]>
Commit | Line | Data |
---|---|---|
1 | /* crc32.c -- compute the CRC-32 of a data stream | |
2 | * Copyright (C) 1995-2005 Mark Adler | |
3 | * For conditions of distribution and use, see copyright notice in zlib.h | |
4 | * | |
5 | * Thanks to Rodney Brown <rbrown64@csc.com.au> for his contribution of faster | |
6 | * CRC methods: exclusive-oring 32 bits of data at a time, and pre-computing | |
7 | * tables for updating the shift register in one step with three exclusive-ors | |
8 | * instead of four steps with four exclusive-ors. This results in about a | |
9 | * factor of two increase in speed on a Power PC G4 (PPC7455) using gcc -O3. | |
10 | */ | |
11 | ||
12 | ||
13 | /* | |
14 | Note on the use of DYNAMIC_CRC_TABLE: there is no mutex or semaphore | |
15 | protection on the static variables used to control the first-use generation | |
16 | of the crc tables. Therefore, if you #define DYNAMIC_CRC_TABLE, you should | |
17 | first call get_crc_table() to initialize the tables before allowing more than | |
18 | one thread to use crc32(). | |
19 | */ | |
20 | ||
21 | #ifdef MAKECRCH | |
22 | # include <stdio.h> | |
23 | # ifndef DYNAMIC_CRC_TABLE | |
24 | # define DYNAMIC_CRC_TABLE | |
25 | # endif /* !DYNAMIC_CRC_TABLE */ | |
26 | #endif /* MAKECRCH */ | |
27 | ||
28 | #include "zutil.h" /* for STDC and FAR definitions */ | |
29 | ||
30 | #define local static | |
31 | ||
32 | /* Find a four-byte integer type for crc32_little() and crc32_big(). */ | |
33 | #ifndef NOBYFOUR | |
34 | # ifdef STDC /* need ANSI C limits.h to determine sizes */ | |
35 | # include <limits.h> | |
36 | # define BYFOUR | |
37 | # if (UINT_MAX == 0xffffffffUL) | |
38 | typedef unsigned int u4; | |
39 | # else | |
40 | # if (ULONG_MAX == 0xffffffffUL) | |
41 | typedef unsigned long u4; | |
42 | # else | |
43 | # if (USHRT_MAX == 0xffffffffUL) | |
44 | typedef unsigned short u4; | |
45 | # else | |
46 | # undef BYFOUR /* can't find a four-byte integer type! */ | |
47 | # endif | |
48 | # endif | |
49 | # endif | |
50 | # endif /* STDC */ | |
51 | #endif /* !NOBYFOUR */ | |
52 | ||
53 | /* Definitions for doing the crc four data bytes at a time. */ | |
54 | #ifdef BYFOUR | |
55 | # define REV(w) (((w)>>24)+(((w)>>8)&0xff00)+ \ | |
56 | (((w)&0xff00)<<8)+(((w)&0xff)<<24)) | |
57 | local unsigned long crc32_little OF((unsigned long, | |
58 | const unsigned char FAR *, unsigned)); | |
59 | local unsigned long crc32_big OF((unsigned long, | |
60 | const unsigned char FAR *, unsigned)); | |
61 | # define TBLS 8 | |
62 | #else | |
63 | # define TBLS 1 | |
64 | #endif /* BYFOUR */ | |
65 | ||
66 | /* Local functions for crc concatenation */ | |
67 | local unsigned long gf2_matrix_times OF((unsigned long *mat, | |
68 | unsigned long vec)); | |
69 | local void gf2_matrix_square OF((unsigned long *square, unsigned long *mat)); | |
70 | ||
71 | #ifdef DYNAMIC_CRC_TABLE | |
72 | ||
73 | local volatile int crc_table_empty = 1; | |
74 | local unsigned long FAR crc_table[TBLS][256]; | |
75 | local void make_crc_table OF((void)); | |
76 | #ifdef MAKECRCH | |
77 | local void write_table OF((FILE *, const unsigned long FAR *)); | |
78 | #endif /* MAKECRCH */ | |
79 | /* | |
80 | Generate tables for a byte-wise 32-bit CRC calculation on the polynomial: | |
81 | x^32+x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1. | |
82 | ||
83 | Polynomials over GF(2) are represented in binary, one bit per coefficient, | |
84 | with the lowest powers in the most significant bit. Then adding polynomials | |
85 | is just exclusive-or, and multiplying a polynomial by x is a right shift by | |
86 | one. If we call the above polynomial p, and represent a byte as the | |
87 | polynomial q, also with the lowest power in the most significant bit (so the | |
88 | byte 0xb1 is the polynomial x^7+x^3+x+1), then the CRC is (q*x^32) mod p, | |
89 | where a mod b means the remainder after dividing a by b. | |
90 | ||
91 | This calculation is done using the shift-register method of multiplying and | |
92 | taking the remainder. The register is initialized to zero, and for each | |
93 | incoming bit, x^32 is added mod p to the register if the bit is a one (where | |
94 | x^32 mod p is p+x^32 = x^26+...+1), and the register is multiplied mod p by | |
95 | x (which is shifting right by one and adding x^32 mod p if the bit shifted | |
96 | out is a one). We start with the highest power (least significant bit) of | |
97 | q and repeat for all eight bits of q. | |
98 | ||
99 | The first table is simply the CRC of all possible eight bit values. This is | |
100 | all the information needed to generate CRCs on data a byte at a time for all | |
101 | combinations of CRC register values and incoming bytes. The remaining tables | |
102 | allow for word-at-a-time CRC calculation for both big-endian and little- | |
103 | endian machines, where a word is four bytes. | |
104 | */ | |
105 | local void make_crc_table() | |
106 | { | |
107 | unsigned long c; | |
108 | int n, k; | |
109 | unsigned long poly; /* polynomial exclusive-or pattern */ | |
110 | /* terms of polynomial defining this crc (except x^32): */ | |
111 | static volatile int first = 1; /* flag to limit concurrent making */ | |
112 | static const unsigned char p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; | |
113 | ||
114 | /* See if another task is already doing this (not thread-safe, but better | |
115 | than nothing -- significantly reduces duration of vulnerability in | |
116 | case the advice about DYNAMIC_CRC_TABLE is ignored) */ | |
117 | if (first) { | |
118 | first = 0; | |
119 | ||
120 | /* make exclusive-or pattern from polynomial (0xedb88320UL) */ | |
121 | poly = 0UL; | |
122 | for (n = 0; n < sizeof(p)/sizeof(unsigned char); n++) | |
123 | poly |= 1UL << (31 - p[n]); | |
124 | ||
125 | /* generate a crc for every 8-bit value */ | |
126 | for (n = 0; n < 256; n++) { | |
127 | c = (unsigned long)n; | |
128 | for (k = 0; k < 8; k++) | |
129 | c = c & 1 ? poly ^ (c >> 1) : c >> 1; | |
130 | crc_table[0][n] = c; | |
131 | } | |
132 | ||
133 | #ifdef BYFOUR | |
134 | /* generate crc for each value followed by one, two, and three zeros, | |
135 | and then the byte reversal of those as well as the first table */ | |
136 | for (n = 0; n < 256; n++) { | |
137 | c = crc_table[0][n]; | |
138 | crc_table[4][n] = REV(c); | |
139 | for (k = 1; k < 4; k++) { | |
140 | c = crc_table[0][c & 0xff] ^ (c >> 8); | |
141 | crc_table[k][n] = c; | |
142 | crc_table[k + 4][n] = REV(c); | |
143 | } | |
144 | } | |
145 | #endif /* BYFOUR */ | |
146 | ||
147 | crc_table_empty = 0; | |
148 | } | |
149 | else { /* not first */ | |
150 | /* wait for the other guy to finish (not efficient, but rare) */ | |
151 | while (crc_table_empty) | |
152 | ; | |
153 | } | |
154 | ||
155 | #ifdef MAKECRCH | |
156 | /* write out CRC tables to crc32.h */ | |
157 | { | |
158 | FILE *out; | |
159 | ||
160 | out = fopen("crc32.h", "w"); | |
161 | if (out == NULL) return; | |
162 | fprintf(out, "/* crc32.h -- tables for rapid CRC calculation\n"); | |
163 | fprintf(out, " * Generated automatically by crc32.c\n */\n\n"); | |
164 | fprintf(out, "local const unsigned long FAR "); | |
165 | fprintf(out, "crc_table[TBLS][256] =\n{\n {\n"); | |
166 | write_table(out, crc_table[0]); | |
167 | # ifdef BYFOUR | |
168 | fprintf(out, "#ifdef BYFOUR\n"); | |
169 | for (k = 1; k < 8; k++) { | |
170 | fprintf(out, " },\n {\n"); | |
171 | write_table(out, crc_table[k]); | |
172 | } | |
173 | fprintf(out, "#endif\n"); | |
174 | # endif /* BYFOUR */ | |
175 | fprintf(out, " }\n};\n"); | |
176 | fclose(out); | |
177 | } | |
178 | #endif /* MAKECRCH */ | |
179 | } | |
180 | ||
181 | #ifdef MAKECRCH | |
182 | local void write_table(out, table) | |
183 | FILE *out; | |
184 | const unsigned long FAR *table; | |
185 | { | |
186 | int n; | |
187 | ||
188 | for (n = 0; n < 256; n++) | |
189 | fprintf(out, "%s0x%08lxUL%s", n % 5 ? "" : " ", table[n], | |
190 | n == 255 ? "\n" : (n % 5 == 4 ? ",\n" : ", ")); | |
191 | } | |
192 | #endif /* MAKECRCH */ | |
193 | ||
194 | #else /* !DYNAMIC_CRC_TABLE */ | |
195 | /* ======================================================================== | |
196 | * Tables of CRC-32s of all single-byte values, made by make_crc_table(). | |
197 | */ | |
198 | #include "crc32.h" | |
199 | #endif /* DYNAMIC_CRC_TABLE */ | |
200 | ||
201 | /* ========================================================================= | |
202 | * This function can be used by asm versions of crc32() | |
203 | */ | |
204 | const unsigned long FAR * ZEXPORT get_crc_table() | |
205 | { | |
206 | #ifdef DYNAMIC_CRC_TABLE | |
207 | if (crc_table_empty) | |
208 | make_crc_table(); | |
209 | #endif /* DYNAMIC_CRC_TABLE */ | |
210 | return (const unsigned long FAR *)crc_table; | |
211 | } | |
212 | ||
213 | /* ========================================================================= */ | |
214 | #define DO1 crc = crc_table[0][((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8) | |
215 | #define DO8 DO1; DO1; DO1; DO1; DO1; DO1; DO1; DO1 | |
216 | ||
217 | /* ========================================================================= */ | |
218 | unsigned long ZEXPORT crc32(crc, buf, len) | |
219 | unsigned long crc; | |
220 | const unsigned char FAR *buf; | |
221 | unsigned len; | |
222 | { | |
223 | if (buf == Z_NULL) return 0UL; | |
224 | ||
225 | #ifdef DYNAMIC_CRC_TABLE | |
226 | if (crc_table_empty) | |
227 | make_crc_table(); | |
228 | #endif /* DYNAMIC_CRC_TABLE */ | |
229 | ||
230 | #ifdef BYFOUR | |
231 | if (sizeof(void *) == sizeof(ptrdiff_t)) { | |
232 | u4 endian; | |
233 | ||
234 | endian = 1; | |
235 | if (*((unsigned char *)(&endian))) | |
236 | return crc32_little(crc, buf, len); | |
237 | else | |
238 | return crc32_big(crc, buf, len); | |
239 | } | |
240 | #endif /* BYFOUR */ | |
241 | crc = crc ^ 0xffffffffUL; | |
242 | while (len >= 8) { | |
243 | DO8; | |
244 | len -= 8; | |
245 | } | |
246 | if (len) do { | |
247 | DO1; | |
248 | } while (--len); | |
249 | return crc ^ 0xffffffffUL; | |
250 | } | |
251 | ||
252 | #ifdef BYFOUR | |
253 | ||
254 | /* ========================================================================= */ | |
255 | #define DOLIT4 c ^= *buf4++; \ | |
256 | c = crc_table[3][c & 0xff] ^ crc_table[2][(c >> 8) & 0xff] ^ \ | |
257 | crc_table[1][(c >> 16) & 0xff] ^ crc_table[0][c >> 24] | |
258 | #define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4 | |
259 | ||
260 | /* ========================================================================= */ | |
261 | local unsigned long crc32_little(crc, buf, len) | |
262 | unsigned long crc; | |
263 | const unsigned char FAR *buf; | |
264 | unsigned len; | |
265 | { | |
266 | register u4 c; | |
267 | register const u4 FAR *buf4; | |
268 | ||
269 | c = (u4)crc; | |
270 | c = ~c; | |
271 | while (len && ((ptrdiff_t)buf & 3)) { | |
272 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | |
273 | len--; | |
274 | } | |
275 | ||
276 | buf4 = (const u4 FAR *)(const void FAR *)buf; | |
277 | while (len >= 32) { | |
278 | DOLIT32; | |
279 | len -= 32; | |
280 | } | |
281 | while (len >= 4) { | |
282 | DOLIT4; | |
283 | len -= 4; | |
284 | } | |
285 | buf = (const unsigned char FAR *)buf4; | |
286 | ||
287 | if (len) do { | |
288 | c = crc_table[0][(c ^ *buf++) & 0xff] ^ (c >> 8); | |
289 | } while (--len); | |
290 | c = ~c; | |
291 | return (unsigned long)c; | |
292 | } | |
293 | ||
294 | /* ========================================================================= */ | |
295 | #define DOBIG4 c ^= *++buf4; \ | |
296 | c = crc_table[4][c & 0xff] ^ crc_table[5][(c >> 8) & 0xff] ^ \ | |
297 | crc_table[6][(c >> 16) & 0xff] ^ crc_table[7][c >> 24] | |
298 | #define DOBIG32 DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4; DOBIG4 | |
299 | ||
300 | /* ========================================================================= */ | |
301 | local unsigned long crc32_big(crc, buf, len) | |
302 | unsigned long crc; | |
303 | const unsigned char FAR *buf; | |
304 | unsigned len; | |
305 | { | |
306 | register u4 c; | |
307 | register const u4 FAR *buf4; | |
308 | ||
309 | c = REV((u4)crc); | |
310 | c = ~c; | |
311 | while (len && ((ptrdiff_t)buf & 3)) { | |
312 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | |
313 | len--; | |
314 | } | |
315 | ||
316 | buf4 = (const u4 FAR *)(const void FAR *)buf; | |
317 | buf4--; | |
318 | while (len >= 32) { | |
319 | DOBIG32; | |
320 | len -= 32; | |
321 | } | |
322 | while (len >= 4) { | |
323 | DOBIG4; | |
324 | len -= 4; | |
325 | } | |
326 | buf4++; | |
327 | buf = (const unsigned char FAR *)buf4; | |
328 | ||
329 | if (len) do { | |
330 | c = crc_table[4][(c >> 24) ^ *buf++] ^ (c << 8); | |
331 | } while (--len); | |
332 | c = ~c; | |
333 | return (unsigned long)(REV(c)); | |
334 | } | |
335 | ||
336 | #endif /* BYFOUR */ | |
337 | ||
338 | #define GF2_DIM 32 /* dimension of GF(2) vectors (length of CRC) */ | |
339 | ||
340 | /* ========================================================================= */ | |
341 | local unsigned long gf2_matrix_times(mat, vec) | |
342 | unsigned long *mat; | |
343 | unsigned long vec; | |
344 | { | |
345 | unsigned long sum; | |
346 | ||
347 | sum = 0; | |
348 | while (vec) { | |
349 | if (vec & 1) | |
350 | sum ^= *mat; | |
351 | vec >>= 1; | |
352 | mat++; | |
353 | } | |
354 | return sum; | |
355 | } | |
356 | ||
357 | /* ========================================================================= */ | |
358 | local void gf2_matrix_square(square, mat) | |
359 | unsigned long *square; | |
360 | unsigned long *mat; | |
361 | { | |
362 | int n; | |
363 | ||
364 | for (n = 0; n < GF2_DIM; n++) | |
365 | square[n] = gf2_matrix_times(mat, mat[n]); | |
366 | } | |
367 | ||
368 | /* ========================================================================= */ | |
369 | uLong ZEXPORT crc32_combine(crc1, crc2, len2) | |
370 | uLong crc1; | |
371 | uLong crc2; | |
372 | z_off_t len2; | |
373 | { | |
374 | int n; | |
375 | unsigned long row; | |
376 | unsigned long even[GF2_DIM]; /* even-power-of-two zeros operator */ | |
377 | unsigned long odd[GF2_DIM]; /* odd-power-of-two zeros operator */ | |
378 | ||
379 | /* degenerate case */ | |
380 | if (len2 == 0) | |
381 | return crc1; | |
382 | ||
383 | /* put operator for one zero bit in odd */ | |
384 | odd[0] = 0xedb88320L; /* CRC-32 polynomial */ | |
385 | row = 1; | |
386 | for (n = 1; n < GF2_DIM; n++) { | |
387 | odd[n] = row; | |
388 | row <<= 1; | |
389 | } | |
390 | ||
391 | /* put operator for two zero bits in even */ | |
392 | gf2_matrix_square(even, odd); | |
393 | ||
394 | /* put operator for four zero bits in odd */ | |
395 | gf2_matrix_square(odd, even); | |
396 | ||
397 | /* apply len2 zeros to crc1 (first square will put the operator for one | |
398 | zero byte, eight zero bits, in even) */ | |
399 | do { | |
400 | /* apply zeros operator for this bit of len2 */ | |
401 | gf2_matrix_square(even, odd); | |
402 | if (len2 & 1) | |
403 | crc1 = gf2_matrix_times(even, crc1); | |
404 | len2 >>= 1; | |
405 | ||
406 | /* if no more bits set, then done */ | |
407 | if (len2 == 0) | |
408 | break; | |
409 | ||
410 | /* another iteration of the loop with odd and even swapped */ | |
411 | gf2_matrix_square(odd, even); | |
412 | if (len2 & 1) | |
413 | crc1 = gf2_matrix_times(odd, crc1); | |
414 | len2 >>= 1; | |
415 | ||
416 | /* if no more bits set, then done */ | |
417 | } while (len2 != 0); | |
418 | ||
419 | /* return combined crc */ | |
420 | crc1 ^= crc2; | |
421 | return crc1; | |
422 | } |