(cp2[3], pp[11]); | |
1734 | YCbCrtoRGB(cp3[0], pp[12]); | |
1735 | YCbCrtoRGB(cp3[1], pp[13]); | |
1736 | YCbCrtoRGB(cp3[2], pp[14]); | |
1737 | YCbCrtoRGB(cp3[3], pp[15]); | |
1738 | ||
1739 | cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; | |
1740 | pp += 18; | |
1741 | } while (--x); | |
1742 | cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1743 | pp += fromskew; | |
1744 | } | |
1745 | } | |
1746 | #endif | |
1747 | ||
1748 | /* | |
1749 | * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB | |
1750 | */ | |
1751 | DECLAREContigPutFunc(putcontig8bitYCbCr44tile) | |
1752 | { | |
1753 | uint32* cp1 = cp+w+toskew; | |
1754 | uint32* cp2 = cp1+w+toskew; | |
1755 | uint32* cp3 = cp2+w+toskew; | |
1756 | int32 incr = 3*w+4*toskew; | |
1757 | ||
1758 | (void) y; | |
1759 | /* adjust fromskew */ | |
1760 | fromskew = (fromskew * 18) / 4; | |
1761 | if ((h & 3) == 0 && (w & 3) == 0) { | |
1762 | for (; h >= 4; h -= 4) { | |
1763 | x = w>>2; | |
1764 | do { | |
1765 | int32 Cb = pp[16]; | |
1766 | int32 Cr = pp[17]; | |
1767 | ||
1768 | YCbCrtoRGB(cp [0], pp[ 0]); | |
1769 | YCbCrtoRGB(cp [1], pp[ 1]); | |
1770 | YCbCrtoRGB(cp [2], pp[ 2]); | |
1771 | YCbCrtoRGB(cp [3], pp[ 3]); | |
1772 | YCbCrtoRGB(cp1[0], pp[ 4]); | |
1773 | YCbCrtoRGB(cp1[1], pp[ 5]); | |
1774 | YCbCrtoRGB(cp1[2], pp[ 6]); | |
1775 | YCbCrtoRGB(cp1[3], pp[ 7]); | |
1776 | YCbCrtoRGB(cp2[0], pp[ 8]); | |
1777 | YCbCrtoRGB(cp2[1], pp[ 9]); | |
1778 | YCbCrtoRGB(cp2[2], pp[10]); | |
1779 | YCbCrtoRGB(cp2[3], pp[11]); | |
1780 | YCbCrtoRGB(cp3[0], pp[12]); | |
1781 | YCbCrtoRGB(cp3[1], pp[13]); | |
1782 | YCbCrtoRGB(cp3[2], pp[14]); | |
1783 | YCbCrtoRGB(cp3[3], pp[15]); | |
1784 | ||
1785 | cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; | |
1786 | pp += 18; | |
1787 | } while (--x); | |
1788 | cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1789 | pp += fromskew; | |
1790 | } | |
1791 | } else { | |
1792 | while (h > 0) { | |
1793 | for (x = w; x > 0;) { | |
1794 | int32 Cb = pp[16]; | |
1795 | int32 Cr = pp[17]; | |
1796 | switch (x) { | |
1797 | default: | |
1798 | switch (h) { | |
1799 | default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */ | |
1800 | case 3: YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */ | |
1801 | case 2: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ | |
1802 | case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ | |
1803 | } /* FALLTHROUGH */ | |
1804 | case 3: | |
1805 | switch (h) { | |
1806 | default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */ | |
1807 | case 3: YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */ | |
1808 | case 2: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ | |
1809 | case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ | |
1810 | } /* FALLTHROUGH */ | |
1811 | case 2: | |
1812 | switch (h) { | |
1813 | default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */ | |
1814 | case 3: YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */ | |
1815 | case 2: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ | |
1816 | case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | |
1817 | } /* FALLTHROUGH */ | |
1818 | case 1: | |
1819 | switch (h) { | |
1820 | default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */ | |
1821 | case 3: YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */ | |
1822 | case 2: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ | |
1823 | case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | |
1824 | } /* FALLTHROUGH */ | |
1825 | } | |
1826 | if (x < 4) { | |
1827 | cp += x; cp1 += x; cp2 += x; cp3 += x; | |
1828 | x = 0; | |
1829 | } | |
1830 | else { | |
1831 | cp += 4; cp1 += 4; cp2 += 4; cp3 += 4; | |
1832 | x -= 4; | |
1833 | } | |
1834 | pp += 18; | |
1835 | } | |
1836 | if (h <= 4) | |
1837 | break; | |
1838 | h -= 4; | |
1839 | cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1840 | pp += fromskew; | |
1841 | } | |
1842 | } | |
1843 | } | |
1844 | ||
1845 | /* | |
1846 | * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB | |
1847 | */ | |
1848 | DECLAREContigPutFunc(putcontig8bitYCbCr42tile) | |
1849 | { | |
1850 | uint32* cp1 = cp+w+toskew; | |
1851 | int32 incr = 2*toskew+w; | |
1852 | ||
1853 | (void) y; | |
1854 | fromskew = (fromskew * 10) / 4; | |
1855 | if ((h & 3) == 0 && (w & 1) == 0) { | |
1856 | for (; h >= 2; h -= 2) { | |
1857 | x = w>>2; | |
1858 | do { | |
1859 | int32 Cb = pp[8]; | |
1860 | int32 Cr = pp[9]; | |
1861 | ||
1862 | YCbCrtoRGB(cp [0], pp[0]); | |
1863 | YCbCrtoRGB(cp [1], pp[1]); | |
1864 | YCbCrtoRGB(cp [2], pp[2]); | |
1865 | YCbCrtoRGB(cp [3], pp[3]); | |
1866 | YCbCrtoRGB(cp1[0], pp[4]); | |
1867 | YCbCrtoRGB(cp1[1], pp[5]); | |
1868 | YCbCrtoRGB(cp1[2], pp[6]); | |
1869 | YCbCrtoRGB(cp1[3], pp[7]); | |
1870 | ||
1871 | cp += 4, cp1 += 4; | |
1872 | pp += 10; | |
1873 | } while (--x); | |
1874 | cp += incr, cp1 += incr; | |
1875 | pp += fromskew; | |
1876 | } | |
1877 | } else { | |
1878 | while (h > 0) { | |
1879 | for (x = w; x > 0;) { | |
1880 | int32 Cb = pp[8]; | |
1881 | int32 Cr = pp[9]; | |
1882 | switch (x) { | |
1883 | default: | |
1884 | switch (h) { | |
1885 | default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ | |
1886 | case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ | |
1887 | } /* FALLTHROUGH */ | |
1888 | case 3: | |
1889 | switch (h) { | |
1890 | default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ | |
1891 | case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ | |
1892 | } /* FALLTHROUGH */ | |
1893 | case 2: | |
1894 | switch (h) { | |
1895 | default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ | |
1896 | case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | |
1897 | } /* FALLTHROUGH */ | |
1898 | case 1: | |
1899 | switch (h) { | |
1900 | default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ | |
1901 | case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | |
1902 | } /* FALLTHROUGH */ | |
1903 | } | |
1904 | if (x < 4) { | |
1905 | cp += x; cp1 += x; | |
1906 | x = 0; | |
1907 | } | |
1908 | else { | |
1909 | cp += 4; cp1 += 4; | |
1910 | x -= 4; | |
1911 | } | |
1912 | pp += 10; | |
1913 | } | |
1914 | if (h <= 2) | |
1915 | break; | |
1916 | h -= 2; | |
1917 | cp += incr, cp1 += incr; | |
1918 | pp += fromskew; | |
1919 | } | |
1920 | } | |
1921 | } | |
1922 | ||
1923 | /* | |
1924 | * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB | |
1925 | */ | |
1926 | DECLAREContigPutFunc(putcontig8bitYCbCr41tile) | |
1927 | { | |
1928 | (void) y; | |
1929 | /* XXX adjust fromskew */ | |
1930 | do { | |
1931 | x = w>>2; | |
1932 | do { | |
1933 | int32 Cb = pp[4]; | |
1934 | int32 Cr = pp[5]; | |
1935 | ||
1936 | YCbCrtoRGB(cp [0], pp[0]); | |
1937 | YCbCrtoRGB(cp [1], pp[1]); | |
1938 | YCbCrtoRGB(cp [2], pp[2]); | |
1939 | YCbCrtoRGB(cp [3], pp[3]); | |
1940 | ||
1941 | cp += 4; | |
1942 | pp += 6; | |
1943 | } while (--x); | |
1944 | ||
1945 | if( (w&3) != 0 ) | |
1946 | { | |
1947 | int32 Cb = pp[4]; | |
1948 | int32 Cr = pp[5]; | |
1949 | ||
1950 | switch( (w&3) ) { | |
1951 | case 3: YCbCrtoRGB(cp [2], pp[2]); | |
1952 | case 2: YCbCrtoRGB(cp [1], pp[1]); | |
1953 | case 1: YCbCrtoRGB(cp [0], pp[0]); | |
1954 | case 0: break; | |
1955 | } | |
1956 | ||
1957 | cp += (w&3); | |
1958 | pp += 6; | |
1959 | } | |
1960 | ||
1961 | cp += toskew; | |
1962 | pp += fromskew; | |
1963 | } while (--h); | |
1964 | ||
1965 | } | |
1966 | ||
1967 | /* | |
1968 | * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB | |
1969 | */ | |
1970 | DECLAREContigPutFunc(putcontig8bitYCbCr22tile) | |
1971 | { | |
1972 | uint32* cp2; | |
1973 | int32 incr = 2*toskew+w; | |
1974 | (void) y; | |
1975 | fromskew = (fromskew / 2) * 6; | |
1976 | cp2 = cp+w+toskew; | |
1977 | while (h>=2) { | |
1978 | x = w; | |
1979 | while (x>=2) { | |
1980 | uint32 Cb = pp[4]; | |
1981 | uint32 Cr = pp[5]; | |
1982 | YCbCrtoRGB(cp[0], pp[0]); | |
1983 | YCbCrtoRGB(cp[1], pp[1]); | |
1984 | YCbCrtoRGB(cp2[0], pp[2]); | |
1985 | YCbCrtoRGB(cp2[1], pp[3]); | |
1986 | cp += 2; | |
1987 | cp2 += 2; | |
1988 | pp += 6; | |
1989 | x -= 2; | |
1990 | } | |
1991 | if (x==1) { | |
1992 | uint32 Cb = pp[4]; | |
1993 | uint32 Cr = pp[5]; | |
1994 | YCbCrtoRGB(cp[0], pp[0]); | |
1995 | YCbCrtoRGB(cp2[0], pp[2]); | |
1996 | cp ++ ; | |
1997 | cp2 ++ ; | |
1998 | pp += 6; | |
1999 | } | |
2000 | cp += incr; | |
2001 | cp2 += incr; | |
2002 | pp += fromskew; | |
2003 | h-=2; | |
2004 | } | |
2005 | if (h==1) { | |
2006 | x = w; | |
2007 | while (x>=2) { | |
2008 | uint32 Cb = pp[4]; | |
2009 | uint32 Cr = pp[5]; | |
2010 | YCbCrtoRGB(cp[0], pp[0]); | |
2011 | YCbCrtoRGB(cp[1], pp[1]); | |
2012 | cp += 2; | |
2013 | cp2 += 2; | |
2014 | pp += 6; | |
2015 | x -= 2; | |
2016 | } | |
2017 | if (x==1) { | |
2018 | uint32 Cb = pp[4]; | |
2019 | uint32 Cr = pp[5]; | |
2020 | YCbCrtoRGB(cp[0], pp[0]); | |
2021 | } | |
2022 | } | |
2023 | } | |
2024 | ||
2025 | /* | |
2026 | * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB | |
2027 | */ | |
2028 | DECLAREContigPutFunc(putcontig8bitYCbCr21tile) | |
2029 | { | |
2030 | (void) y; | |
2031 | fromskew = (fromskew * 4) / 2; | |
2032 | do { | |
2033 | x = w>>1; | |
2034 | do { | |
2035 | int32 Cb = pp[2]; | |
2036 | int32 Cr = pp[3]; | |
2037 | ||
2038 | YCbCrtoRGB(cp[0], pp[0]); | |
2039 | YCbCrtoRGB(cp[1], pp[1]); | |
2040 | ||
2041 | cp += 2; | |
2042 | pp += 4; | |
2043 | } while (--x); | |
2044 | ||
2045 | if( (w&1) != 0 ) | |
2046 | { | |
2047 | int32 Cb = pp[2]; | |
2048 | int32 Cr = pp[3]; | |
2049 | ||
2050 | YCbCrtoRGB(cp[0], pp[0]); | |
2051 | ||
2052 | cp += 1; | |
2053 | pp += 4; | |
2054 | } | |
2055 | ||
2056 | cp += toskew; | |
2057 | pp += fromskew; | |
2058 | } while (--h); | |
2059 | } | |
2060 | ||
2061 | /* | |
2062 | * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB | |
2063 | */ | |
2064 | DECLAREContigPutFunc(putcontig8bitYCbCr12tile) | |
2065 | { | |
2066 | uint32* cp2; | |
2067 | int32 incr = 2*toskew+w; | |
2068 | (void) y; | |
2069 | fromskew = (fromskew / 2) * 4; | |
2070 | cp2 = cp+w+toskew; | |
2071 | while (h>=2) { | |
2072 | x = w; | |
2073 | do { | |
2074 | uint32 Cb = pp[2]; | |
2075 | uint32 Cr = pp[3]; | |
2076 | YCbCrtoRGB(cp[0], pp[0]); | |
2077 | YCbCrtoRGB(cp2[0], pp[1]); | |
2078 | cp ++; | |
2079 | cp2 ++; | |
2080 | pp += 4; | |
2081 | } while (--x); | |
2082 | cp += incr; | |
2083 | cp2 += incr; | |
2084 | pp += fromskew; | |
2085 | h-=2; | |
2086 | } | |
2087 | if (h==1) { | |
2088 | x = w; | |
2089 | do { | |
2090 | uint32 Cb = pp[2]; | |
2091 | uint32 Cr = pp[3]; | |
2092 | YCbCrtoRGB(cp[0], pp[0]); | |
2093 | cp ++; | |
2094 | pp += 4; | |
2095 | } while (--x); | |
2096 | } | |
2097 | } | |
2098 | ||
2099 | /* | |
2100 | * 8-bit packed YCbCr samples w/ no subsampling => RGB | |
2101 | */ | |
2102 | DECLAREContigPutFunc(putcontig8bitYCbCr11tile) | |
2103 | { | |
2104 | (void) y; | |
2105 | fromskew *= 3; | |
2106 | do { | |
2107 | x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */ | |
2108 | do { | |
2109 | int32 Cb = pp[1]; | |
2110 | int32 Cr = pp[2]; | |
2111 | ||
2112 | YCbCrtoRGB(*cp++, pp[0]); | |
2113 | ||
2114 | pp += 3; | |
2115 | } while (--x); | |
2116 | cp += toskew; | |
2117 | pp += fromskew; | |
2118 | } while (--h); | |
2119 | } | |
2120 | ||
2121 | /* | |
2122 | * 8-bit packed YCbCr samples w/ no subsampling => RGB | |
2123 | */ | |
2124 | DECLARESepPutFunc(putseparate8bitYCbCr11tile) | |
2125 | { | |
2126 | (void) y; | |
2127 | (void) a; | |
2128 | /* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */ | |
2129 | while (h-- > 0) { | |
2130 | x = w; | |
2131 | do { | |
2132 | uint32 dr, dg, db; | |
2133 | TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db); | |
2134 | *cp++ = PACK(dr,dg,db); | |
2135 | } while (--x); | |
2136 | SKEW(r, g, b, fromskew); | |
2137 | cp += toskew; | |
2138 | } | |
2139 | } | |
2140 | #undef YCbCrtoRGB | |
2141 | ||
2142 | static int | |
2143 | initYCbCrConversion(TIFFRGBAImage* img) | |
2144 | { | |
2145 | static const char module[] = "initYCbCrConversion"; | |
2146 | ||
2147 | float *luma, *refBlackWhite; | |
2148 | ||
2149 | if (img->ycbcr == NULL) { | |
2150 | img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc( | |
2151 | TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long)) | |
2152 | + 4*256*sizeof (TIFFRGBValue) | |
2153 | + 2*256*sizeof (int) | |
2154 | + 3*256*sizeof (int32) | |
2155 | ); | |
2156 | if (img->ycbcr == NULL) { | |
2157 | TIFFErrorExt(img->tif->tif_clientdata, module, | |
2158 | "No space for YCbCr->RGB conversion state"); | |
2159 | return (0); | |
2160 | } | |
2161 | } | |
2162 | ||
2163 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma); | |
2164 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE, | |
2165 | &refBlackWhite); | |
2166 | if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0) | |
2167 | return(0); | |
2168 | return (1); | |
2169 | } | |
2170 | ||
2171 | static tileContigRoutine | |
2172 | initCIELabConversion(TIFFRGBAImage* img) | |
2173 | { | |
2174 | static const char module[] = "initCIELabConversion"; | |
2175 | ||
2176 | float *whitePoint; | |
2177 | float refWhite[3]; | |
2178 | ||
2179 | if (!img->cielab) { | |
2180 | img->cielab = (TIFFCIELabToRGB *) | |
2181 | _TIFFmalloc(sizeof(TIFFCIELabToRGB)); | |
2182 | if (!img->cielab) { | |
2183 | TIFFErrorExt(img->tif->tif_clientdata, module, | |
2184 | "No space for CIE L*a*b*->RGB conversion state."); | |
2185 | return NULL; | |
2186 | } | |
2187 | } | |
2188 | ||
2189 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint); | |
2190 | refWhite[1] = 100.0F; | |
2191 | refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1]; | |
2192 | refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1]) | |
2193 | / whitePoint[1] * refWhite[1]; | |
2194 | if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) { | |
2195 | TIFFErrorExt(img->tif->tif_clientdata, module, | |
2196 | "Failed to initialize CIE L*a*b*->RGB conversion state."); | |
2197 | _TIFFfree(img->cielab); | |
2198 | return NULL; | |
2199 | } | |
2200 | ||
2201 | return &putcontig8bitCIELab; | |
2202 | } | |
2203 | ||
2204 | /* | |
2205 | * Greyscale images with less than 8 bits/sample are handled | |
2206 | * with a table to avoid lots of shifts and masks. The table | |
2207 | * is setup so that put*bwtile (below) can retrieve 8/bitspersample | |
2208 | * pixel values simply by indexing into the table with one | |
2209 | * number. | |
2210 | */ | |
2211 | static int | |
2212 | makebwmap(TIFFRGBAImage* img) | |
2213 | { | |
2214 | TIFFRGBValue* Map = img->Map; | |
2215 | int bitspersample = img->bitspersample; | |
2216 | int nsamples = 8 / bitspersample; | |
2217 | int i; | |
2218 | uint32* p; | |
2219 | ||
2220 | if( nsamples == 0 ) | |
2221 | nsamples = 1; | |
2222 | ||
2223 | img->BWmap = (uint32**) _TIFFmalloc( | |
2224 | 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | |
2225 | if (img->BWmap == NULL) { | |
2226 | TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table"); | |
2227 | return (0); | |
2228 | } | |
2229 | p = (uint32*)(img->BWmap + 256); | |
2230 | for (i = 0; i < 256; i++) { | |
2231 | TIFFRGBValue c; | |
2232 | img->BWmap[i] = p; | |
2233 | switch (bitspersample) { | |
2234 | #define GREY(x) c = Map[x]; *p++ = PACK(c,c,c); | |
2235 | case 1: | |
2236 | GREY(i>>7); | |
2237 | GREY((i>>6)&1); | |
2238 | GREY((i>>5)&1); | |
2239 | GREY((i>>4)&1); | |
2240 | GREY((i>>3)&1); | |
2241 | GREY((i>>2)&1); | |
2242 | GREY((i>>1)&1); | |
2243 | GREY(i&1); | |
2244 | break; | |
2245 | case 2: | |
2246 | GREY(i>>6); | |
2247 | GREY((i>>4)&3); | |
2248 | GREY((i>>2)&3); | |
2249 | GREY(i&3); | |
2250 | break; | |
2251 | case 4: | |
2252 | GREY(i>>4); | |
2253 | GREY(i&0xf); | |
2254 | break; | |
2255 | case 8: | |
2256 | case 16: | |
2257 | GREY(i); | |
2258 | break; | |
2259 | } | |
2260 | #undef GREY | |
2261 | } | |
2262 | return (1); | |
2263 | } | |
2264 | ||
2265 | /* | |
2266 | * Construct a mapping table to convert from the range | |
2267 | * of the data samples to [0,255] --for display. This | |
2268 | * process also handles inverting B&W images when needed. | |
2269 | */ | |
2270 | static int | |
2271 | setupMap(TIFFRGBAImage* img) | |
2272 | { | |
2273 | int32 x, range; | |
2274 | ||
2275 | range = (int32)((1L<<img->bitspersample)-1); | |
2276 | ||
2277 | /* treat 16 bit the same as eight bit */ | |
2278 | if( img->bitspersample == 16 ) | |
2279 | range = (int32) 255; | |
2280 | ||
2281 | img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue)); | |
2282 | if (img->Map == NULL) { | |
2283 | TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), | |
2284 | "No space for photometric conversion table"); | |
2285 | return (0); | |
2286 | } | |
2287 | if (img->photometric == PHOTOMETRIC_MINISWHITE) { | |
2288 | for (x = 0; x <= range; x++) | |
2289 | img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range); | |
2290 | } else { | |
2291 | for (x = 0; x <= range; x++) | |
2292 | img->Map[x] = (TIFFRGBValue) ((x * 255) / range); | |
2293 | } | |
2294 | if (img->bitspersample <= 16 && | |
2295 | (img->photometric == PHOTOMETRIC_MINISBLACK || | |
2296 | img->photometric == PHOTOMETRIC_MINISWHITE)) { | |
2297 | /* | |
2298 | * Use photometric mapping table to construct | |
2299 | * unpacking tables for samples <= 8 bits. | |
2300 | */ | |
2301 | if (!makebwmap(img)) | |
2302 | return (0); | |
2303 | /* no longer need Map, free it */ | |
2304 | _TIFFfree(img->Map), img->Map = NULL; | |
2305 | } | |
2306 | return (1); | |
2307 | } | |
2308 | ||
2309 | static int | |
2310 | checkcmap(TIFFRGBAImage* img) | |
2311 | { | |
2312 | uint16* r = img->redcmap; | |
2313 | uint16* g = img->greencmap; | |
2314 | uint16* b = img->bluecmap; | |
2315 | long n = 1L<<img->bitspersample; | |
2316 | ||
2317 | while (n-- > 0) | |
2318 | if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256) | |
2319 | return (16); | |
2320 | return (8); | |
2321 | } | |
2322 | ||
2323 | static void | |
2324 | cvtcmap(TIFFRGBAImage* img) | |
2325 | { | |
2326 | uint16* r = img->redcmap; | |
2327 | uint16* g = img->greencmap; | |
2328 | uint16* b = img->bluecmap; | |
2329 | long i; | |
2330 | ||
2331 | for (i = (1L<<img->bitspersample)-1; i >= 0; i--) { | |
2332 | #define CVT(x) ((uint16)((x)>>8)) | |
2333 | r[i] = CVT(r[i]); | |
2334 | g[i] = CVT(g[i]); | |
2335 | b[i] = CVT(b[i]); | |
2336 | #undef CVT | |
2337 | } | |
2338 | } | |
2339 | ||
2340 | /* | |
2341 | * Palette images with <= 8 bits/sample are handled | |
2342 | * with a table to avoid lots of shifts and masks. The table | |
2343 | * is setup so that put*cmaptile (below) can retrieve 8/bitspersample | |
2344 | * pixel values simply by indexing into the table with one | |
2345 | * number. | |
2346 | */ | |
2347 | static int | |
2348 | makecmap(TIFFRGBAImage* img) | |
2349 | { | |
2350 | int bitspersample = img->bitspersample; | |
2351 | int nsamples = 8 / bitspersample; | |
2352 | uint16* r = img->redcmap; | |
2353 | uint16* g = img->greencmap; | |
2354 | uint16* b = img->bluecmap; | |
2355 | uint32 *p; | |
2356 | int i; | |
2357 | ||
2358 | img->PALmap = (uint32**) _TIFFmalloc( | |
2359 | 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | |
2360 | if (img->PALmap == NULL) { | |
2361 | TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table"); | |
2362 | return (0); | |
2363 | } | |
2364 | p = (uint32*)(img->PALmap + 256); | |
2365 | for (i = 0; i < 256; i++) { | |
2366 | TIFFRGBValue c; | |
2367 | img->PALmap[i] = p; | |
2368 | #define CMAP(x) c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff); | |
2369 | switch (bitspersample) { | |
2370 | case 1: | |
2371 | CMAP(i>>7); | |
2372 | CMAP((i>>6)&1); | |
2373 | CMAP((i>>5)&1); | |
2374 | CMAP((i>>4)&1); | |
2375 | CMAP((i>>3)&1); | |
2376 | CMAP((i>>2)&1); | |
2377 | CMAP((i>>1)&1); | |
2378 | CMAP(i&1); | |
2379 | break; | |
2380 | case 2: | |
2381 | CMAP(i>>6); | |
2382 | CMAP((i>>4)&3); | |
2383 | CMAP((i>>2)&3); | |
2384 | CMAP(i&3); | |
2385 | break; | |
2386 | case 4: | |
2387 | CMAP(i>>4); | |
2388 | CMAP(i&0xf); | |
2389 | break; | |
2390 | case 8: | |
2391 | CMAP(i); | |
2392 | break; | |
2393 | } | |
2394 | #undef CMAP | |
2395 | } | |
2396 | return (1); | |
2397 | } | |
2398 | ||
2399 | /* | |
2400 | * Construct any mapping table used | |
2401 | * by the associated put routine. | |
2402 | */ | |
2403 | static int | |
2404 | buildMap(TIFFRGBAImage* img) | |
2405 | { | |
2406 | switch (img->photometric) { | |
2407 | case PHOTOMETRIC_RGB: | |
2408 | case PHOTOMETRIC_YCBCR: | |
2409 | case PHOTOMETRIC_SEPARATED: | |
2410 | if (img->bitspersample == 8) | |
2411 | break; | |
2412 | /* fall thru... */ | |
2413 | case PHOTOMETRIC_MINISBLACK: | |
2414 | case PHOTOMETRIC_MINISWHITE: | |
2415 | if (!setupMap(img)) | |
2416 | return (0); | |
2417 | break; | |
2418 | case PHOTOMETRIC_PALETTE: | |
2419 | /* | |
2420 | * Convert 16-bit colormap to 8-bit (unless it looks | |
2421 | * like an old-style 8-bit colormap). | |
2422 | */ | |
2423 | if (checkcmap(img) == 16) | |
2424 | cvtcmap(img); | |
2425 | else | |
2426 | TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap"); | |
2427 | /* | |
2428 | * Use mapping table and colormap to construct | |
2429 | * unpacking tables for samples < 8 bits. | |
2430 | */ | |
2431 | if (img->bitspersample <= 8 && !makecmap(img)) | |
2432 | return (0); | |
2433 | break; | |
2434 | } | |
2435 | return (1); | |
2436 | } | |
2437 | ||
2438 | /* | |
2439 | * Select the appropriate conversion routine for packed data. | |
2440 | */ | |
2441 | static int | |
2442 | PickContigCase(TIFFRGBAImage* img) | |
2443 | { | |
2444 | img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig; | |
2445 | img->put.contig = NULL; | |
2446 | switch (img->photometric) { | |
2447 | case PHOTOMETRIC_RGB: | |
2448 | switch (img->bitspersample) { | |
2449 | case 8: | |
2450 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2451 | img->put.contig = putRGBAAcontig8bittile; | |
2452 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2453 | { | |
2454 | if (BuildMapUaToAa(img)) | |
2455 | img->put.contig = putRGBUAcontig8bittile; | |
2456 | } | |
2457 | else | |
2458 | img->put.contig = putRGBcontig8bittile; | |
2459 | break; | |
2460 | case 16: | |
2461 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2462 | { | |
2463 | if (BuildMapBitdepth16To8(img)) | |
2464 | img->put.contig = putRGBAAcontig16bittile; | |
2465 | } | |
2466 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2467 | { | |
2468 | if (BuildMapBitdepth16To8(img) && | |
2469 | BuildMapUaToAa(img)) | |
2470 | img->put.contig = putRGBUAcontig16bittile; | |
2471 | } | |
2472 | else | |
2473 | { | |
2474 | if (BuildMapBitdepth16To8(img)) | |
2475 | img->put.contig = putRGBcontig16bittile; | |
2476 | } | |
2477 | break; | |
2478 | } | |
2479 | break; | |
2480 | case PHOTOMETRIC_SEPARATED: | |
2481 | if (buildMap(img)) { | |
2482 | if (img->bitspersample == 8) { | |
2483 | if (!img->Map) | |
2484 | img->put.contig = putRGBcontig8bitCMYKtile; | |
2485 | else | |
2486 | img->put.contig = putRGBcontig8bitCMYKMaptile; | |
2487 | } | |
2488 | } | |
2489 | break; | |
2490 | case PHOTOMETRIC_PALETTE: | |
2491 | if (buildMap(img)) { | |
2492 | switch (img->bitspersample) { | |
2493 | case 8: | |
2494 | img->put.contig = put8bitcmaptile; | |
2495 | break; | |
2496 | case 4: | |
2497 | img->put.contig = put4bitcmaptile; | |
2498 | break; | |
2499 | case 2: | |
2500 | img->put.contig = put2bitcmaptile; | |
2501 | break; | |
2502 | case 1: | |
2503 | img->put.contig = put1bitcmaptile; | |
2504 | break; | |
2505 | } | |
2506 | } | |
2507 | break; | |
2508 | case PHOTOMETRIC_MINISWHITE: | |
2509 | case PHOTOMETRIC_MINISBLACK: | |
2510 | if (buildMap(img)) { | |
2511 | switch (img->bitspersample) { | |
2512 | case 16: | |
2513 | img->put.contig = put16bitbwtile; | |
2514 | break; | |
2515 | case 8: | |
2516 | if (img->alpha && img->samplesperpixel == 2) | |
2517 | img->put.contig = putagreytile; | |
2518 | else | |
2519 | img->put.contig = putgreytile; | |
2520 | break; | |
2521 | case 4: | |
2522 | img->put.contig = put4bitbwtile; | |
2523 | break; | |
2524 | case 2: | |
2525 | img->put.contig = put2bitbwtile; | |
2526 | break; | |
2527 | case 1: | |
2528 | img->put.contig = put1bitbwtile; | |
2529 | break; | |
2530 | } | |
2531 | } | |
2532 | break; | |
2533 | case PHOTOMETRIC_YCBCR: | |
2534 | if ((img->bitspersample==8) && (img->samplesperpixel==3)) | |
2535 | { | |
2536 | if (initYCbCrConversion(img)!=0) | |
2537 | { | |
2538 | /* | |
2539 | * The 6.0 spec says that subsampling must be | |
2540 | * one of 1, 2, or 4, and that vertical subsampling | |
2541 | * must always be <= horizontal subsampling; so | |
2542 | * there are only a few possibilities and we just | |
2543 | * enumerate the cases. | |
2544 | * Joris: added support for the [1,2] case, nonetheless, to accomodate | |
2545 | * some OJPEG files | |
2546 | */ | |
2547 | uint16 SubsamplingHor; | |
2548 | uint16 SubsamplingVer; | |
2549 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer); | |
2550 | switch ((SubsamplingHor<<4)|SubsamplingVer) { | |
2551 | case 0x44: | |
2552 | img->put.contig = putcontig8bitYCbCr44tile; | |
2553 | break; | |
2554 | case 0x42: | |
2555 | img->put.contig = putcontig8bitYCbCr42tile; | |
2556 | break; | |
2557 | case 0x41: | |
2558 | img->put.contig = putcontig8bitYCbCr41tile; | |
2559 | break; | |
2560 | case 0x22: | |
2561 | img->put.contig = putcontig8bitYCbCr22tile; | |
2562 | break; | |
2563 | case 0x21: | |
2564 | img->put.contig = putcontig8bitYCbCr21tile; | |
2565 | break; | |
2566 | case 0x12: | |
2567 | img->put.contig = putcontig8bitYCbCr12tile; | |
2568 | break; | |
2569 | case 0x11: | |
2570 | img->put.contig = putcontig8bitYCbCr11tile; | |
2571 | break; | |
2572 | } | |
2573 | } | |
2574 | } | |
2575 | break; | |
2576 | case PHOTOMETRIC_CIELAB: | |
2577 | if (buildMap(img)) { | |
2578 | if (img->bitspersample == 8) | |
2579 | img->put.contig = initCIELabConversion(img); | |
2580 | break; | |
2581 | } | |
2582 | } | |
2583 | return ((img->get!=NULL) && (img->put.contig!=NULL)); | |
2584 | } | |
2585 | ||
2586 | /* | |
2587 | * Select the appropriate conversion routine for unpacked data. | |
2588 | * | |
2589 | * NB: we assume that unpacked single channel data is directed | |
2590 | * to the "packed routines. | |
2591 | */ | |
2592 | static int | |
2593 | PickSeparateCase(TIFFRGBAImage* img) | |
2594 | { | |
2595 | img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate; | |
2596 | img->put.separate = NULL; | |
2597 | switch (img->photometric) { | |
2598 | case PHOTOMETRIC_MINISWHITE: | |
2599 | case PHOTOMETRIC_MINISBLACK: | |
2600 | /* greyscale images processed pretty much as RGB by gtTileSeparate */ | |
2601 | case PHOTOMETRIC_RGB: | |
2602 | switch (img->bitspersample) { | |
2603 | case 8: | |
2604 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2605 | img->put.separate = putRGBAAseparate8bittile; | |
2606 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2607 | { | |
2608 | if (BuildMapUaToAa(img)) | |
2609 | img->put.separate = putRGBUAseparate8bittile; | |
2610 | } | |
2611 | else | |
2612 | img->put.separate = putRGBseparate8bittile; | |
2613 | break; | |
2614 | case 16: | |
2615 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2616 | { | |
2617 | if (BuildMapBitdepth16To8(img)) | |
2618 | img->put.separate = putRGBAAseparate16bittile; | |
2619 | } | |
2620 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2621 | { | |
2622 | if (BuildMapBitdepth16To8(img) && | |
2623 | BuildMapUaToAa(img)) | |
2624 | img->put.separate = putRGBUAseparate16bittile; | |
2625 | } | |
2626 | else | |
2627 | { | |
2628 | if (BuildMapBitdepth16To8(img)) | |
2629 | img->put.separate = putRGBseparate16bittile; | |
2630 | } | |
2631 | break; | |
2632 | } | |
2633 | break; | |
2634 | case PHOTOMETRIC_SEPARATED: | |
2635 | if (img->bitspersample == 8 && img->samplesperpixel == 4) | |
2636 | { | |
2637 | img->alpha = 1; // Not alpha, but seems like the only way to get 4th band | |
2638 | img->put.separate = putCMYKseparate8bittile; | |
2639 | } | |
2640 | break; | |
2641 | case PHOTOMETRIC_YCBCR: | |
2642 | if ((img->bitspersample==8) && (img->samplesperpixel==3)) | |
2643 | { | |
2644 | if (initYCbCrConversion(img)!=0) | |
2645 | { | |
2646 | uint16 hs, vs; | |
2647 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs); | |
2648 | switch ((hs<<4)|vs) { | |
2649 | case 0x11: | |
2650 | img->put.separate = putseparate8bitYCbCr11tile; | |
2651 | break; | |
2652 | /* TODO: add other cases here */ | |
2653 | } | |
2654 | } | |
2655 | } | |
2656 | break; | |
2657 | } | |
2658 | return ((img->get!=NULL) && (img->put.separate!=NULL)); | |
2659 | } | |
2660 | ||
2661 | static int | |
2662 | BuildMapUaToAa(TIFFRGBAImage* img) | |
2663 | { | |
2664 | static const char module[]="BuildMapUaToAa"; | |
2665 | uint8* m; | |
2666 | uint16 na,nv; | |
2667 | assert(img->UaToAa==NULL); | |
2668 | img->UaToAa=_TIFFmalloc(65536); | |
2669 | if (img->UaToAa==NULL) | |
2670 | { | |
2671 | TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory"); | |
2672 | return(0); | |
2673 | } | |
2674 | m=img->UaToAa; | |
2675 | for (na=0; na<256; na++) | |
2676 | { | |
2677 | for (nv=0; nv<256; nv++) | |
2678 | *m++=(nv*na+127)/255; | |
2679 | } | |
2680 | return(1); | |
2681 | } | |
2682 | ||
2683 | static int | |
2684 | BuildMapBitdepth16To8(TIFFRGBAImage* img) | |
2685 | { | |
2686 | static const char module[]="BuildMapBitdepth16To8"; | |
2687 | uint8* m; | |
2688 | uint32 n; | |
2689 | assert(img->Bitdepth16To8==NULL); | |
2690 | img->Bitdepth16To8=_TIFFmalloc(65536); | |
2691 | if (img->Bitdepth16To8==NULL) | |
2692 | { | |
2693 | TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory"); | |
2694 | return(0); | |
2695 | } | |
2696 | m=img->Bitdepth16To8; | |
2697 | for (n=0; n<65536; n++) | |
2698 | *m++=(n+128)/257; | |
2699 | return(1); | |
2700 | } | |
2701 | ||
2702 | ||
2703 | /* | |
2704 | * Read a whole strip off data from the file, and convert to RGBA form. | |
2705 | * If this is the last strip, then it will only contain the portion of | |
2706 | * the strip that is actually within the image space. The result is | |
2707 | * organized in bottom to top form. | |
2708 | */ | |
2709 | ||
2710 | ||
2711 | int | |
2712 | TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster ) | |
2713 | ||
2714 | { | |
2715 | char emsg[1024] = ""; | |
2716 | TIFFRGBAImage img; | |
2717 | int ok; | |
2718 | uint32 rowsperstrip, rows_to_read; | |
2719 | ||
2720 | if( TIFFIsTiled( tif ) ) | |
2721 | { | |
2722 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
2723 | "Can't use TIFFReadRGBAStrip() with tiled file."); | |
2724 | return (0); | |
2725 | } | |
2726 | ||
2727 | TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
2728 | if( (row % rowsperstrip) != 0 ) | |
2729 | { | |
2730 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
2731 | "Row passed to TIFFReadRGBAStrip() must be first in a strip."); | |
2732 | return (0); | |
2733 | } | |
2734 | ||
2735 | if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) { | |
2736 | ||
2737 | img.row_offset = row; | |
2738 | img.col_offset = 0; | |
2739 | ||
2740 | if( row + rowsperstrip > img.height ) | |
2741 | rows_to_read = img.height - row; | |
2742 | else | |
2743 | rows_to_read = rowsperstrip; | |
2744 | ||
2745 | ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read ); | |
2746 | ||
2747 | TIFFRGBAImageEnd(&img); | |
2748 | } else { | |
2749 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); | |
2750 | ok = 0; | |
2751 | } | |
2752 | ||
2753 | return (ok); | |
2754 | } | |
2755 | ||
2756 | /* | |
2757 | * Read a whole tile off data from the file, and convert to RGBA form. | |
2758 | * The returned RGBA data is organized from bottom to top of tile, | |
2759 | * and may include zeroed areas if the tile extends off the image. | |
2760 | */ | |
2761 | ||
2762 | int | |
2763 | TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster) | |
2764 | ||
2765 | { | |
2766 | char emsg[1024] = ""; | |
2767 | TIFFRGBAImage img; | |
2768 | int ok; | |
2769 | uint32 tile_xsize, tile_ysize; | |
2770 | uint32 read_xsize, read_ysize; | |
2771 | uint32 i_row; | |
2772 | ||
2773 | /* | |
2774 | * Verify that our request is legal - on a tile file, and on a | |
2775 | * tile boundary. | |
2776 | */ | |
2777 | ||
2778 | if( !TIFFIsTiled( tif ) ) | |
2779 | { | |
2780 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
2781 | "Can't use TIFFReadRGBATile() with stripped file."); | |
2782 | return (0); | |
2783 | } | |
2784 | ||
2785 | TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize); | |
2786 | TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize); | |
2787 | if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 ) | |
2788 | { | |
2789 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
2790 | "Row/col passed to TIFFReadRGBATile() must be top" | |
2791 | "left corner of a tile."); | |
2792 | return (0); | |
2793 | } | |
2794 | ||
2795 | /* | |
2796 | * Setup the RGBA reader. | |
2797 | */ | |
2798 | ||
2799 | if (!TIFFRGBAImageOK(tif, emsg) | |
2800 | || !TIFFRGBAImageBegin(&img, tif, 0, emsg)) { | |
2801 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg); | |
2802 | return( 0 ); | |
2803 | } | |
2804 | ||
2805 | /* | |
2806 | * The TIFFRGBAImageGet() function doesn't allow us to get off the | |
2807 | * edge of the image, even to fill an otherwise valid tile. So we | |
2808 | * figure out how much we can read, and fix up the tile buffer to | |
2809 | * a full tile configuration afterwards. | |
2810 | */ | |
2811 | ||
2812 | if( row + tile_ysize > img.height ) | |
2813 | read_ysize = img.height - row; | |
2814 | else | |
2815 | read_ysize = tile_ysize; | |
2816 | ||
2817 | if( col + tile_xsize > img.width ) | |
2818 | read_xsize = img.width - col; | |
2819 | else | |
2820 | read_xsize = tile_xsize; | |
2821 | ||
2822 | /* | |
2823 | * Read the chunk of imagery. | |
2824 | */ | |
2825 | ||
2826 | img.row_offset = row; | |
2827 | img.col_offset = col; | |
2828 | ||
2829 | ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize ); | |
2830 | ||
2831 | TIFFRGBAImageEnd(&img); | |
2832 | ||
2833 | /* | |
2834 | * If our read was incomplete we will need to fix up the tile by | |
2835 | * shifting the data around as if a full tile of data is being returned. | |
2836 | * | |
2837 | * This is all the more complicated because the image is organized in | |
2838 | * bottom to top format. | |
2839 | */ | |
2840 | ||
2841 | if( read_xsize == tile_xsize && read_ysize == tile_ysize ) | |
2842 | return( ok ); | |
2843 | ||
2844 | for( i_row = 0; i_row < read_ysize; i_row++ ) { | |
2845 | memmove( raster + (tile_ysize - i_row - 1) * tile_xsize, | |
2846 | raster + (read_ysize - i_row - 1) * read_xsize, | |
2847 | read_xsize * sizeof(uint32) ); | |
2848 | _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize, | |
2849 | 0, sizeof(uint32) * (tile_xsize - read_xsize) ); | |
2850 | } | |
2851 | ||
2852 | for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) { | |
2853 | _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize, | |
2854 | 0, sizeof(uint32) * tile_xsize ); | |
2855 | } | |
2856 | ||
2857 | return (ok); | |
2858 | } | |
2859 | ||
2860 | /* vim: set ts=8 sts=8 sw=8 noet: */ | |
2861 | /* | |
2862 | * Local Variables: | |
2863 | * mode: c | |
2864 | * c-basic-offset: 8 | |
2865 | * fill-column: 78 | |
2866 | * End: | |
2867 | */ |