]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * re_*comp and friends - compile REs | |
3 | * This file #includes several others (see the bottom). | |
4 | * | |
5 | * Copyright (c) 1998, 1999 Henry Spencer. All rights reserved. | |
6 | * | |
7 | * Development of this software was funded, in part, by Cray Research Inc., | |
8 | * UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics | |
9 | * Corporation, none of whom are responsible for the results. The author | |
10 | * thanks all of them. | |
11 | * | |
12 | * Redistribution and use in source and binary forms -- with or without | |
13 | * modification -- are permitted for any purpose, provided that | |
14 | * redistributions in source form retain this entire copyright notice and | |
15 | * indicate the origin and nature of any modifications. | |
16 | * | |
17 | * I'd appreciate being given credit for this package in the documentation | |
18 | * of software which uses it, but that is not a requirement. | |
19 | * | |
20 | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, | |
21 | * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY | |
22 | * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL | |
23 | * HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | |
24 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | |
25 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; | |
26 | * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | |
27 | * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR | |
28 | * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF | |
29 | * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
30 | * | |
31 | */ | |
32 | ||
33 | #include "regguts.h" | |
34 | ||
35 | /* | |
36 | * forward declarations, up here so forward datatypes etc. are defined early | |
37 | */ | |
38 | /* =====^!^===== begin forwards =====^!^===== */ | |
39 | /* automatically gathered by fwd; do not hand-edit */ | |
40 | /* === regcomp.c === */ | |
41 | int compile _ANSI_ARGS_((regex_t *, CONST chr *, size_t, int)); | |
42 | static VOID moresubs _ANSI_ARGS_((struct vars *, int)); | |
43 | static int freev _ANSI_ARGS_((struct vars *, int)); | |
44 | static VOID makesearch _ANSI_ARGS_((struct vars *, struct nfa *)); | |
45 | static struct subre *parse _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *)); | |
46 | static struct subre *parsebranch _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *, int)); | |
47 | static VOID parseqatom _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *, struct subre *)); | |
48 | static VOID nonword _ANSI_ARGS_((struct vars *, int, struct state *, struct state *)); | |
49 | static VOID word _ANSI_ARGS_((struct vars *, int, struct state *, struct state *)); | |
50 | static int scannum _ANSI_ARGS_((struct vars *)); | |
51 | static VOID repeat _ANSI_ARGS_((struct vars *, struct state *, struct state *, int, int)); | |
52 | static VOID bracket _ANSI_ARGS_((struct vars *, struct state *, struct state *)); | |
53 | static VOID cbracket _ANSI_ARGS_((struct vars *, struct state *, struct state *)); | |
54 | static VOID brackpart _ANSI_ARGS_((struct vars *, struct state *, struct state *)); | |
55 | static chr *scanplain _ANSI_ARGS_((struct vars *)); | |
56 | static VOID leaders _ANSI_ARGS_((struct vars *, struct cvec *)); | |
57 | static VOID onechr _ANSI_ARGS_((struct vars *, pchr, struct state *, struct state *)); | |
58 | static VOID dovec _ANSI_ARGS_((struct vars *, struct cvec *, struct state *, struct state *)); | |
59 | static celt nextleader _ANSI_ARGS_((struct vars *, pchr, pchr)); | |
60 | static VOID wordchrs _ANSI_ARGS_((struct vars *)); | |
61 | static struct subre *subre _ANSI_ARGS_((struct vars *, int, int, struct state *, struct state *)); | |
62 | static VOID freesubre _ANSI_ARGS_((struct vars *, struct subre *)); | |
63 | static VOID freesrnode _ANSI_ARGS_((struct vars *, struct subre *)); | |
64 | static VOID optst _ANSI_ARGS_((struct vars *, struct subre *)); | |
65 | static int numst _ANSI_ARGS_((struct subre *, int)); | |
66 | static VOID markst _ANSI_ARGS_((struct subre *)); | |
67 | static VOID cleanst _ANSI_ARGS_((struct vars *)); | |
68 | static long nfatree _ANSI_ARGS_((struct vars *, struct subre *, FILE *)); | |
69 | static long nfanode _ANSI_ARGS_((struct vars *, struct subre *, FILE *)); | |
70 | static int newlacon _ANSI_ARGS_((struct vars *, struct state *, struct state *, int)); | |
71 | static VOID freelacons _ANSI_ARGS_((struct subre *, int)); | |
72 | static VOID rfree _ANSI_ARGS_((regex_t *)); | |
73 | static VOID dump _ANSI_ARGS_((regex_t *, FILE *)); | |
74 | static VOID dumpst _ANSI_ARGS_((struct subre *, FILE *, int)); | |
75 | static VOID stdump _ANSI_ARGS_((struct subre *, FILE *, int)); | |
76 | static char *stid _ANSI_ARGS_((struct subre *, char *, size_t)); | |
77 | /* === regc_lex.c === */ | |
78 | static VOID lexstart _ANSI_ARGS_((struct vars *)); | |
79 | static VOID prefixes _ANSI_ARGS_((struct vars *)); | |
80 | static VOID lexnest _ANSI_ARGS_((struct vars *, chr *, chr *)); | |
81 | static VOID lexword _ANSI_ARGS_((struct vars *)); | |
82 | static int next _ANSI_ARGS_((struct vars *)); | |
83 | static int lexescape _ANSI_ARGS_((struct vars *)); | |
84 | static chr lexdigits _ANSI_ARGS_((struct vars *, int, int, int)); | |
85 | static int brenext _ANSI_ARGS_((struct vars *, pchr)); | |
86 | static VOID skip _ANSI_ARGS_((struct vars *)); | |
87 | static chr newline _ANSI_ARGS_((NOPARMS)); | |
88 | #ifdef REG_DEBUG | |
89 | static chr *ch _ANSI_ARGS_((NOPARMS)); | |
90 | #endif | |
91 | static chr chrnamed _ANSI_ARGS_((struct vars *, chr *, chr *, pchr)); | |
92 | /* === regc_color.c === */ | |
93 | static VOID initcm _ANSI_ARGS_((struct vars *, struct colormap *)); | |
94 | static VOID freecm _ANSI_ARGS_((struct colormap *)); | |
95 | static VOID cmtreefree _ANSI_ARGS_((struct colormap *, union tree *, int)); | |
96 | static color setcolor _ANSI_ARGS_((struct colormap *, pchr, pcolor)); | |
97 | static color maxcolor _ANSI_ARGS_((struct colormap *)); | |
98 | static color newcolor _ANSI_ARGS_((struct colormap *)); | |
99 | static VOID freecolor _ANSI_ARGS_((struct colormap *, pcolor)); | |
100 | static color pseudocolor _ANSI_ARGS_((struct colormap *)); | |
101 | static color subcolor _ANSI_ARGS_((struct colormap *, pchr c)); | |
102 | static color newsub _ANSI_ARGS_((struct colormap *, pcolor)); | |
103 | static VOID subrange _ANSI_ARGS_((struct vars *, pchr, pchr, struct state *, struct state *)); | |
104 | static VOID subblock _ANSI_ARGS_((struct vars *, pchr, struct state *, struct state *)); | |
105 | static VOID okcolors _ANSI_ARGS_((struct nfa *, struct colormap *)); | |
106 | static VOID colorchain _ANSI_ARGS_((struct colormap *, struct arc *)); | |
107 | static VOID uncolorchain _ANSI_ARGS_((struct colormap *, struct arc *)); | |
108 | static int singleton _ANSI_ARGS_((struct colormap *, pchr c)); | |
109 | static VOID rainbow _ANSI_ARGS_((struct nfa *, struct colormap *, int, pcolor, struct state *, struct state *)); | |
110 | static VOID colorcomplement _ANSI_ARGS_((struct nfa *, struct colormap *, int, struct state *, struct state *, struct state *)); | |
111 | #ifdef REG_DEBUG | |
112 | static VOID dumpcolors _ANSI_ARGS_((struct colormap *, FILE *)); | |
113 | static VOID fillcheck _ANSI_ARGS_((struct colormap *, union tree *, int, FILE *)); | |
114 | static VOID dumpchr _ANSI_ARGS_((pchr, FILE *)); | |
115 | #endif | |
116 | /* === regc_nfa.c === */ | |
117 | static struct nfa *newnfa _ANSI_ARGS_((struct vars *, struct colormap *, struct nfa *)); | |
118 | static VOID freenfa _ANSI_ARGS_((struct nfa *)); | |
119 | static struct state *newstate _ANSI_ARGS_((struct nfa *)); | |
120 | static struct state *newfstate _ANSI_ARGS_((struct nfa *, int flag)); | |
121 | static VOID dropstate _ANSI_ARGS_((struct nfa *, struct state *)); | |
122 | static VOID freestate _ANSI_ARGS_((struct nfa *, struct state *)); | |
123 | static VOID destroystate _ANSI_ARGS_((struct nfa *, struct state *)); | |
124 | static VOID newarc _ANSI_ARGS_((struct nfa *, int, pcolor, struct state *, struct state *)); | |
125 | static struct arc *allocarc _ANSI_ARGS_((struct nfa *, struct state *)); | |
126 | static VOID freearc _ANSI_ARGS_((struct nfa *, struct arc *)); | |
127 | static struct arc *findarc _ANSI_ARGS_((struct state *, int, pcolor)); | |
128 | static VOID cparc _ANSI_ARGS_((struct nfa *, struct arc *, struct state *, struct state *)); | |
129 | static VOID moveins _ANSI_ARGS_((struct nfa *, struct state *, struct state *)); | |
130 | static VOID copyins _ANSI_ARGS_((struct nfa *, struct state *, struct state *)); | |
131 | static VOID moveouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *)); | |
132 | static VOID copyouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *)); | |
133 | static VOID cloneouts _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *, int)); | |
134 | static VOID delsub _ANSI_ARGS_((struct nfa *, struct state *, struct state *)); | |
135 | static VOID deltraverse _ANSI_ARGS_((struct nfa *, struct state *, struct state *)); | |
136 | static VOID dupnfa _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *, struct state *)); | |
137 | static VOID duptraverse _ANSI_ARGS_((struct nfa *, struct state *, struct state *)); | |
138 | static VOID cleartraverse _ANSI_ARGS_((struct nfa *, struct state *)); | |
139 | static VOID specialcolors _ANSI_ARGS_((struct nfa *)); | |
140 | static long optimize _ANSI_ARGS_((struct nfa *, FILE *)); | |
141 | static VOID pullback _ANSI_ARGS_((struct nfa *, FILE *)); | |
142 | static int pull _ANSI_ARGS_((struct nfa *, struct arc *)); | |
143 | static VOID pushfwd _ANSI_ARGS_((struct nfa *, FILE *)); | |
144 | static int push _ANSI_ARGS_((struct nfa *, struct arc *)); | |
145 | #define INCOMPATIBLE 1 /* destroys arc */ | |
146 | #define SATISFIED 2 /* constraint satisfied */ | |
147 | #define COMPATIBLE 3 /* compatible but not satisfied yet */ | |
148 | static int combine _ANSI_ARGS_((struct arc *, struct arc *)); | |
149 | static VOID fixempties _ANSI_ARGS_((struct nfa *, FILE *)); | |
150 | static int unempty _ANSI_ARGS_((struct nfa *, struct arc *)); | |
151 | static VOID cleanup _ANSI_ARGS_((struct nfa *)); | |
152 | static VOID markreachable _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *)); | |
153 | static VOID markcanreach _ANSI_ARGS_((struct nfa *, struct state *, struct state *, struct state *)); | |
154 | static long analyze _ANSI_ARGS_((struct nfa *)); | |
155 | static VOID compact _ANSI_ARGS_((struct nfa *, struct cnfa *)); | |
156 | static VOID carcsort _ANSI_ARGS_((struct carc *, struct carc *)); | |
157 | static VOID freecnfa _ANSI_ARGS_((struct cnfa *)); | |
158 | static VOID dumpnfa _ANSI_ARGS_((struct nfa *, FILE *)); | |
159 | #ifdef REG_DEBUG | |
160 | static VOID dumpstate _ANSI_ARGS_((struct state *, FILE *)); | |
161 | static VOID dumparcs _ANSI_ARGS_((struct state *, FILE *)); | |
162 | static int dumprarcs _ANSI_ARGS_((struct arc *, struct state *, FILE *, int)); | |
163 | static VOID dumparc _ANSI_ARGS_((struct arc *, struct state *, FILE *)); | |
164 | #endif | |
165 | static VOID dumpcnfa _ANSI_ARGS_((struct cnfa *, FILE *)); | |
166 | #ifdef REG_DEBUG | |
167 | static VOID dumpcstate _ANSI_ARGS_((int, struct carc *, struct cnfa *, FILE *)); | |
168 | #endif | |
169 | /* === regc_cvec.c === */ | |
170 | static struct cvec *newcvec _ANSI_ARGS_((int, int, int)); | |
171 | static struct cvec *clearcvec _ANSI_ARGS_((struct cvec *)); | |
172 | static VOID addchr _ANSI_ARGS_((struct cvec *, pchr)); | |
173 | static VOID addrange _ANSI_ARGS_((struct cvec *, pchr, pchr)); | |
174 | static VOID addmcce _ANSI_ARGS_((struct cvec *, chr *, chr *)); | |
175 | static int haschr _ANSI_ARGS_((struct cvec *, pchr)); | |
176 | static struct cvec *getcvec _ANSI_ARGS_((struct vars *, int, int, int)); | |
177 | static VOID freecvec _ANSI_ARGS_((struct cvec *)); | |
178 | /* === regc_locale.c === */ | |
179 | static int nmcces _ANSI_ARGS_((struct vars *)); | |
180 | static int nleaders _ANSI_ARGS_((struct vars *)); | |
181 | static struct cvec *allmcces _ANSI_ARGS_((struct vars *, struct cvec *)); | |
182 | static celt element _ANSI_ARGS_((struct vars *, chr *, chr *)); | |
183 | static struct cvec *range _ANSI_ARGS_((struct vars *, celt, celt, int)); | |
184 | static int before _ANSI_ARGS_((celt, celt)); | |
185 | static struct cvec *eclass _ANSI_ARGS_((struct vars *, celt, int)); | |
186 | static struct cvec *cclass _ANSI_ARGS_((struct vars *, chr *, chr *, int)); | |
187 | static struct cvec *allcases _ANSI_ARGS_((struct vars *, pchr)); | |
188 | static int cmp _ANSI_ARGS_((CONST chr *, CONST chr *, size_t)); | |
189 | static int casecmp _ANSI_ARGS_((CONST chr *, CONST chr *, size_t)); | |
190 | /* automatically gathered by fwd; do not hand-edit */ | |
191 | /* =====^!^===== end forwards =====^!^===== */ | |
192 | ||
193 | ||
194 | ||
195 | /* internal variables, bundled for easy passing around */ | |
196 | struct vars { | |
197 | regex_t *re; | |
198 | chr *now; /* scan pointer into string */ | |
199 | chr *stop; /* end of string */ | |
200 | chr *savenow; /* saved now and stop for "subroutine call" */ | |
201 | chr *savestop; | |
202 | int err; /* error code (0 if none) */ | |
203 | int cflags; /* copy of compile flags */ | |
204 | int lasttype; /* type of previous token */ | |
205 | int nexttype; /* type of next token */ | |
206 | chr nextvalue; /* value (if any) of next token */ | |
207 | int lexcon; /* lexical context type (see lex.c) */ | |
208 | int nsubexp; /* subexpression count */ | |
209 | struct subre **subs; /* subRE pointer vector */ | |
210 | size_t nsubs; /* length of vector */ | |
211 | struct subre *sub10[10]; /* initial vector, enough for most */ | |
212 | struct nfa *nfa; /* the NFA */ | |
213 | struct colormap *cm; /* character color map */ | |
214 | color nlcolor; /* color of newline */ | |
215 | struct state *wordchrs; /* state in nfa holding word-char outarcs */ | |
216 | struct subre *tree; /* subexpression tree */ | |
217 | struct subre *treechain; /* all tree nodes allocated */ | |
218 | struct subre *treefree; /* any free tree nodes */ | |
219 | int ntree; /* number of tree nodes */ | |
220 | struct cvec *cv; /* interface cvec */ | |
221 | struct cvec *cv2; /* utility cvec */ | |
222 | struct cvec *mcces; /* collating-element information */ | |
223 | # define ISCELEADER(v,c) (v->mcces != NULL && haschr(v->mcces, (c))) | |
224 | struct state *mccepbegin; /* in nfa, start of MCCE prototypes */ | |
225 | struct state *mccepend; /* in nfa, end of MCCE prototypes */ | |
226 | struct subre *lacons; /* lookahead-constraint vector */ | |
227 | int nlacons; /* size of lacons */ | |
228 | }; | |
229 | ||
230 | /* parsing macros; most know that `v' is the struct vars pointer */ | |
231 | #define NEXT() (next(v)) /* advance by one token */ | |
232 | #define SEE(t) (v->nexttype == (t)) /* is next token this? */ | |
233 | #define EAT(t) (SEE(t) && next(v)) /* if next is this, swallow it */ | |
234 | #define VISERR(vv) ((vv)->err != 0) /* have we seen an error yet? */ | |
235 | #define ISERR() VISERR(v) | |
236 | #define VERR(vv,e) ((vv)->nexttype = EOS, ((vv)->err) ? (vv)->err :\ | |
237 | ((vv)->err = (e))) | |
238 | #define ERR(e) (void)VERR(v, e) /* record an error */ | |
239 | #define NOERR() {if (ISERR()) return;} /* if error seen, return */ | |
240 | #define NOERRN() {if (ISERR()) return NULL;} /* NOERR with retval */ | |
241 | #define NOERRZ() {if (ISERR()) return 0;} /* NOERR with retval */ | |
242 | #define INSIST(c, e) (void)((c) ? (void)0 : ERR(e)) /* if condition false, error */ | |
243 | #define NOTE(b) (v->re->re_info |= (b)) /* note visible condition */ | |
244 | #define EMPTYARC(x, y) newarc(v->nfa, EMPTY, 0, x, y) | |
245 | ||
246 | /* token type codes, some also used as NFA arc types */ | |
247 | #define EMPTY 'n' /* no token present */ | |
248 | #define EOS 'e' /* end of string */ | |
249 | #define PLAIN 'p' /* ordinary character */ | |
250 | #define DIGIT 'd' /* digit (in bound) */ | |
251 | #define BACKREF 'b' /* back reference */ | |
252 | #define COLLEL 'I' /* start of [. */ | |
253 | #define ECLASS 'E' /* start of [= */ | |
254 | #define CCLASS 'C' /* start of [: */ | |
255 | #define END 'X' /* end of [. [= [: */ | |
256 | #define RANGE 'R' /* - within [] which might be range delim. */ | |
257 | #define LACON 'L' /* lookahead constraint subRE */ | |
258 | #define AHEAD 'a' /* color-lookahead arc */ | |
259 | #define BEHIND 'r' /* color-lookbehind arc */ | |
260 | #define WBDRY 'w' /* word boundary constraint */ | |
261 | #define NWBDRY 'W' /* non-word-boundary constraint */ | |
262 | #define SBEGIN 'A' /* beginning of string (even if not BOL) */ | |
263 | #define SEND 'Z' /* end of string (even if not EOL) */ | |
264 | #define PREFER 'P' /* length preference */ | |
265 | ||
266 | /* is an arc colored, and hence on a color chain? */ | |
267 | #define COLORED(a) ((a)->type == PLAIN || (a)->type == AHEAD || \ | |
268 | (a)->type == BEHIND) | |
269 | ||
270 | ||
271 | ||
272 | /* static function list */ | |
273 | static struct fns functions = { | |
274 | rfree, /* regfree insides */ | |
275 | }; | |
276 | ||
277 | ||
278 | ||
279 | /* | |
280 | - compile - compile regular expression | |
281 | ^ int compile(regex_t *, CONST chr *, size_t, int); | |
282 | */ | |
283 | int | |
284 | compile(re, string, len, flags) | |
285 | regex_t *re; | |
286 | CONST chr *string; | |
287 | size_t len; | |
288 | int flags; | |
289 | { | |
290 | struct vars var; | |
291 | struct vars *v = &var; | |
292 | struct guts *g; | |
293 | int i; | |
294 | size_t j; | |
295 | FILE *debug = (flags®_PROGRESS) ? stdout : (FILE *)NULL; | |
296 | # define CNOERR() { if (ISERR()) return freev(v, v->err); } | |
297 | ||
298 | /* sanity checks */ | |
299 | ||
300 | if (re == NULL || string == NULL) | |
301 | return REG_INVARG; | |
302 | if ((flags®_QUOTE) && | |
303 | (flags&(REG_ADVANCED|REG_EXPANDED|REG_NEWLINE))) | |
304 | return REG_INVARG; | |
305 | if (!(flags®_EXTENDED) && (flags®_ADVF)) | |
306 | return REG_INVARG; | |
307 | ||
308 | /* initial setup (after which freev() is callable) */ | |
309 | v->re = re; | |
310 | v->now = (chr *)string; | |
311 | v->stop = v->now + len; | |
312 | v->savenow = v->savestop = NULL; | |
313 | v->err = 0; | |
314 | v->cflags = flags; | |
315 | v->nsubexp = 0; | |
316 | v->subs = v->sub10; | |
317 | v->nsubs = 10; | |
318 | for (j = 0; j < v->nsubs; j++) | |
319 | v->subs[j] = NULL; | |
320 | v->nfa = NULL; | |
321 | v->cm = NULL; | |
322 | v->nlcolor = COLORLESS; | |
323 | v->wordchrs = NULL; | |
324 | v->tree = NULL; | |
325 | v->treechain = NULL; | |
326 | v->treefree = NULL; | |
327 | v->cv = NULL; | |
328 | v->cv2 = NULL; | |
329 | v->mcces = NULL; | |
330 | v->lacons = NULL; | |
331 | v->nlacons = 0; | |
332 | re->re_magic = REMAGIC; | |
333 | re->re_info = 0; /* bits get set during parse */ | |
334 | re->re_csize = sizeof(chr); | |
335 | re->re_guts = NULL; | |
336 | re->re_fns = VS(&functions); | |
337 | ||
338 | /* more complex setup, malloced things */ | |
339 | re->re_guts = VS(MALLOC(sizeof(struct guts))); | |
340 | if (re->re_guts == NULL) | |
341 | return freev(v, REG_ESPACE); | |
342 | g = (struct guts *)re->re_guts; | |
343 | g->tree = NULL; | |
344 | initcm(v, &g->cmap); | |
345 | v->cm = &g->cmap; | |
346 | g->lacons = NULL; | |
347 | g->nlacons = 0; | |
348 | ZAPCNFA(g->search); | |
349 | v->nfa = newnfa(v, v->cm, (struct nfa *)NULL); | |
350 | CNOERR(); | |
351 | v->cv = newcvec(100, 20, 10); | |
352 | if (v->cv == NULL) | |
353 | return freev(v, REG_ESPACE); | |
354 | i = nmcces(v); | |
355 | if (i > 0) { | |
356 | v->mcces = newcvec(nleaders(v), 0, i); | |
357 | CNOERR(); | |
358 | v->mcces = allmcces(v, v->mcces); | |
359 | leaders(v, v->mcces); | |
360 | addmcce(v->mcces, (chr *)NULL, (chr *)NULL); /* dummy */ | |
361 | } | |
362 | CNOERR(); | |
363 | ||
364 | /* parsing */ | |
365 | lexstart(v); /* also handles prefixes */ | |
366 | if ((v->cflags®_NLSTOP) || (v->cflags®_NLANCH)) { | |
367 | /* assign newline a unique color */ | |
368 | v->nlcolor = subcolor(v->cm, newline()); | |
369 | okcolors(v->nfa, v->cm); | |
370 | } | |
371 | CNOERR(); | |
372 | v->tree = parse(v, EOS, PLAIN, v->nfa->init, v->nfa->final); | |
373 | assert(SEE(EOS)); /* even if error; ISERR() => SEE(EOS) */ | |
374 | CNOERR(); | |
375 | assert(v->tree != NULL); | |
376 | ||
377 | /* finish setup of nfa and its subre tree */ | |
378 | specialcolors(v->nfa); | |
379 | CNOERR(); | |
380 | if (debug != NULL) { | |
381 | fprintf(debug, "\n\n\n========= RAW ==========\n"); | |
382 | dumpnfa(v->nfa, debug); | |
383 | dumpst(v->tree, debug, 1); | |
384 | } | |
385 | optst(v, v->tree); | |
386 | v->ntree = numst(v->tree, 1); | |
387 | markst(v->tree); | |
388 | cleanst(v); | |
389 | if (debug != NULL) { | |
390 | fprintf(debug, "\n\n\n========= TREE FIXED ==========\n"); | |
391 | dumpst(v->tree, debug, 1); | |
392 | } | |
393 | ||
394 | /* build compacted NFAs for tree and lacons */ | |
395 | re->re_info |= nfatree(v, v->tree, debug); | |
396 | CNOERR(); | |
397 | assert(v->nlacons == 0 || v->lacons != NULL); | |
398 | for (i = 1; i < v->nlacons; i++) { | |
399 | if (debug != NULL) | |
400 | fprintf(debug, "\n\n\n========= LA%d ==========\n", i); | |
401 | nfanode(v, &v->lacons[i], debug); | |
402 | } | |
403 | CNOERR(); | |
404 | if (v->tree->flags&SHORTER) | |
405 | NOTE(REG_USHORTEST); | |
406 | ||
407 | /* build compacted NFAs for tree, lacons, fast search */ | |
408 | if (debug != NULL) | |
409 | fprintf(debug, "\n\n\n========= SEARCH ==========\n"); | |
410 | /* can sacrifice main NFA now, so use it as work area */ | |
411 | (DISCARD)optimize(v->nfa, debug); | |
412 | CNOERR(); | |
413 | makesearch(v, v->nfa); | |
414 | CNOERR(); | |
415 | compact(v->nfa, &g->search); | |
416 | CNOERR(); | |
417 | ||
418 | /* looks okay, package it up */ | |
419 | re->re_nsub = v->nsubexp; | |
420 | v->re = NULL; /* freev no longer frees re */ | |
421 | g->magic = GUTSMAGIC; | |
422 | g->cflags = v->cflags; | |
423 | g->info = re->re_info; | |
424 | g->nsub = re->re_nsub; | |
425 | g->tree = v->tree; | |
426 | v->tree = NULL; | |
427 | g->ntree = v->ntree; | |
428 | g->compare = (v->cflags®_ICASE) ? casecmp : cmp; | |
429 | g->lacons = v->lacons; | |
430 | v->lacons = NULL; | |
431 | g->nlacons = v->nlacons; | |
432 | ||
433 | if (flags®_DUMP) | |
434 | dump(re, stdout); | |
435 | ||
436 | assert(v->err == 0); | |
437 | return freev(v, 0); | |
438 | } | |
439 | ||
440 | /* | |
441 | - moresubs - enlarge subRE vector | |
442 | ^ static VOID moresubs(struct vars *, int); | |
443 | */ | |
444 | static VOID | |
445 | moresubs(v, wanted) | |
446 | struct vars *v; | |
447 | int wanted; /* want enough room for this one */ | |
448 | { | |
449 | struct subre **p; | |
450 | size_t n; | |
451 | ||
452 | assert(wanted > 0 && (size_t)wanted >= v->nsubs); | |
453 | n = (size_t)wanted * 3 / 2 + 1; | |
454 | if (v->subs == v->sub10) { | |
455 | p = (struct subre **)MALLOC(n * sizeof(struct subre *)); | |
456 | if (p != NULL) | |
457 | memcpy(VS(p), VS(v->subs), | |
458 | v->nsubs * sizeof(struct subre *)); | |
459 | } else | |
460 | p = (struct subre **)REALLOC(v->subs, n*sizeof(struct subre *)); | |
461 | if (p == NULL) { | |
462 | ERR(REG_ESPACE); | |
463 | return; | |
464 | } | |
465 | v->subs = p; | |
466 | for (p = &v->subs[v->nsubs]; v->nsubs < n; p++, v->nsubs++) | |
467 | *p = NULL; | |
468 | assert(v->nsubs == n); | |
469 | assert((size_t)wanted < v->nsubs); | |
470 | } | |
471 | ||
472 | /* | |
473 | - freev - free vars struct's substructures where necessary | |
474 | * Optionally does error-number setting, and always returns error code | |
475 | * (if any), to make error-handling code terser. | |
476 | ^ static int freev(struct vars *, int); | |
477 | */ | |
478 | static int | |
479 | freev(v, err) | |
480 | struct vars *v; | |
481 | int err; | |
482 | { | |
483 | if (v->re != NULL) | |
484 | rfree(v->re); | |
485 | if (v->subs != v->sub10) | |
486 | FREE(v->subs); | |
487 | if (v->nfa != NULL) | |
488 | freenfa(v->nfa); | |
489 | if (v->tree != NULL) | |
490 | freesubre(v, v->tree); | |
491 | if (v->treechain != NULL) | |
492 | cleanst(v); | |
493 | if (v->cv != NULL) | |
494 | freecvec(v->cv); | |
495 | if (v->cv2 != NULL) | |
496 | freecvec(v->cv2); | |
497 | if (v->mcces != NULL) | |
498 | freecvec(v->mcces); | |
499 | if (v->lacons != NULL) | |
500 | freelacons(v->lacons, v->nlacons); | |
501 | ERR(err); /* nop if err==0 */ | |
502 | ||
503 | return v->err; | |
504 | } | |
505 | ||
506 | /* | |
507 | - makesearch - turn an NFA into a search NFA (implicit prepend of .*?) | |
508 | * NFA must have been optimize()d already. | |
509 | ^ static VOID makesearch(struct vars *, struct nfa *); | |
510 | */ | |
511 | static VOID | |
512 | makesearch(v, nfa) | |
513 | struct vars *v; | |
514 | struct nfa *nfa; | |
515 | { | |
516 | struct arc *a; | |
517 | struct arc *b; | |
518 | struct state *pre = nfa->pre; | |
519 | struct state *s; | |
520 | struct state *s2; | |
521 | struct state *slist; | |
522 | ||
523 | /* no loops are needed if it's anchored */ | |
524 | for (a = pre->outs; a != NULL; a = a->outchain) { | |
525 | assert(a->type == PLAIN); | |
526 | if (a->co != nfa->bos[0] && a->co != nfa->bos[1]) | |
527 | break; | |
528 | } | |
529 | if (a != NULL) { | |
530 | /* add implicit .* in front */ | |
531 | rainbow(nfa, v->cm, PLAIN, COLORLESS, pre, pre); | |
532 | ||
533 | /* and ^* and \A* too -- not always necessary, but harmless */ | |
534 | newarc(nfa, PLAIN, nfa->bos[0], pre, pre); | |
535 | newarc(nfa, PLAIN, nfa->bos[1], pre, pre); | |
536 | } | |
537 | ||
538 | /* | |
539 | * Now here's the subtle part. Because many REs have no lookback | |
540 | * constraints, often knowing when you were in the pre state tells | |
541 | * you little; it's the next state(s) that are informative. But | |
542 | * some of them may have other inarcs, i.e. it may be possible to | |
543 | * make actual progress and then return to one of them. We must | |
544 | * de-optimize such cases, splitting each such state into progress | |
545 | * and no-progress states. | |
546 | */ | |
547 | ||
548 | /* first, make a list of the states */ | |
549 | slist = NULL; | |
550 | for (a = pre->outs; a != NULL; a = a->outchain) { | |
551 | s = a->to; | |
552 | for (b = s->ins; b != NULL; b = b->inchain) | |
553 | if (b->from != pre) | |
554 | break; | |
555 | if (b != NULL) { /* must be split */ | |
556 | if (s->tmp == NULL) { /* if not already in the list */ | |
557 | /* (fixes bugs 505048, 230589, */ | |
558 | /* 840258, 504785) */ | |
559 | s->tmp = slist; | |
560 | slist = s; | |
561 | } | |
562 | } | |
563 | } | |
564 | ||
565 | /* do the splits */ | |
566 | for (s = slist; s != NULL; s = s2) { | |
567 | s2 = newstate(nfa); | |
568 | copyouts(nfa, s, s2); | |
569 | for (a = s->ins; a != NULL; a = b) { | |
570 | b = a->inchain; | |
571 | if (a->from != pre) { | |
572 | cparc(nfa, a, a->from, s2); | |
573 | freearc(nfa, a); | |
574 | } | |
575 | } | |
576 | s2 = s->tmp; | |
577 | s->tmp = NULL; /* clean up while we're at it */ | |
578 | } | |
579 | } | |
580 | ||
581 | /* | |
582 | - parse - parse an RE | |
583 | * This is actually just the top level, which parses a bunch of branches | |
584 | * tied together with '|'. They appear in the tree as the left children | |
585 | * of a chain of '|' subres. | |
586 | ^ static struct subre *parse(struct vars *, int, int, struct state *, | |
587 | ^ struct state *); | |
588 | */ | |
589 | static struct subre * | |
590 | parse(v, stopper, type, init, final) | |
591 | struct vars *v; | |
592 | int stopper; /* EOS or ')' */ | |
593 | int type; /* LACON (lookahead subRE) or PLAIN */ | |
594 | struct state *init; /* initial state */ | |
595 | struct state *final; /* final state */ | |
596 | { | |
597 | struct state *left; /* scaffolding for branch */ | |
598 | struct state *right; | |
599 | struct subre *branches; /* top level */ | |
600 | struct subre *branch; /* current branch */ | |
601 | struct subre *t; /* temporary */ | |
602 | int firstbranch; /* is this the first branch? */ | |
603 | ||
604 | assert(stopper == ')' || stopper == EOS); | |
605 | ||
606 | branches = subre(v, '|', LONGER, init, final); | |
607 | NOERRN(); | |
608 | branch = branches; | |
609 | firstbranch = 1; | |
610 | do { /* a branch */ | |
611 | if (!firstbranch) { | |
612 | /* need a place to hang it */ | |
613 | branch->right = subre(v, '|', LONGER, init, final); | |
614 | NOERRN(); | |
615 | branch = branch->right; | |
616 | } | |
617 | firstbranch = 0; | |
618 | left = newstate(v->nfa); | |
619 | right = newstate(v->nfa); | |
620 | NOERRN(); | |
621 | EMPTYARC(init, left); | |
622 | EMPTYARC(right, final); | |
623 | NOERRN(); | |
624 | branch->left = parsebranch(v, stopper, type, left, right, 0); | |
625 | NOERRN(); | |
626 | branch->flags |= UP(branch->flags | branch->left->flags); | |
627 | if ((branch->flags &~ branches->flags) != 0) /* new flags */ | |
628 | for (t = branches; t != branch; t = t->right) | |
629 | t->flags |= branch->flags; | |
630 | } while (EAT('|')); | |
631 | assert(SEE(stopper) || SEE(EOS)); | |
632 | ||
633 | if (!SEE(stopper)) { | |
634 | assert(stopper == ')' && SEE(EOS)); | |
635 | ERR(REG_EPAREN); | |
636 | } | |
637 | ||
638 | /* optimize out simple cases */ | |
639 | if (branch == branches) { /* only one branch */ | |
640 | assert(branch->right == NULL); | |
641 | t = branch->left; | |
642 | branch->left = NULL; | |
643 | freesubre(v, branches); | |
644 | branches = t; | |
645 | } else if (!MESSY(branches->flags)) { /* no interesting innards */ | |
646 | freesubre(v, branches->left); | |
647 | branches->left = NULL; | |
648 | freesubre(v, branches->right); | |
649 | branches->right = NULL; | |
650 | branches->op = '='; | |
651 | } | |
652 | ||
653 | return branches; | |
654 | } | |
655 | ||
656 | /* | |
657 | - parsebranch - parse one branch of an RE | |
658 | * This mostly manages concatenation, working closely with parseqatom(). | |
659 | * Concatenated things are bundled up as much as possible, with separate | |
660 | * ',' nodes introduced only when necessary due to substructure. | |
661 | ^ static struct subre *parsebranch(struct vars *, int, int, struct state *, | |
662 | ^ struct state *, int); | |
663 | */ | |
664 | static struct subre * | |
665 | parsebranch(v, stopper, type, left, right, partial) | |
666 | struct vars *v; | |
667 | int stopper; /* EOS or ')' */ | |
668 | int type; /* LACON (lookahead subRE) or PLAIN */ | |
669 | struct state *left; /* leftmost state */ | |
670 | struct state *right; /* rightmost state */ | |
671 | int partial; /* is this only part of a branch? */ | |
672 | { | |
673 | struct state *lp; /* left end of current construct */ | |
674 | int seencontent; /* is there anything in this branch yet? */ | |
675 | struct subre *t; | |
676 | ||
677 | lp = left; | |
678 | seencontent = 0; | |
679 | t = subre(v, '=', 0, left, right); /* op '=' is tentative */ | |
680 | NOERRN(); | |
681 | while (!SEE('|') && !SEE(stopper) && !SEE(EOS)) { | |
682 | if (seencontent) { /* implicit concat operator */ | |
683 | lp = newstate(v->nfa); | |
684 | NOERRN(); | |
685 | moveins(v->nfa, right, lp); | |
686 | } | |
687 | seencontent = 1; | |
688 | ||
689 | /* NB, recursion in parseqatom() may swallow rest of branch */ | |
690 | parseqatom(v, stopper, type, lp, right, t); | |
691 | } | |
692 | ||
693 | if (!seencontent) { /* empty branch */ | |
694 | if (!partial) | |
695 | NOTE(REG_UUNSPEC); | |
696 | assert(lp == left); | |
697 | EMPTYARC(left, right); | |
698 | } | |
699 | ||
700 | return t; | |
701 | } | |
702 | ||
703 | /* | |
704 | - parseqatom - parse one quantified atom or constraint of an RE | |
705 | * The bookkeeping near the end cooperates very closely with parsebranch(); | |
706 | * in particular, it contains a recursion that can involve parsing the rest | |
707 | * of the branch, making this function's name somewhat inaccurate. | |
708 | ^ static VOID parseqatom(struct vars *, int, int, struct state *, | |
709 | ^ struct state *, struct subre *); | |
710 | */ | |
711 | static VOID | |
712 | parseqatom(v, stopper, type, lp, rp, top) | |
713 | struct vars *v; | |
714 | int stopper; /* EOS or ')' */ | |
715 | int type; /* LACON (lookahead subRE) or PLAIN */ | |
716 | struct state *lp; /* left state to hang it on */ | |
717 | struct state *rp; /* right state to hang it on */ | |
718 | struct subre *top; /* subtree top */ | |
719 | { | |
720 | struct state *s; /* temporaries for new states */ | |
721 | struct state *s2; | |
722 | # define ARCV(t, val) newarc(v->nfa, t, val, lp, rp) | |
723 | int m, n; | |
724 | struct subre *atom; /* atom's subtree */ | |
725 | struct subre *t; | |
726 | int cap; /* capturing parens? */ | |
727 | int pos; /* positive lookahead? */ | |
728 | int subno; /* capturing-parens or backref number */ | |
729 | int atomtype; | |
730 | int qprefer; /* quantifier short/long preference */ | |
731 | int f; | |
732 | struct subre **atomp; /* where the pointer to atom is */ | |
733 | ||
734 | /* initial bookkeeping */ | |
735 | atom = NULL; | |
736 | assert(lp->nouts == 0); /* must string new code */ | |
737 | assert(rp->nins == 0); /* between lp and rp */ | |
738 | subno = 0; /* just to shut lint up */ | |
739 | ||
740 | /* an atom or constraint... */ | |
741 | atomtype = v->nexttype; | |
742 | switch (atomtype) { | |
743 | /* first, constraints, which end by returning */ | |
744 | case '^': | |
745 | ARCV('^', 1); | |
746 | if (v->cflags®_NLANCH) | |
747 | ARCV(BEHIND, v->nlcolor); | |
748 | NEXT(); | |
749 | return; | |
750 | break; | |
751 | case '$': | |
752 | ARCV('$', 1); | |
753 | if (v->cflags®_NLANCH) | |
754 | ARCV(AHEAD, v->nlcolor); | |
755 | NEXT(); | |
756 | return; | |
757 | break; | |
758 | case SBEGIN: | |
759 | ARCV('^', 1); /* BOL */ | |
760 | ARCV('^', 0); /* or BOS */ | |
761 | NEXT(); | |
762 | return; | |
763 | break; | |
764 | case SEND: | |
765 | ARCV('$', 1); /* EOL */ | |
766 | ARCV('$', 0); /* or EOS */ | |
767 | NEXT(); | |
768 | return; | |
769 | break; | |
770 | case '<': | |
771 | wordchrs(v); /* does NEXT() */ | |
772 | s = newstate(v->nfa); | |
773 | NOERR(); | |
774 | nonword(v, BEHIND, lp, s); | |
775 | word(v, AHEAD, s, rp); | |
776 | return; | |
777 | break; | |
778 | case '>': | |
779 | wordchrs(v); /* does NEXT() */ | |
780 | s = newstate(v->nfa); | |
781 | NOERR(); | |
782 | word(v, BEHIND, lp, s); | |
783 | nonword(v, AHEAD, s, rp); | |
784 | return; | |
785 | break; | |
786 | case WBDRY: | |
787 | wordchrs(v); /* does NEXT() */ | |
788 | s = newstate(v->nfa); | |
789 | NOERR(); | |
790 | nonword(v, BEHIND, lp, s); | |
791 | word(v, AHEAD, s, rp); | |
792 | s = newstate(v->nfa); | |
793 | NOERR(); | |
794 | word(v, BEHIND, lp, s); | |
795 | nonword(v, AHEAD, s, rp); | |
796 | return; | |
797 | break; | |
798 | case NWBDRY: | |
799 | wordchrs(v); /* does NEXT() */ | |
800 | s = newstate(v->nfa); | |
801 | NOERR(); | |
802 | word(v, BEHIND, lp, s); | |
803 | word(v, AHEAD, s, rp); | |
804 | s = newstate(v->nfa); | |
805 | NOERR(); | |
806 | nonword(v, BEHIND, lp, s); | |
807 | nonword(v, AHEAD, s, rp); | |
808 | return; | |
809 | break; | |
810 | case LACON: /* lookahead constraint */ | |
811 | pos = v->nextvalue; | |
812 | NEXT(); | |
813 | s = newstate(v->nfa); | |
814 | s2 = newstate(v->nfa); | |
815 | NOERR(); | |
816 | t = parse(v, ')', LACON, s, s2); | |
817 | freesubre(v, t); /* internal structure irrelevant */ | |
818 | assert(SEE(')') || ISERR()); | |
819 | NEXT(); | |
820 | n = newlacon(v, s, s2, pos); | |
821 | NOERR(); | |
822 | ARCV(LACON, n); | |
823 | return; | |
824 | break; | |
825 | /* then errors, to get them out of the way */ | |
826 | case '*': | |
827 | case '+': | |
828 | case '?': | |
829 | case '{': | |
830 | ERR(REG_BADRPT); | |
831 | return; | |
832 | break; | |
833 | default: | |
834 | ERR(REG_ASSERT); | |
835 | return; | |
836 | break; | |
837 | /* then plain characters, and minor variants on that theme */ | |
838 | case ')': /* unbalanced paren */ | |
839 | if ((v->cflags®_ADVANCED) != REG_EXTENDED) { | |
840 | ERR(REG_EPAREN); | |
841 | return; | |
842 | } | |
843 | /* legal in EREs due to specification botch */ | |
844 | NOTE(REG_UPBOTCH); | |
845 | /* fallthrough into case PLAIN */ | |
846 | case PLAIN: | |
847 | onechr(v, v->nextvalue, lp, rp); | |
848 | okcolors(v->nfa, v->cm); | |
849 | NOERR(); | |
850 | NEXT(); | |
851 | break; | |
852 | case '[': | |
853 | if (v->nextvalue == 1) | |
854 | bracket(v, lp, rp); | |
855 | else | |
856 | cbracket(v, lp, rp); | |
857 | assert(SEE(']') || ISERR()); | |
858 | NEXT(); | |
859 | break; | |
860 | case '.': | |
861 | rainbow(v->nfa, v->cm, PLAIN, | |
862 | (v->cflags®_NLSTOP) ? v->nlcolor : COLORLESS, | |
863 | lp, rp); | |
864 | NEXT(); | |
865 | break; | |
866 | /* and finally the ugly stuff */ | |
867 | case '(': /* value flags as capturing or non */ | |
868 | cap = (type == LACON) ? 0 : v->nextvalue; | |
869 | if (cap) { | |
870 | v->nsubexp++; | |
871 | subno = v->nsubexp; | |
872 | if ((size_t)subno >= v->nsubs) | |
873 | moresubs(v, subno); | |
874 | assert((size_t)subno < v->nsubs); | |
875 | } else | |
876 | atomtype = PLAIN; /* something that's not '(' */ | |
877 | NEXT(); | |
878 | /* need new endpoints because tree will contain pointers */ | |
879 | s = newstate(v->nfa); | |
880 | s2 = newstate(v->nfa); | |
881 | NOERR(); | |
882 | EMPTYARC(lp, s); | |
883 | EMPTYARC(s2, rp); | |
884 | NOERR(); | |
885 | atom = parse(v, ')', PLAIN, s, s2); | |
886 | assert(SEE(')') || ISERR()); | |
887 | NEXT(); | |
888 | NOERR(); | |
889 | if (cap) { | |
890 | v->subs[subno] = atom; | |
891 | t = subre(v, '(', atom->flags|CAP, lp, rp); | |
892 | NOERR(); | |
893 | t->subno = subno; | |
894 | t->left = atom; | |
895 | atom = t; | |
896 | } | |
897 | /* postpone everything else pending possible {0} */ | |
898 | break; | |
899 | case BACKREF: /* the Feature From The Black Lagoon */ | |
900 | INSIST(type != LACON, REG_ESUBREG); | |
901 | INSIST(v->nextvalue < v->nsubs, REG_ESUBREG); | |
902 | INSIST(v->subs[(int)v->nextvalue] != NULL, REG_ESUBREG); | |
903 | NOERR(); | |
904 | assert(v->nextvalue > 0); | |
905 | atom = subre(v, 'b', BACKR, lp, rp); | |
906 | subno = v->nextvalue; | |
907 | atom->subno = subno; | |
908 | EMPTYARC(lp, rp); /* temporarily, so there's something */ | |
909 | NEXT(); | |
910 | break; | |
911 | } | |
912 | ||
913 | /* ...and an atom may be followed by a quantifier */ | |
914 | switch (v->nexttype) { | |
915 | case '*': | |
916 | m = 0; | |
917 | n = INFINITY; | |
918 | qprefer = (v->nextvalue) ? LONGER : SHORTER; | |
919 | NEXT(); | |
920 | break; | |
921 | case '+': | |
922 | m = 1; | |
923 | n = INFINITY; | |
924 | qprefer = (v->nextvalue) ? LONGER : SHORTER; | |
925 | NEXT(); | |
926 | break; | |
927 | case '?': | |
928 | m = 0; | |
929 | n = 1; | |
930 | qprefer = (v->nextvalue) ? LONGER : SHORTER; | |
931 | NEXT(); | |
932 | break; | |
933 | case '{': | |
934 | NEXT(); | |
935 | m = scannum(v); | |
936 | if (EAT(',')) { | |
937 | if (SEE(DIGIT)) | |
938 | n = scannum(v); | |
939 | else | |
940 | n = INFINITY; | |
941 | if (m > n) { | |
942 | ERR(REG_BADBR); | |
943 | return; | |
944 | } | |
945 | /* {m,n} exercises preference, even if it's {m,m} */ | |
946 | qprefer = (v->nextvalue) ? LONGER : SHORTER; | |
947 | } else { | |
948 | n = m; | |
949 | /* {m} passes operand's preference through */ | |
950 | qprefer = 0; | |
951 | } | |
952 | if (!SEE('}')) { /* catches errors too */ | |
953 | ERR(REG_BADBR); | |
954 | return; | |
955 | } | |
956 | NEXT(); | |
957 | break; | |
958 | default: /* no quantifier */ | |
959 | m = n = 1; | |
960 | qprefer = 0; | |
961 | break; | |
962 | } | |
963 | ||
964 | /* annoying special case: {0} or {0,0} cancels everything */ | |
965 | if (m == 0 && n == 0) { | |
966 | if (atom != NULL) | |
967 | freesubre(v, atom); | |
968 | if (atomtype == '(') | |
969 | v->subs[subno] = NULL; | |
970 | delsub(v->nfa, lp, rp); | |
971 | EMPTYARC(lp, rp); | |
972 | return; | |
973 | } | |
974 | ||
975 | /* if not a messy case, avoid hard part */ | |
976 | assert(!MESSY(top->flags)); | |
977 | f = top->flags | qprefer | ((atom != NULL) ? atom->flags : 0); | |
978 | if (atomtype != '(' && atomtype != BACKREF && !MESSY(UP(f))) { | |
979 | if (!(m == 1 && n == 1)) | |
980 | repeat(v, lp, rp, m, n); | |
981 | if (atom != NULL) | |
982 | freesubre(v, atom); | |
983 | top->flags = f; | |
984 | return; | |
985 | } | |
986 | ||
987 | /* | |
988 | * hard part: something messy | |
989 | * That is, capturing parens, back reference, short/long clash, or | |
990 | * an atom with substructure containing one of those. | |
991 | */ | |
992 | ||
993 | /* now we'll need a subre for the contents even if they're boring */ | |
994 | if (atom == NULL) { | |
995 | atom = subre(v, '=', 0, lp, rp); | |
996 | NOERR(); | |
997 | } | |
998 | ||
999 | /* | |
1000 | * prepare a general-purpose state skeleton | |
1001 | * | |
1002 | * ---> [s] ---prefix---> [begin] ---atom---> [end] ----rest---> [rp] | |
1003 | * / / | |
1004 | * [lp] ----> [s2] ----bypass--------------------- | |
1005 | * | |
1006 | * where bypass is an empty, and prefix is some repetitions of atom | |
1007 | */ | |
1008 | s = newstate(v->nfa); /* first, new endpoints for the atom */ | |
1009 | s2 = newstate(v->nfa); | |
1010 | NOERR(); | |
1011 | moveouts(v->nfa, lp, s); | |
1012 | moveins(v->nfa, rp, s2); | |
1013 | NOERR(); | |
1014 | atom->begin = s; | |
1015 | atom->end = s2; | |
1016 | s = newstate(v->nfa); /* and spots for prefix and bypass */ | |
1017 | s2 = newstate(v->nfa); | |
1018 | NOERR(); | |
1019 | EMPTYARC(lp, s); | |
1020 | EMPTYARC(lp, s2); | |
1021 | NOERR(); | |
1022 | ||
1023 | /* break remaining subRE into x{...} and what follows */ | |
1024 | t = subre(v, '.', COMBINE(qprefer, atom->flags), lp, rp); | |
1025 | t->left = atom; | |
1026 | atomp = &t->left; | |
1027 | /* here we should recurse... but we must postpone that to the end */ | |
1028 | ||
1029 | /* split top into prefix and remaining */ | |
1030 | assert(top->op == '=' && top->left == NULL && top->right == NULL); | |
1031 | top->left = subre(v, '=', top->flags, top->begin, lp); | |
1032 | top->op = '.'; | |
1033 | top->right = t; | |
1034 | ||
1035 | /* if it's a backref, now is the time to replicate the subNFA */ | |
1036 | if (atomtype == BACKREF) { | |
1037 | assert(atom->begin->nouts == 1); /* just the EMPTY */ | |
1038 | delsub(v->nfa, atom->begin, atom->end); | |
1039 | assert(v->subs[subno] != NULL); | |
1040 | /* and here's why the recursion got postponed: it must */ | |
1041 | /* wait until the skeleton is filled in, because it may */ | |
1042 | /* hit a backref that wants to copy the filled-in skeleton */ | |
1043 | dupnfa(v->nfa, v->subs[subno]->begin, v->subs[subno]->end, | |
1044 | atom->begin, atom->end); | |
1045 | NOERR(); | |
1046 | } | |
1047 | ||
1048 | /* it's quantifier time; first, turn x{0,...} into x{1,...}|empty */ | |
1049 | if (m == 0) { | |
1050 | EMPTYARC(s2, atom->end); /* the bypass */ | |
1051 | assert(PREF(qprefer) != 0); | |
1052 | f = COMBINE(qprefer, atom->flags); | |
1053 | t = subre(v, '|', f, lp, atom->end); | |
1054 | NOERR(); | |
1055 | t->left = atom; | |
1056 | t->right = subre(v, '|', PREF(f), s2, atom->end); | |
1057 | NOERR(); | |
1058 | t->right->left = subre(v, '=', 0, s2, atom->end); | |
1059 | NOERR(); | |
1060 | *atomp = t; | |
1061 | atomp = &t->left; | |
1062 | m = 1; | |
1063 | } | |
1064 | ||
1065 | /* deal with the rest of the quantifier */ | |
1066 | if (atomtype == BACKREF) { | |
1067 | /* special case: backrefs have internal quantifiers */ | |
1068 | EMPTYARC(s, atom->begin); /* empty prefix */ | |
1069 | /* just stuff everything into atom */ | |
1070 | repeat(v, atom->begin, atom->end, m, n); | |
1071 | atom->min = (short)m; | |
1072 | atom->max = (short)n; | |
1073 | atom->flags |= COMBINE(qprefer, atom->flags); | |
1074 | } else if (m == 1 && n == 1) { | |
1075 | /* no/vacuous quantifier: done */ | |
1076 | EMPTYARC(s, atom->begin); /* empty prefix */ | |
1077 | } else { | |
1078 | /* turn x{m,n} into x{m-1,n-1}x, with capturing */ | |
1079 | /* parens in only second x */ | |
1080 | dupnfa(v->nfa, atom->begin, atom->end, s, atom->begin); | |
1081 | assert(m >= 1 && m != INFINITY && n >= 1); | |
1082 | repeat(v, s, atom->begin, m-1, (n == INFINITY) ? n : n-1); | |
1083 | f = COMBINE(qprefer, atom->flags); | |
1084 | t = subre(v, '.', f, s, atom->end); /* prefix and atom */ | |
1085 | NOERR(); | |
1086 | t->left = subre(v, '=', PREF(f), s, atom->begin); | |
1087 | NOERR(); | |
1088 | t->right = atom; | |
1089 | *atomp = t; | |
1090 | } | |
1091 | ||
1092 | /* and finally, look after that postponed recursion */ | |
1093 | t = top->right; | |
1094 | if (!(SEE('|') || SEE(stopper) || SEE(EOS))) | |
1095 | t->right = parsebranch(v, stopper, type, atom->end, rp, 1); | |
1096 | else { | |
1097 | EMPTYARC(atom->end, rp); | |
1098 | t->right = subre(v, '=', 0, atom->end, rp); | |
1099 | } | |
1100 | assert(SEE('|') || SEE(stopper) || SEE(EOS)); | |
1101 | t->flags |= COMBINE(t->flags, t->right->flags); | |
1102 | top->flags |= COMBINE(top->flags, t->flags); | |
1103 | } | |
1104 | ||
1105 | /* | |
1106 | - nonword - generate arcs for non-word-character ahead or behind | |
1107 | ^ static VOID nonword(struct vars *, int, struct state *, struct state *); | |
1108 | */ | |
1109 | static VOID | |
1110 | nonword(v, dir, lp, rp) | |
1111 | struct vars *v; | |
1112 | int dir; /* AHEAD or BEHIND */ | |
1113 | struct state *lp; | |
1114 | struct state *rp; | |
1115 | { | |
1116 | int anchor = (dir == AHEAD) ? '$' : '^'; | |
1117 | ||
1118 | assert(dir == AHEAD || dir == BEHIND); | |
1119 | newarc(v->nfa, anchor, 1, lp, rp); | |
1120 | newarc(v->nfa, anchor, 0, lp, rp); | |
1121 | colorcomplement(v->nfa, v->cm, dir, v->wordchrs, lp, rp); | |
1122 | /* (no need for special attention to \n) */ | |
1123 | } | |
1124 | ||
1125 | /* | |
1126 | - word - generate arcs for word character ahead or behind | |
1127 | ^ static VOID word(struct vars *, int, struct state *, struct state *); | |
1128 | */ | |
1129 | static VOID | |
1130 | word(v, dir, lp, rp) | |
1131 | struct vars *v; | |
1132 | int dir; /* AHEAD or BEHIND */ | |
1133 | struct state *lp; | |
1134 | struct state *rp; | |
1135 | { | |
1136 | assert(dir == AHEAD || dir == BEHIND); | |
1137 | cloneouts(v->nfa, v->wordchrs, lp, rp, dir); | |
1138 | /* (no need for special attention to \n) */ | |
1139 | } | |
1140 | ||
1141 | /* | |
1142 | - scannum - scan a number | |
1143 | ^ static int scannum(struct vars *); | |
1144 | */ | |
1145 | static int /* value, <= DUPMAX */ | |
1146 | scannum(v) | |
1147 | struct vars *v; | |
1148 | { | |
1149 | int n = 0; | |
1150 | ||
1151 | while (SEE(DIGIT) && n < DUPMAX) { | |
1152 | n = n*10 + v->nextvalue; | |
1153 | NEXT(); | |
1154 | } | |
1155 | if (SEE(DIGIT) || n > DUPMAX) { | |
1156 | ERR(REG_BADBR); | |
1157 | return 0; | |
1158 | } | |
1159 | return n; | |
1160 | } | |
1161 | ||
1162 | /* | |
1163 | - repeat - replicate subNFA for quantifiers | |
1164 | * The duplication sequences used here are chosen carefully so that any | |
1165 | * pointers starting out pointing into the subexpression end up pointing into | |
1166 | * the last occurrence. (Note that it may not be strung between the same | |
1167 | * left and right end states, however!) This used to be important for the | |
1168 | * subRE tree, although the important bits are now handled by the in-line | |
1169 | * code in parse(), and when this is called, it doesn't matter any more. | |
1170 | ^ static VOID repeat(struct vars *, struct state *, struct state *, int, int); | |
1171 | */ | |
1172 | static VOID | |
1173 | repeat(v, lp, rp, m, n) | |
1174 | struct vars *v; | |
1175 | struct state *lp; | |
1176 | struct state *rp; | |
1177 | int m; | |
1178 | int n; | |
1179 | { | |
1180 | # define SOME 2 | |
1181 | # define INF 3 | |
1182 | # define PAIR(x, y) ((x)*4 + (y)) | |
1183 | # define REDUCE(x) ( ((x) == INFINITY) ? INF : (((x) > 1) ? SOME : (x)) ) | |
1184 | CONST int rm = REDUCE(m); | |
1185 | CONST int rn = REDUCE(n); | |
1186 | struct state *s; | |
1187 | struct state *s2; | |
1188 | ||
1189 | switch (PAIR(rm, rn)) { | |
1190 | case PAIR(0, 0): /* empty string */ | |
1191 | delsub(v->nfa, lp, rp); | |
1192 | EMPTYARC(lp, rp); | |
1193 | break; | |
1194 | case PAIR(0, 1): /* do as x| */ | |
1195 | EMPTYARC(lp, rp); | |
1196 | break; | |
1197 | case PAIR(0, SOME): /* do as x{1,n}| */ | |
1198 | repeat(v, lp, rp, 1, n); | |
1199 | NOERR(); | |
1200 | EMPTYARC(lp, rp); | |
1201 | break; | |
1202 | case PAIR(0, INF): /* loop x around */ | |
1203 | s = newstate(v->nfa); | |
1204 | NOERR(); | |
1205 | moveouts(v->nfa, lp, s); | |
1206 | moveins(v->nfa, rp, s); | |
1207 | EMPTYARC(lp, s); | |
1208 | EMPTYARC(s, rp); | |
1209 | break; | |
1210 | case PAIR(1, 1): /* no action required */ | |
1211 | break; | |
1212 | case PAIR(1, SOME): /* do as x{0,n-1}x = (x{1,n-1}|)x */ | |
1213 | s = newstate(v->nfa); | |
1214 | NOERR(); | |
1215 | moveouts(v->nfa, lp, s); | |
1216 | dupnfa(v->nfa, s, rp, lp, s); | |
1217 | NOERR(); | |
1218 | repeat(v, lp, s, 1, n-1); | |
1219 | NOERR(); | |
1220 | EMPTYARC(lp, s); | |
1221 | break; | |
1222 | case PAIR(1, INF): /* add loopback arc */ | |
1223 | s = newstate(v->nfa); | |
1224 | s2 = newstate(v->nfa); | |
1225 | NOERR(); | |
1226 | moveouts(v->nfa, lp, s); | |
1227 | moveins(v->nfa, rp, s2); | |
1228 | EMPTYARC(lp, s); | |
1229 | EMPTYARC(s2, rp); | |
1230 | EMPTYARC(s2, s); | |
1231 | break; | |
1232 | case PAIR(SOME, SOME): /* do as x{m-1,n-1}x */ | |
1233 | s = newstate(v->nfa); | |
1234 | NOERR(); | |
1235 | moveouts(v->nfa, lp, s); | |
1236 | dupnfa(v->nfa, s, rp, lp, s); | |
1237 | NOERR(); | |
1238 | repeat(v, lp, s, m-1, n-1); | |
1239 | break; | |
1240 | case PAIR(SOME, INF): /* do as x{m-1,}x */ | |
1241 | s = newstate(v->nfa); | |
1242 | NOERR(); | |
1243 | moveouts(v->nfa, lp, s); | |
1244 | dupnfa(v->nfa, s, rp, lp, s); | |
1245 | NOERR(); | |
1246 | repeat(v, lp, s, m-1, n); | |
1247 | break; | |
1248 | default: | |
1249 | ERR(REG_ASSERT); | |
1250 | break; | |
1251 | } | |
1252 | } | |
1253 | ||
1254 | /* | |
1255 | - bracket - handle non-complemented bracket expression | |
1256 | * Also called from cbracket for complemented bracket expressions. | |
1257 | ^ static VOID bracket(struct vars *, struct state *, struct state *); | |
1258 | */ | |
1259 | static VOID | |
1260 | bracket(v, lp, rp) | |
1261 | struct vars *v; | |
1262 | struct state *lp; | |
1263 | struct state *rp; | |
1264 | { | |
1265 | assert(SEE('[')); | |
1266 | NEXT(); | |
1267 | while (!SEE(']') && !SEE(EOS)) | |
1268 | brackpart(v, lp, rp); | |
1269 | assert(SEE(']') || ISERR()); | |
1270 | okcolors(v->nfa, v->cm); | |
1271 | } | |
1272 | ||
1273 | /* | |
1274 | - cbracket - handle complemented bracket expression | |
1275 | * We do it by calling bracket() with dummy endpoints, and then complementing | |
1276 | * the result. The alternative would be to invoke rainbow(), and then delete | |
1277 | * arcs as the b.e. is seen... but that gets messy. | |
1278 | ^ static VOID cbracket(struct vars *, struct state *, struct state *); | |
1279 | */ | |
1280 | static VOID | |
1281 | cbracket(v, lp, rp) | |
1282 | struct vars *v; | |
1283 | struct state *lp; | |
1284 | struct state *rp; | |
1285 | { | |
1286 | struct state *left = newstate(v->nfa); | |
1287 | struct state *right = newstate(v->nfa); | |
1288 | struct state *s; | |
1289 | struct arc *a; /* arc from lp */ | |
1290 | struct arc *ba; /* arc from left, from bracket() */ | |
1291 | struct arc *pa; /* MCCE-prototype arc */ | |
1292 | color co; | |
1293 | chr *p; | |
1294 | int i; | |
1295 | ||
1296 | NOERR(); | |
1297 | bracket(v, left, right); | |
1298 | if (v->cflags®_NLSTOP) | |
1299 | newarc(v->nfa, PLAIN, v->nlcolor, left, right); | |
1300 | NOERR(); | |
1301 | ||
1302 | assert(lp->nouts == 0); /* all outarcs will be ours */ | |
1303 | ||
1304 | /* easy part of complementing */ | |
1305 | colorcomplement(v->nfa, v->cm, PLAIN, left, lp, rp); | |
1306 | NOERR(); | |
1307 | if (v->mcces == NULL) { /* no MCCEs -- we're done */ | |
1308 | dropstate(v->nfa, left); | |
1309 | assert(right->nins == 0); | |
1310 | freestate(v->nfa, right); | |
1311 | return; | |
1312 | } | |
1313 | ||
1314 | /* but complementing gets messy in the presence of MCCEs... */ | |
1315 | NOTE(REG_ULOCALE); | |
1316 | for (p = v->mcces->chrs, i = v->mcces->nchrs; i > 0; p++, i--) { | |
1317 | co = GETCOLOR(v->cm, *p); | |
1318 | a = findarc(lp, PLAIN, co); | |
1319 | ba = findarc(left, PLAIN, co); | |
1320 | if (ba == NULL) { | |
1321 | assert(a != NULL); | |
1322 | freearc(v->nfa, a); | |
1323 | } else { | |
1324 | assert(a == NULL); | |
1325 | } | |
1326 | s = newstate(v->nfa); | |
1327 | NOERR(); | |
1328 | newarc(v->nfa, PLAIN, co, lp, s); | |
1329 | NOERR(); | |
1330 | pa = findarc(v->mccepbegin, PLAIN, co); | |
1331 | assert(pa != NULL); | |
1332 | if (ba == NULL) { /* easy case, need all of them */ | |
1333 | cloneouts(v->nfa, pa->to, s, rp, PLAIN); | |
1334 | newarc(v->nfa, '$', 1, s, rp); | |
1335 | newarc(v->nfa, '$', 0, s, rp); | |
1336 | colorcomplement(v->nfa, v->cm, AHEAD, pa->to, s, rp); | |
1337 | } else { /* must be selective */ | |
1338 | if (findarc(ba->to, '$', 1) == NULL) { | |
1339 | newarc(v->nfa, '$', 1, s, rp); | |
1340 | newarc(v->nfa, '$', 0, s, rp); | |
1341 | colorcomplement(v->nfa, v->cm, AHEAD, pa->to, | |
1342 | s, rp); | |
1343 | } | |
1344 | for (pa = pa->to->outs; pa != NULL; pa = pa->outchain) | |
1345 | if (findarc(ba->to, PLAIN, pa->co) == NULL) | |
1346 | newarc(v->nfa, PLAIN, pa->co, s, rp); | |
1347 | if (s->nouts == 0) /* limit of selectivity: none */ | |
1348 | dropstate(v->nfa, s); /* frees arc too */ | |
1349 | } | |
1350 | NOERR(); | |
1351 | } | |
1352 | ||
1353 | delsub(v->nfa, left, right); | |
1354 | assert(left->nouts == 0); | |
1355 | freestate(v->nfa, left); | |
1356 | assert(right->nins == 0); | |
1357 | freestate(v->nfa, right); | |
1358 | } | |
1359 | ||
1360 | /* | |
1361 | - brackpart - handle one item (or range) within a bracket expression | |
1362 | ^ static VOID brackpart(struct vars *, struct state *, struct state *); | |
1363 | */ | |
1364 | static VOID | |
1365 | brackpart(v, lp, rp) | |
1366 | struct vars *v; | |
1367 | struct state *lp; | |
1368 | struct state *rp; | |
1369 | { | |
1370 | celt startc; | |
1371 | celt endc; | |
1372 | struct cvec *cv; | |
1373 | chr *startp; | |
1374 | chr *endp; | |
1375 | chr c[1]; | |
1376 | ||
1377 | /* parse something, get rid of special cases, take shortcuts */ | |
1378 | switch (v->nexttype) { | |
1379 | case RANGE: /* a-b-c or other botch */ | |
1380 | ERR(REG_ERANGE); | |
1381 | return; | |
1382 | break; | |
1383 | case PLAIN: | |
1384 | c[0] = v->nextvalue; | |
1385 | NEXT(); | |
1386 | /* shortcut for ordinary chr (not range, not MCCE leader) */ | |
1387 | if (!SEE(RANGE) && !ISCELEADER(v, c[0])) { | |
1388 | onechr(v, c[0], lp, rp); | |
1389 | return; | |
1390 | } | |
1391 | startc = element(v, c, c+1); | |
1392 | NOERR(); | |
1393 | break; | |
1394 | case COLLEL: | |
1395 | startp = v->now; | |
1396 | endp = scanplain(v); | |
1397 | INSIST(startp < endp, REG_ECOLLATE); | |
1398 | NOERR(); | |
1399 | startc = element(v, startp, endp); | |
1400 | NOERR(); | |
1401 | break; | |
1402 | case ECLASS: | |
1403 | startp = v->now; | |
1404 | endp = scanplain(v); | |
1405 | INSIST(startp < endp, REG_ECOLLATE); | |
1406 | NOERR(); | |
1407 | startc = element(v, startp, endp); | |
1408 | NOERR(); | |
1409 | cv = eclass(v, startc, (v->cflags®_ICASE)); | |
1410 | NOERR(); | |
1411 | dovec(v, cv, lp, rp); | |
1412 | return; | |
1413 | break; | |
1414 | case CCLASS: | |
1415 | startp = v->now; | |
1416 | endp = scanplain(v); | |
1417 | INSIST(startp < endp, REG_ECTYPE); | |
1418 | NOERR(); | |
1419 | cv = cclass(v, startp, endp, (v->cflags®_ICASE)); | |
1420 | NOERR(); | |
1421 | dovec(v, cv, lp, rp); | |
1422 | return; | |
1423 | break; | |
1424 | default: | |
1425 | ERR(REG_ASSERT); | |
1426 | return; | |
1427 | break; | |
1428 | } | |
1429 | ||
1430 | if (SEE(RANGE)) { | |
1431 | NEXT(); | |
1432 | switch (v->nexttype) { | |
1433 | case PLAIN: | |
1434 | case RANGE: | |
1435 | c[0] = v->nextvalue; | |
1436 | NEXT(); | |
1437 | endc = element(v, c, c+1); | |
1438 | NOERR(); | |
1439 | break; | |
1440 | case COLLEL: | |
1441 | startp = v->now; | |
1442 | endp = scanplain(v); | |
1443 | INSIST(startp < endp, REG_ECOLLATE); | |
1444 | NOERR(); | |
1445 | endc = element(v, startp, endp); | |
1446 | NOERR(); | |
1447 | break; | |
1448 | default: | |
1449 | ERR(REG_ERANGE); | |
1450 | return; | |
1451 | break; | |
1452 | } | |
1453 | } else | |
1454 | endc = startc; | |
1455 | ||
1456 | /* | |
1457 | * Ranges are unportable. Actually, standard C does | |
1458 | * guarantee that digits are contiguous, but making | |
1459 | * that an exception is just too complicated. | |
1460 | */ | |
1461 | if (startc != endc) | |
1462 | NOTE(REG_UUNPORT); | |
1463 | cv = range(v, startc, endc, (v->cflags®_ICASE)); | |
1464 | NOERR(); | |
1465 | dovec(v, cv, lp, rp); | |
1466 | } | |
1467 | ||
1468 | /* | |
1469 | - scanplain - scan PLAIN contents of [. etc. | |
1470 | * Certain bits of trickery in lex.c know that this code does not try | |
1471 | * to look past the final bracket of the [. etc. | |
1472 | ^ static chr *scanplain(struct vars *); | |
1473 | */ | |
1474 | static chr * /* just after end of sequence */ | |
1475 | scanplain(v) | |
1476 | struct vars *v; | |
1477 | { | |
1478 | chr *endp; | |
1479 | ||
1480 | assert(SEE(COLLEL) || SEE(ECLASS) || SEE(CCLASS)); | |
1481 | NEXT(); | |
1482 | ||
1483 | endp = v->now; | |
1484 | while (SEE(PLAIN)) { | |
1485 | endp = v->now; | |
1486 | NEXT(); | |
1487 | } | |
1488 | ||
1489 | assert(SEE(END) || ISERR()); | |
1490 | NEXT(); | |
1491 | ||
1492 | return endp; | |
1493 | } | |
1494 | ||
1495 | /* | |
1496 | - leaders - process a cvec of collating elements to also include leaders | |
1497 | * Also gives all characters involved their own colors, which is almost | |
1498 | * certainly necessary, and sets up little disconnected subNFA. | |
1499 | ^ static VOID leaders(struct vars *, struct cvec *); | |
1500 | */ | |
1501 | static VOID | |
1502 | leaders(v, cv) | |
1503 | struct vars *v; | |
1504 | struct cvec *cv; | |
1505 | { | |
1506 | int mcce; | |
1507 | chr *p; | |
1508 | chr leader; | |
1509 | struct state *s; | |
1510 | struct arc *a; | |
1511 | ||
1512 | v->mccepbegin = newstate(v->nfa); | |
1513 | v->mccepend = newstate(v->nfa); | |
1514 | NOERR(); | |
1515 | ||
1516 | for (mcce = 0; mcce < cv->nmcces; mcce++) { | |
1517 | p = cv->mcces[mcce]; | |
1518 | leader = *p; | |
1519 | if (!haschr(cv, leader)) { | |
1520 | addchr(cv, leader); | |
1521 | s = newstate(v->nfa); | |
1522 | newarc(v->nfa, PLAIN, subcolor(v->cm, leader), | |
1523 | v->mccepbegin, s); | |
1524 | okcolors(v->nfa, v->cm); | |
1525 | } else { | |
1526 | a = findarc(v->mccepbegin, PLAIN, | |
1527 | GETCOLOR(v->cm, leader)); | |
1528 | assert(a != NULL); | |
1529 | s = a->to; | |
1530 | assert(s != v->mccepend); | |
1531 | } | |
1532 | p++; | |
1533 | assert(*p != 0 && *(p+1) == 0); /* only 2-char MCCEs for now */ | |
1534 | newarc(v->nfa, PLAIN, subcolor(v->cm, *p), s, v->mccepend); | |
1535 | okcolors(v->nfa, v->cm); | |
1536 | } | |
1537 | } | |
1538 | ||
1539 | /* | |
1540 | - onechr - fill in arcs for a plain character, and possible case complements | |
1541 | * This is mostly a shortcut for efficient handling of the common case. | |
1542 | ^ static VOID onechr(struct vars *, pchr, struct state *, struct state *); | |
1543 | */ | |
1544 | static VOID | |
1545 | onechr(v, c, lp, rp) | |
1546 | struct vars *v; | |
1547 | pchr c; | |
1548 | struct state *lp; | |
1549 | struct state *rp; | |
1550 | { | |
1551 | if (!(v->cflags®_ICASE)) { | |
1552 | newarc(v->nfa, PLAIN, subcolor(v->cm, c), lp, rp); | |
1553 | return; | |
1554 | } | |
1555 | ||
1556 | /* rats, need general case anyway... */ | |
1557 | dovec(v, allcases(v, c), lp, rp); | |
1558 | } | |
1559 | ||
1560 | /* | |
1561 | - dovec - fill in arcs for each element of a cvec | |
1562 | * This one has to handle the messy cases, like MCCEs and MCCE leaders. | |
1563 | ^ static VOID dovec(struct vars *, struct cvec *, struct state *, | |
1564 | ^ struct state *); | |
1565 | */ | |
1566 | static VOID | |
1567 | dovec(v, cv, lp, rp) | |
1568 | struct vars *v; | |
1569 | struct cvec *cv; | |
1570 | struct state *lp; | |
1571 | struct state *rp; | |
1572 | { | |
1573 | chr ch, from, to; | |
1574 | celt ce; | |
1575 | chr *p; | |
1576 | int i; | |
1577 | color co; | |
1578 | struct cvec *leads; | |
1579 | struct arc *a; | |
1580 | struct arc *pa; /* arc in prototype */ | |
1581 | struct state *s; | |
1582 | struct state *ps; /* state in prototype */ | |
1583 | ||
1584 | /* need a place to store leaders, if any */ | |
1585 | if (nmcces(v) > 0) { | |
1586 | assert(v->mcces != NULL); | |
1587 | if (v->cv2 == NULL || v->cv2->nchrs < v->mcces->nchrs) { | |
1588 | if (v->cv2 != NULL) | |
1589 | free(v->cv2); | |
1590 | v->cv2 = newcvec(v->mcces->nchrs, 0, v->mcces->nmcces); | |
1591 | NOERR(); | |
1592 | leads = v->cv2; | |
1593 | } else | |
1594 | leads = clearcvec(v->cv2); | |
1595 | } else | |
1596 | leads = NULL; | |
1597 | ||
1598 | /* first, get the ordinary characters out of the way */ | |
1599 | for (p = cv->chrs, i = cv->nchrs; i > 0; p++, i--) { | |
1600 | ch = *p; | |
1601 | if (!ISCELEADER(v, ch)) | |
1602 | newarc(v->nfa, PLAIN, subcolor(v->cm, ch), lp, rp); | |
1603 | else { | |
1604 | assert(singleton(v->cm, ch)); | |
1605 | assert(leads != NULL); | |
1606 | if (!haschr(leads, ch)) | |
1607 | addchr(leads, ch); | |
1608 | } | |
1609 | } | |
1610 | ||
1611 | /* and the ranges */ | |
1612 | for (p = cv->ranges, i = cv->nranges; i > 0; p += 2, i--) { | |
1613 | from = *p; | |
1614 | to = *(p+1); | |
1615 | while (from <= to && (ce = nextleader(v, from, to)) != NOCELT) { | |
1616 | if (from < ce) | |
1617 | subrange(v, from, ce - 1, lp, rp); | |
1618 | assert(singleton(v->cm, ce)); | |
1619 | assert(leads != NULL); | |
1620 | if (!haschr(leads, ce)) | |
1621 | addchr(leads, ce); | |
1622 | from = ce + 1; | |
1623 | } | |
1624 | if (from <= to) | |
1625 | subrange(v, from, to, lp, rp); | |
1626 | } | |
1627 | ||
1628 | if ((leads == NULL || leads->nchrs == 0) && cv->nmcces == 0) | |
1629 | return; | |
1630 | ||
1631 | /* deal with the MCCE leaders */ | |
1632 | NOTE(REG_ULOCALE); | |
1633 | for (p = leads->chrs, i = leads->nchrs; i > 0; p++, i--) { | |
1634 | co = GETCOLOR(v->cm, *p); | |
1635 | a = findarc(lp, PLAIN, co); | |
1636 | if (a != NULL) | |
1637 | s = a->to; | |
1638 | else { | |
1639 | s = newstate(v->nfa); | |
1640 | NOERR(); | |
1641 | newarc(v->nfa, PLAIN, co, lp, s); | |
1642 | NOERR(); | |
1643 | } | |
1644 | pa = findarc(v->mccepbegin, PLAIN, co); | |
1645 | assert(pa != NULL); | |
1646 | ps = pa->to; | |
1647 | newarc(v->nfa, '$', 1, s, rp); | |
1648 | newarc(v->nfa, '$', 0, s, rp); | |
1649 | colorcomplement(v->nfa, v->cm, AHEAD, ps, s, rp); | |
1650 | NOERR(); | |
1651 | } | |
1652 | ||
1653 | /* and the MCCEs */ | |
1654 | for (i = 0; i < cv->nmcces; i++) { | |
1655 | p = cv->mcces[i]; | |
1656 | assert(singleton(v->cm, *p)); | |
1657 | if (!singleton(v->cm, *p)) { | |
1658 | ERR(REG_ASSERT); | |
1659 | return; | |
1660 | } | |
1661 | ch = *p++; | |
1662 | co = GETCOLOR(v->cm, ch); | |
1663 | a = findarc(lp, PLAIN, co); | |
1664 | if (a != NULL) | |
1665 | s = a->to; | |
1666 | else { | |
1667 | s = newstate(v->nfa); | |
1668 | NOERR(); | |
1669 | newarc(v->nfa, PLAIN, co, lp, s); | |
1670 | NOERR(); | |
1671 | } | |
1672 | assert(*p != 0); /* at least two chars */ | |
1673 | assert(singleton(v->cm, *p)); | |
1674 | ch = *p++; | |
1675 | co = GETCOLOR(v->cm, ch); | |
1676 | assert(*p == 0); /* and only two, for now */ | |
1677 | newarc(v->nfa, PLAIN, co, s, rp); | |
1678 | NOERR(); | |
1679 | } | |
1680 | } | |
1681 | ||
1682 | /* | |
1683 | - nextleader - find next MCCE leader within range | |
1684 | ^ static celt nextleader(struct vars *, pchr, pchr); | |
1685 | */ | |
1686 | static celt /* NOCELT means none */ | |
1687 | nextleader(v, from, to) | |
1688 | struct vars *v; | |
1689 | pchr from; | |
1690 | pchr to; | |
1691 | { | |
1692 | int i; | |
1693 | chr *p; | |
1694 | chr ch; | |
1695 | celt it = NOCELT; | |
1696 | ||
1697 | if (v->mcces == NULL) | |
1698 | return it; | |
1699 | ||
1700 | for (i = v->mcces->nchrs, p = v->mcces->chrs; i > 0; i--, p++) { | |
1701 | ch = *p; | |
1702 | if (from <= ch && ch <= to) | |
1703 | if (it == NOCELT || ch < it) | |
1704 | it = ch; | |
1705 | } | |
1706 | return it; | |
1707 | } | |
1708 | ||
1709 | /* | |
1710 | - wordchrs - set up word-chr list for word-boundary stuff, if needed | |
1711 | * The list is kept as a bunch of arcs between two dummy states; it's | |
1712 | * disposed of by the unreachable-states sweep in NFA optimization. | |
1713 | * Does NEXT(). Must not be called from any unusual lexical context. | |
1714 | * This should be reconciled with the \w etc. handling in lex.c, and | |
1715 | * should be cleaned up to reduce dependencies on input scanning. | |
1716 | ^ static VOID wordchrs(struct vars *); | |
1717 | */ | |
1718 | static VOID | |
1719 | wordchrs(v) | |
1720 | struct vars *v; | |
1721 | { | |
1722 | struct state *left; | |
1723 | struct state *right; | |
1724 | ||
1725 | if (v->wordchrs != NULL) { | |
1726 | NEXT(); /* for consistency */ | |
1727 | return; | |
1728 | } | |
1729 | ||
1730 | left = newstate(v->nfa); | |
1731 | right = newstate(v->nfa); | |
1732 | NOERR(); | |
1733 | /* fine point: implemented with [::], and lexer will set REG_ULOCALE */ | |
1734 | lexword(v); | |
1735 | NEXT(); | |
1736 | assert(v->savenow != NULL && SEE('[')); | |
1737 | bracket(v, left, right); | |
1738 | assert((v->savenow != NULL && SEE(']')) || ISERR()); | |
1739 | NEXT(); | |
1740 | NOERR(); | |
1741 | v->wordchrs = left; | |
1742 | } | |
1743 | ||
1744 | /* | |
1745 | - subre - allocate a subre | |
1746 | ^ static struct subre *subre(struct vars *, int, int, struct state *, | |
1747 | ^ struct state *); | |
1748 | */ | |
1749 | static struct subre * | |
1750 | subre(v, op, flags, begin, end) | |
1751 | struct vars *v; | |
1752 | int op; | |
1753 | int flags; | |
1754 | struct state *begin; | |
1755 | struct state *end; | |
1756 | { | |
1757 | struct subre *ret; | |
1758 | ||
1759 | ret = v->treefree; | |
1760 | if (ret != NULL) | |
1761 | v->treefree = ret->left; | |
1762 | else { | |
1763 | ret = (struct subre *)MALLOC(sizeof(struct subre)); | |
1764 | if (ret == NULL) { | |
1765 | ERR(REG_ESPACE); | |
1766 | return NULL; | |
1767 | } | |
1768 | ret->chain = v->treechain; | |
1769 | v->treechain = ret; | |
1770 | } | |
1771 | ||
1772 | assert(strchr("|.b(=", op) != NULL); | |
1773 | ||
1774 | ret->op = op; | |
1775 | ret->flags = flags; | |
1776 | ret->retry = 0; | |
1777 | ret->subno = 0; | |
1778 | ret->min = ret->max = 1; | |
1779 | ret->left = NULL; | |
1780 | ret->right = NULL; | |
1781 | ret->begin = begin; | |
1782 | ret->end = end; | |
1783 | ZAPCNFA(ret->cnfa); | |
1784 | ||
1785 | return ret; | |
1786 | } | |
1787 | ||
1788 | /* | |
1789 | - freesubre - free a subRE subtree | |
1790 | ^ static VOID freesubre(struct vars *, struct subre *); | |
1791 | */ | |
1792 | static VOID | |
1793 | freesubre(v, sr) | |
1794 | struct vars *v; /* might be NULL */ | |
1795 | struct subre *sr; | |
1796 | { | |
1797 | if (sr == NULL) | |
1798 | return; | |
1799 | ||
1800 | if (sr->left != NULL) | |
1801 | freesubre(v, sr->left); | |
1802 | if (sr->right != NULL) | |
1803 | freesubre(v, sr->right); | |
1804 | ||
1805 | freesrnode(v, sr); | |
1806 | } | |
1807 | ||
1808 | /* | |
1809 | - freesrnode - free one node in a subRE subtree | |
1810 | ^ static VOID freesrnode(struct vars *, struct subre *); | |
1811 | */ | |
1812 | static VOID | |
1813 | freesrnode(v, sr) | |
1814 | struct vars *v; /* might be NULL */ | |
1815 | struct subre *sr; | |
1816 | { | |
1817 | if (sr == NULL) | |
1818 | return; | |
1819 | ||
1820 | if (!NULLCNFA(sr->cnfa)) | |
1821 | freecnfa(&sr->cnfa); | |
1822 | sr->flags = 0; | |
1823 | ||
1824 | if (v != NULL) { | |
1825 | sr->left = v->treefree; | |
1826 | v->treefree = sr; | |
1827 | } else | |
1828 | FREE(sr); | |
1829 | } | |
1830 | ||
1831 | /* | |
1832 | - optst - optimize a subRE subtree | |
1833 | ^ static VOID optst(struct vars *, struct subre *); | |
1834 | */ | |
1835 | static VOID | |
1836 | optst(v, t) | |
1837 | struct vars *v; | |
1838 | struct subre *t; | |
1839 | { | |
1840 | if (t == NULL) | |
1841 | return; | |
1842 | ||
1843 | /* recurse through children */ | |
1844 | if (t->left != NULL) | |
1845 | optst(v, t->left); | |
1846 | if (t->right != NULL) | |
1847 | optst(v, t->right); | |
1848 | } | |
1849 | ||
1850 | /* | |
1851 | - numst - number tree nodes (assigning retry indexes) | |
1852 | ^ static int numst(struct subre *, int); | |
1853 | */ | |
1854 | static int /* next number */ | |
1855 | numst(t, start) | |
1856 | struct subre *t; | |
1857 | int start; /* starting point for subtree numbers */ | |
1858 | { | |
1859 | int i; | |
1860 | ||
1861 | assert(t != NULL); | |
1862 | ||
1863 | i = start; | |
1864 | t->retry = (short)i++; | |
1865 | if (t->left != NULL) | |
1866 | i = numst(t->left, i); | |
1867 | if (t->right != NULL) | |
1868 | i = numst(t->right, i); | |
1869 | return i; | |
1870 | } | |
1871 | ||
1872 | /* | |
1873 | - markst - mark tree nodes as INUSE | |
1874 | ^ static VOID markst(struct subre *); | |
1875 | */ | |
1876 | static VOID | |
1877 | markst(t) | |
1878 | struct subre *t; | |
1879 | { | |
1880 | assert(t != NULL); | |
1881 | ||
1882 | t->flags |= INUSE; | |
1883 | if (t->left != NULL) | |
1884 | markst(t->left); | |
1885 | if (t->right != NULL) | |
1886 | markst(t->right); | |
1887 | } | |
1888 | ||
1889 | /* | |
1890 | - cleanst - free any tree nodes not marked INUSE | |
1891 | ^ static VOID cleanst(struct vars *); | |
1892 | */ | |
1893 | static VOID | |
1894 | cleanst(v) | |
1895 | struct vars *v; | |
1896 | { | |
1897 | struct subre *t; | |
1898 | struct subre *next; | |
1899 | ||
1900 | for (t = v->treechain; t != NULL; t = next) { | |
1901 | next = t->chain; | |
1902 | if (!(t->flags&INUSE)) | |
1903 | FREE(t); | |
1904 | } | |
1905 | v->treechain = NULL; | |
1906 | v->treefree = NULL; /* just on general principles */ | |
1907 | } | |
1908 | ||
1909 | /* | |
1910 | - nfatree - turn a subRE subtree into a tree of compacted NFAs | |
1911 | ^ static long nfatree(struct vars *, struct subre *, FILE *); | |
1912 | */ | |
1913 | static long /* optimize results from top node */ | |
1914 | nfatree(v, t, f) | |
1915 | struct vars *v; | |
1916 | struct subre *t; | |
1917 | FILE *f; /* for debug output */ | |
1918 | { | |
1919 | assert(t != NULL && t->begin != NULL); | |
1920 | ||
1921 | if (t->left != NULL) | |
1922 | (DISCARD)nfatree(v, t->left, f); | |
1923 | if (t->right != NULL) | |
1924 | (DISCARD)nfatree(v, t->right, f); | |
1925 | ||
1926 | return nfanode(v, t, f); | |
1927 | } | |
1928 | ||
1929 | /* | |
1930 | - nfanode - do one NFA for nfatree | |
1931 | ^ static long nfanode(struct vars *, struct subre *, FILE *); | |
1932 | */ | |
1933 | static long /* optimize results */ | |
1934 | nfanode(v, t, f) | |
1935 | struct vars *v; | |
1936 | struct subre *t; | |
1937 | FILE *f; /* for debug output */ | |
1938 | { | |
1939 | struct nfa *nfa; | |
1940 | long ret = 0; | |
1941 | char idbuf[50]; | |
1942 | ||
1943 | assert(t->begin != NULL); | |
1944 | ||
1945 | if (f != NULL) | |
1946 | fprintf(f, "\n\n\n========= TREE NODE %s ==========\n", | |
1947 | stid(t, idbuf, sizeof(idbuf))); | |
1948 | nfa = newnfa(v, v->cm, v->nfa); | |
1949 | NOERRZ(); | |
1950 | dupnfa(nfa, t->begin, t->end, nfa->init, nfa->final); | |
1951 | if (!ISERR()) { | |
1952 | specialcolors(nfa); | |
1953 | ret = optimize(nfa, f); | |
1954 | } | |
1955 | if (!ISERR()) | |
1956 | compact(nfa, &t->cnfa); | |
1957 | ||
1958 | freenfa(nfa); | |
1959 | return ret; | |
1960 | } | |
1961 | ||
1962 | /* | |
1963 | - newlacon - allocate a lookahead-constraint subRE | |
1964 | ^ static int newlacon(struct vars *, struct state *, struct state *, int); | |
1965 | */ | |
1966 | static int /* lacon number */ | |
1967 | newlacon(v, begin, end, pos) | |
1968 | struct vars *v; | |
1969 | struct state *begin; | |
1970 | struct state *end; | |
1971 | int pos; | |
1972 | { | |
1973 | int n; | |
1974 | struct subre *sub; | |
1975 | ||
1976 | if (v->nlacons == 0) { | |
1977 | v->lacons = (struct subre *)MALLOC(2 * sizeof(struct subre)); | |
1978 | n = 1; /* skip 0th */ | |
1979 | v->nlacons = 2; | |
1980 | } else { | |
1981 | v->lacons = (struct subre *)REALLOC(v->lacons, | |
1982 | (v->nlacons+1)*sizeof(struct subre)); | |
1983 | n = v->nlacons++; | |
1984 | } | |
1985 | if (v->lacons == NULL) { | |
1986 | ERR(REG_ESPACE); | |
1987 | return 0; | |
1988 | } | |
1989 | sub = &v->lacons[n]; | |
1990 | sub->begin = begin; | |
1991 | sub->end = end; | |
1992 | sub->subno = pos; | |
1993 | ZAPCNFA(sub->cnfa); | |
1994 | return n; | |
1995 | } | |
1996 | ||
1997 | /* | |
1998 | - freelacons - free lookahead-constraint subRE vector | |
1999 | ^ static VOID freelacons(struct subre *, int); | |
2000 | */ | |
2001 | static VOID | |
2002 | freelacons(subs, n) | |
2003 | struct subre *subs; | |
2004 | int n; | |
2005 | { | |
2006 | struct subre *sub; | |
2007 | int i; | |
2008 | ||
2009 | assert(n > 0); | |
2010 | for (sub = subs + 1, i = n - 1; i > 0; sub++, i--) /* no 0th */ | |
2011 | if (!NULLCNFA(sub->cnfa)) | |
2012 | freecnfa(&sub->cnfa); | |
2013 | FREE(subs); | |
2014 | } | |
2015 | ||
2016 | /* | |
2017 | - rfree - free a whole RE (insides of regfree) | |
2018 | ^ static VOID rfree(regex_t *); | |
2019 | */ | |
2020 | static VOID | |
2021 | rfree(re) | |
2022 | regex_t *re; | |
2023 | { | |
2024 | struct guts *g; | |
2025 | ||
2026 | if (re == NULL || re->re_magic != REMAGIC) | |
2027 | return; | |
2028 | ||
2029 | re->re_magic = 0; /* invalidate RE */ | |
2030 | g = (struct guts *)re->re_guts; | |
2031 | re->re_guts = NULL; | |
2032 | re->re_fns = NULL; | |
2033 | g->magic = 0; | |
2034 | freecm(&g->cmap); | |
2035 | if (g->tree != NULL) | |
2036 | freesubre((struct vars *)NULL, g->tree); | |
2037 | if (g->lacons != NULL) | |
2038 | freelacons(g->lacons, g->nlacons); | |
2039 | if (!NULLCNFA(g->search)) | |
2040 | freecnfa(&g->search); | |
2041 | FREE(g); | |
2042 | } | |
2043 | ||
2044 | /* | |
2045 | - dump - dump an RE in human-readable form | |
2046 | ^ static VOID dump(regex_t *, FILE *); | |
2047 | */ | |
2048 | static VOID | |
2049 | dump(re, f) | |
2050 | regex_t *re; | |
2051 | FILE *f; | |
2052 | { | |
2053 | #ifdef REG_DEBUG | |
2054 | struct guts *g; | |
2055 | int i; | |
2056 | ||
2057 | if (re->re_magic != REMAGIC) | |
2058 | fprintf(f, "bad magic number (0x%x not 0x%x)\n", re->re_magic, | |
2059 | REMAGIC); | |
2060 | if (re->re_guts == NULL) { | |
2061 | fprintf(f, "NULL guts!!!\n"); | |
2062 | return; | |
2063 | } | |
2064 | g = (struct guts *)re->re_guts; | |
2065 | if (g->magic != GUTSMAGIC) | |
2066 | fprintf(f, "bad guts magic number (0x%x not 0x%x)\n", g->magic, | |
2067 | GUTSMAGIC); | |
2068 | ||
2069 | fprintf(f, "\n\n\n========= DUMP ==========\n"); | |
2070 | fprintf(f, "nsub %d, info 0%lo, csize %d, ntree %d\n", | |
2071 | re->re_nsub, re->re_info, re->re_csize, g->ntree); | |
2072 | ||
2073 | dumpcolors(&g->cmap, f); | |
2074 | if (!NULLCNFA(g->search)) { | |
2075 | printf("\nsearch:\n"); | |
2076 | dumpcnfa(&g->search, f); | |
2077 | } | |
2078 | for (i = 1; i < g->nlacons; i++) { | |
2079 | fprintf(f, "\nla%d (%s):\n", i, | |
2080 | (g->lacons[i].subno) ? "positive" : "negative"); | |
2081 | dumpcnfa(&g->lacons[i].cnfa, f); | |
2082 | } | |
2083 | fprintf(f, "\n"); | |
2084 | dumpst(g->tree, f, 0); | |
2085 | #endif | |
2086 | } | |
2087 | ||
2088 | /* | |
2089 | - dumpst - dump a subRE tree | |
2090 | ^ static VOID dumpst(struct subre *, FILE *, int); | |
2091 | */ | |
2092 | static VOID | |
2093 | dumpst(t, f, nfapresent) | |
2094 | struct subre *t; | |
2095 | FILE *f; | |
2096 | int nfapresent; /* is the original NFA still around? */ | |
2097 | { | |
2098 | if (t == NULL) | |
2099 | fprintf(f, "null tree\n"); | |
2100 | else | |
2101 | stdump(t, f, nfapresent); | |
2102 | fflush(f); | |
2103 | } | |
2104 | ||
2105 | /* | |
2106 | - stdump - recursive guts of dumpst | |
2107 | ^ static VOID stdump(struct subre *, FILE *, int); | |
2108 | */ | |
2109 | static VOID | |
2110 | stdump(t, f, nfapresent) | |
2111 | struct subre *t; | |
2112 | FILE *f; | |
2113 | int nfapresent; /* is the original NFA still around? */ | |
2114 | { | |
2115 | char idbuf[50]; | |
2116 | ||
2117 | fprintf(f, "%s. `%c'", stid(t, idbuf, sizeof(idbuf)), t->op); | |
2118 | if (t->flags&LONGER) | |
2119 | fprintf(f, " longest"); | |
2120 | if (t->flags&SHORTER) | |
2121 | fprintf(f, " shortest"); | |
2122 | if (t->flags&MIXED) | |
2123 | fprintf(f, " hasmixed"); | |
2124 | if (t->flags&CAP) | |
2125 | fprintf(f, " hascapture"); | |
2126 | if (t->flags&BACKR) | |
2127 | fprintf(f, " hasbackref"); | |
2128 | if (!(t->flags&INUSE)) | |
2129 | fprintf(f, " UNUSED"); | |
2130 | if (t->subno != 0) | |
2131 | fprintf(f, " (#%d)", t->subno); | |
2132 | if (t->min != 1 || t->max != 1) { | |
2133 | fprintf(f, " {%d,", t->min); | |
2134 | if (t->max != INFINITY) | |
2135 | fprintf(f, "%d", t->max); | |
2136 | fprintf(f, "}"); | |
2137 | } | |
2138 | if (nfapresent) | |
2139 | fprintf(f, " %ld-%ld", (long)t->begin->no, (long)t->end->no); | |
2140 | if (t->left != NULL) | |
2141 | fprintf(f, " L:%s", stid(t->left, idbuf, sizeof(idbuf))); | |
2142 | if (t->right != NULL) | |
2143 | fprintf(f, " R:%s", stid(t->right, idbuf, sizeof(idbuf))); | |
2144 | if (!NULLCNFA(t->cnfa)) { | |
2145 | fprintf(f, "\n"); | |
2146 | dumpcnfa(&t->cnfa, f); | |
2147 | fprintf(f, "\n"); | |
2148 | } | |
2149 | if (t->left != NULL) | |
2150 | stdump(t->left, f, nfapresent); | |
2151 | if (t->right != NULL) | |
2152 | stdump(t->right, f, nfapresent); | |
2153 | } | |
2154 | ||
2155 | /* | |
2156 | - stid - identify a subtree node for dumping | |
2157 | ^ static char *stid(struct subre *, char *, size_t); | |
2158 | */ | |
2159 | static char * /* points to buf or constant string */ | |
2160 | stid(t, buf, bufsize) | |
2161 | struct subre *t; | |
2162 | char *buf; | |
2163 | size_t bufsize; | |
2164 | { | |
2165 | /* big enough for hex int or decimal t->retry? */ | |
2166 | if (bufsize < sizeof(int)*2 + 3 || bufsize < sizeof(t->retry)*3 + 1) | |
2167 | return "unable"; | |
2168 | if (t->retry != 0) | |
2169 | sprintf(buf, "%d", t->retry); | |
2170 | else | |
2171 | sprintf(buf, "0x%x", (int)(wxUIntPtr)(t)); /* may lose bits, that's okay */ | |
2172 | return buf; | |
2173 | } | |
2174 | ||
2175 | #include "regc_lex.c" | |
2176 | #include "regc_color.c" | |
2177 | #include "regc_nfa.c" | |
2178 | #include "regc_cvec.c" | |
2179 | #include "regc_locale.c" |