]>
Commit | Line | Data |
---|---|---|
1 | ///////////////////////////////////////////////////////////////////////////// | |
2 | // Name: quantize.cpp | |
3 | // Purpose: wxQuantize implementation | |
4 | // Author: Julian Smart | |
5 | // Modified by: | |
6 | // Created: 22/6/2000 | |
7 | // RCS-ID: $Id$ | |
8 | // Copyright: (c) Thomas G. Lane, Vaclav Slavik, Julian Smart | |
9 | // Licence: wxWindows licence + JPEG library licence | |
10 | ///////////////////////////////////////////////////////////////////////////// | |
11 | ||
12 | /* | |
13 | * jquant2.c | |
14 | * | |
15 | * Copyright (C) 1991-1996, Thomas G. Lane. | |
16 | * This file is part of the Independent JPEG Group's software. | |
17 | * For conditions of distribution and use, see the accompanying README file. | |
18 | * | |
19 | * This file contains 2-pass color quantization (color mapping) routines. | |
20 | * These routines provide selection of a custom color map for an image, | |
21 | * followed by mapping of the image to that color map, with optional | |
22 | * Floyd-Steinberg dithering. | |
23 | * It is also possible to use just the second pass to map to an arbitrary | |
24 | * externally-given color map. | |
25 | * | |
26 | * Note: ordered dithering is not supported, since there isn't any fast | |
27 | * way to compute intercolor distances; it's unclear that ordered dither's | |
28 | * fundamental assumptions even hold with an irregularly spaced color map. | |
29 | */ | |
30 | ||
31 | /* modified by Vaclav Slavik for use as jpeglib-independent module */ | |
32 | ||
33 | #if defined(__GNUG__) && !defined(NO_GCC_PRAGMA) | |
34 | #pragma implementation "quantize.h" | |
35 | #endif | |
36 | ||
37 | // For compilers that support precompilation, includes "wx/wx.h". | |
38 | #include "wx/wxprec.h" | |
39 | ||
40 | #ifdef __BORLANDC__ | |
41 | #pragma hdrstop | |
42 | #endif | |
43 | ||
44 | #ifndef WX_PRECOMP | |
45 | #include "wx/palette.h" | |
46 | #endif | |
47 | ||
48 | #if wxUSE_IMAGE | |
49 | ||
50 | #include "wx/image.h" | |
51 | #include "wx/quantize.h" | |
52 | ||
53 | #ifdef __WXMSW__ | |
54 | #include "wx/msw/private.h" | |
55 | #endif | |
56 | ||
57 | #include <stdlib.h> | |
58 | #include <string.h> | |
59 | ||
60 | #if defined(__OS2__) | |
61 | #define RGB_RED_OS2 0 | |
62 | #define RGB_GREEN_OS2 1 | |
63 | #define RGB_BLUE_OS2 2 | |
64 | #else | |
65 | #define RGB_RED 0 | |
66 | #define RGB_GREEN 1 | |
67 | #define RGB_BLUE 2 | |
68 | #endif | |
69 | #define RGB_PIXELSIZE 3 | |
70 | ||
71 | #define MAXJSAMPLE 255 | |
72 | #define CENTERJSAMPLE 128 | |
73 | #define BITS_IN_JSAMPLE 8 | |
74 | #define GETJSAMPLE(value) ((int) (value)) | |
75 | ||
76 | #define RIGHT_SHIFT(x,shft) ((x) >> (shft)) | |
77 | ||
78 | typedef unsigned short UINT16; | |
79 | typedef signed short INT16; | |
80 | typedef signed int INT32; | |
81 | ||
82 | typedef unsigned char JSAMPLE; | |
83 | typedef JSAMPLE *JSAMPROW; | |
84 | typedef JSAMPROW *JSAMPARRAY; | |
85 | typedef unsigned int JDIMENSION; | |
86 | ||
87 | typedef struct { | |
88 | void *cquantize; | |
89 | JDIMENSION output_width; | |
90 | JSAMPARRAY colormap; | |
91 | int actual_number_of_colors; | |
92 | int desired_number_of_colors; | |
93 | JSAMPLE *sample_range_limit, *srl_orig; | |
94 | } j_decompress; | |
95 | ||
96 | #if defined(__WINDOWS__) && !defined(__WXMICROWIN__) | |
97 | #define JMETHOD(type,methodname,arglist) type (__cdecl methodname) arglist | |
98 | #else | |
99 | #define JMETHOD(type,methodname,arglist) type (methodname) arglist | |
100 | #endif | |
101 | ||
102 | typedef j_decompress *j_decompress_ptr; | |
103 | struct jpeg_color_quantizer { | |
104 | JMETHOD(void, start_pass, (j_decompress_ptr cinfo, bool is_pre_scan)); | |
105 | JMETHOD(void, color_quantize, (j_decompress_ptr cinfo, | |
106 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, | |
107 | int num_rows)); | |
108 | JMETHOD(void, finish_pass, (j_decompress_ptr cinfo)); | |
109 | JMETHOD(void, new_color_map, (j_decompress_ptr cinfo)); | |
110 | }; | |
111 | ||
112 | ||
113 | ||
114 | ||
115 | /* | |
116 | * This module implements the well-known Heckbert paradigm for color | |
117 | * quantization. Most of the ideas used here can be traced back to | |
118 | * Heckbert's seminal paper | |
119 | * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", | |
120 | * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. | |
121 | * | |
122 | * In the first pass over the image, we accumulate a histogram showing the | |
123 | * usage count of each possible color. To keep the histogram to a reasonable | |
124 | * size, we reduce the precision of the input; typical practice is to retain | |
125 | * 5 or 6 bits per color, so that 8 or 4 different input values are counted | |
126 | * in the same histogram cell. | |
127 | * | |
128 | * Next, the color-selection step begins with a box representing the whole | |
129 | * color space, and repeatedly splits the "largest" remaining box until we | |
130 | * have as many boxes as desired colors. Then the mean color in each | |
131 | * remaining box becomes one of the possible output colors. | |
132 | * | |
133 | * The second pass over the image maps each input pixel to the closest output | |
134 | * color (optionally after applying a Floyd-Steinberg dithering correction). | |
135 | * This mapping is logically trivial, but making it go fast enough requires | |
136 | * considerable care. | |
137 | * | |
138 | * Heckbert-style quantizers vary a good deal in their policies for choosing | |
139 | * the "largest" box and deciding where to cut it. The particular policies | |
140 | * used here have proved out well in experimental comparisons, but better ones | |
141 | * may yet be found. | |
142 | * | |
143 | * In earlier versions of the IJG code, this module quantized in YCbCr color | |
144 | * space, processing the raw upsampled data without a color conversion step. | |
145 | * This allowed the color conversion math to be done only once per colormap | |
146 | * entry, not once per pixel. However, that optimization precluded other | |
147 | * useful optimizations (such as merging color conversion with upsampling) | |
148 | * and it also interfered with desired capabilities such as quantizing to an | |
149 | * externally-supplied colormap. We have therefore abandoned that approach. | |
150 | * The present code works in the post-conversion color space, typically RGB. | |
151 | * | |
152 | * To improve the visual quality of the results, we actually work in scaled | |
153 | * RGB space, giving G distances more weight than R, and R in turn more than | |
154 | * B. To do everything in integer math, we must use integer scale factors. | |
155 | * The 2/3/1 scale factors used here correspond loosely to the relative | |
156 | * weights of the colors in the NTSC grayscale equation. | |
157 | * If you want to use this code to quantize a non-RGB color space, you'll | |
158 | * probably need to change these scale factors. | |
159 | */ | |
160 | ||
161 | #define R_SCALE 2 /* scale R distances by this much */ | |
162 | #define G_SCALE 3 /* scale G distances by this much */ | |
163 | #define B_SCALE 1 /* and B by this much */ | |
164 | ||
165 | /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined | |
166 | * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B | |
167 | * and B,G,R orders. If you define some other weird order in jmorecfg.h, | |
168 | * you'll get compile errors until you extend this logic. In that case | |
169 | * you'll probably want to tweak the histogram sizes too. | |
170 | */ | |
171 | ||
172 | #if defined(__OS2__) | |
173 | ||
174 | #if RGB_RED_OS2 == 0 | |
175 | #define C0_SCALE R_SCALE | |
176 | #endif | |
177 | #if RGB_BLUE_OS2 == 0 | |
178 | #define C0_SCALE B_SCALE | |
179 | #endif | |
180 | #if RGB_GREEN_OS2 == 1 | |
181 | #define C1_SCALE G_SCALE | |
182 | #endif | |
183 | #if RGB_RED_OS2 == 2 | |
184 | #define C2_SCALE R_SCALE | |
185 | #endif | |
186 | #if RGB_BLUE_OS2 == 2 | |
187 | #define C2_SCALE B_SCALE | |
188 | #endif | |
189 | ||
190 | #else | |
191 | ||
192 | #if RGB_RED == 0 | |
193 | #define C0_SCALE R_SCALE | |
194 | #endif | |
195 | #if RGB_BLUE == 0 | |
196 | #define C0_SCALE B_SCALE | |
197 | #endif | |
198 | #if RGB_GREEN == 1 | |
199 | #define C1_SCALE G_SCALE | |
200 | #endif | |
201 | #if RGB_RED == 2 | |
202 | #define C2_SCALE R_SCALE | |
203 | #endif | |
204 | #if RGB_BLUE == 2 | |
205 | #define C2_SCALE B_SCALE | |
206 | #endif | |
207 | ||
208 | #endif | |
209 | ||
210 | /* | |
211 | * First we have the histogram data structure and routines for creating it. | |
212 | * | |
213 | * The number of bits of precision can be adjusted by changing these symbols. | |
214 | * We recommend keeping 6 bits for G and 5 each for R and B. | |
215 | * If you have plenty of memory and cycles, 6 bits all around gives marginally | |
216 | * better results; if you are short of memory, 5 bits all around will save | |
217 | * some space but degrade the results. | |
218 | * To maintain a fully accurate histogram, we'd need to allocate a "long" | |
219 | * (preferably unsigned long) for each cell. In practice this is overkill; | |
220 | * we can get by with 16 bits per cell. Few of the cell counts will overflow, | |
221 | * and clamping those that do overflow to the maximum value will give close- | |
222 | * enough results. This reduces the recommended histogram size from 256Kb | |
223 | * to 128Kb, which is a useful savings on PC-class machines. | |
224 | * (In the second pass the histogram space is re-used for pixel mapping data; | |
225 | * in that capacity, each cell must be able to store zero to the number of | |
226 | * desired colors. 16 bits/cell is plenty for that too.) | |
227 | * Since the JPEG code is intended to run in small memory model on 80x86 | |
228 | * machines, we can't just allocate the histogram in one chunk. Instead | |
229 | * of a true 3-D array, we use a row of pointers to 2-D arrays. Each | |
230 | * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and | |
231 | * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that | |
232 | * on 80x86 machines, the pointer row is in near memory but the actual | |
233 | * arrays are in far memory (same arrangement as we use for image arrays). | |
234 | */ | |
235 | ||
236 | #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ | |
237 | ||
238 | /* These will do the right thing for either R,G,B or B,G,R color order, | |
239 | * but you may not like the results for other color orders. | |
240 | */ | |
241 | #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ | |
242 | #define HIST_C1_BITS 6 /* bits of precision in G histogram */ | |
243 | #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ | |
244 | ||
245 | /* Number of elements along histogram axes. */ | |
246 | #define HIST_C0_ELEMS (1<<HIST_C0_BITS) | |
247 | #define HIST_C1_ELEMS (1<<HIST_C1_BITS) | |
248 | #define HIST_C2_ELEMS (1<<HIST_C2_BITS) | |
249 | ||
250 | /* These are the amounts to shift an input value to get a histogram index. */ | |
251 | #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) | |
252 | #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) | |
253 | #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) | |
254 | ||
255 | ||
256 | typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ | |
257 | ||
258 | typedef histcell * histptr; /* for pointers to histogram cells */ | |
259 | ||
260 | typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ | |
261 | typedef hist1d * hist2d; /* type for the 2nd-level pointers */ | |
262 | typedef hist2d * hist3d; /* type for top-level pointer */ | |
263 | ||
264 | ||
265 | /* Declarations for Floyd-Steinberg dithering. | |
266 | * | |
267 | * Errors are accumulated into the array fserrors[], at a resolution of | |
268 | * 1/16th of a pixel count. The error at a given pixel is propagated | |
269 | * to its not-yet-processed neighbors using the standard F-S fractions, | |
270 | * ... (here) 7/16 | |
271 | * 3/16 5/16 1/16 | |
272 | * We work left-to-right on even rows, right-to-left on odd rows. | |
273 | * | |
274 | * We can get away with a single array (holding one row's worth of errors) | |
275 | * by using it to store the current row's errors at pixel columns not yet | |
276 | * processed, but the next row's errors at columns already processed. We | |
277 | * need only a few extra variables to hold the errors immediately around the | |
278 | * current column. (If we are lucky, those variables are in registers, but | |
279 | * even if not, they're probably cheaper to access than array elements are.) | |
280 | * | |
281 | * The fserrors[] array has (#columns + 2) entries; the extra entry at | |
282 | * each end saves us from special-casing the first and last pixels. | |
283 | * Each entry is three values long, one value for each color component. | |
284 | * | |
285 | * Note: on a wide image, we might not have enough room in a PC's near data | |
286 | * segment to hold the error array; so it is allocated with alloc_large. | |
287 | */ | |
288 | ||
289 | #if BITS_IN_JSAMPLE == 8 | |
290 | typedef INT16 FSERROR; /* 16 bits should be enough */ | |
291 | typedef int LOCFSERROR; /* use 'int' for calculation temps */ | |
292 | #else | |
293 | typedef INT32 FSERROR; /* may need more than 16 bits */ | |
294 | typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ | |
295 | #endif | |
296 | ||
297 | typedef FSERROR *FSERRPTR; /* pointer to error array (in storage!) */ | |
298 | ||
299 | ||
300 | /* Private subobject */ | |
301 | ||
302 | typedef struct { | |
303 | ||
304 | struct { | |
305 | void (*finish_pass)(j_decompress_ptr); | |
306 | void (*color_quantize)(j_decompress_ptr, JSAMPARRAY, JSAMPARRAY, int); | |
307 | void (*start_pass)(j_decompress_ptr, bool); | |
308 | void (*new_color_map)(j_decompress_ptr); | |
309 | } pub; | |
310 | ||
311 | /* Space for the eventually created colormap is stashed here */ | |
312 | JSAMPARRAY sv_colormap; /* colormap allocated at init time */ | |
313 | int desired; /* desired # of colors = size of colormap */ | |
314 | ||
315 | /* Variables for accumulating image statistics */ | |
316 | hist3d histogram; /* pointer to the histogram */ | |
317 | ||
318 | bool needs_zeroed; /* true if next pass must zero histogram */ | |
319 | ||
320 | /* Variables for Floyd-Steinberg dithering */ | |
321 | FSERRPTR fserrors; /* accumulated errors */ | |
322 | bool on_odd_row; /* flag to remember which row we are on */ | |
323 | int * error_limiter; /* table for clamping the applied error */ | |
324 | } my_cquantizer; | |
325 | ||
326 | typedef my_cquantizer * my_cquantize_ptr; | |
327 | ||
328 | ||
329 | /* | |
330 | * Prescan some rows of pixels. | |
331 | * In this module the prescan simply updates the histogram, which has been | |
332 | * initialized to zeroes by start_pass. | |
333 | * An output_buf parameter is required by the method signature, but no data | |
334 | * is actually output (in fact the buffer controller is probably passing a | |
335 | * NULL pointer). | |
336 | */ | |
337 | ||
338 | void | |
339 | prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
340 | JSAMPARRAY WXUNUSED(output_buf), int num_rows) | |
341 | { | |
342 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
343 | register JSAMPROW ptr; | |
344 | register histptr histp; | |
345 | register hist3d histogram = cquantize->histogram; | |
346 | int row; | |
347 | JDIMENSION col; | |
348 | JDIMENSION width = cinfo->output_width; | |
349 | ||
350 | for (row = 0; row < num_rows; row++) { | |
351 | ptr = input_buf[row]; | |
352 | for (col = width; col > 0; col--) { | |
353 | ||
354 | { | |
355 | ||
356 | /* get pixel value and index into the histogram */ | |
357 | histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] | |
358 | [GETJSAMPLE(ptr[1]) >> C1_SHIFT] | |
359 | [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; | |
360 | /* increment, check for overflow and undo increment if so. */ | |
361 | if (++(*histp) <= 0) | |
362 | (*histp)--; | |
363 | } | |
364 | ptr += 3; | |
365 | } | |
366 | } | |
367 | } | |
368 | ||
369 | ||
370 | /* | |
371 | * Next we have the really interesting routines: selection of a colormap | |
372 | * given the completed histogram. | |
373 | * These routines work with a list of "boxes", each representing a rectangular | |
374 | * subset of the input color space (to histogram precision). | |
375 | */ | |
376 | ||
377 | typedef struct { | |
378 | /* The bounds of the box (inclusive); expressed as histogram indexes */ | |
379 | int c0min, c0max; | |
380 | int c1min, c1max; | |
381 | int c2min, c2max; | |
382 | /* The volume (actually 2-norm) of the box */ | |
383 | INT32 volume; | |
384 | /* The number of nonzero histogram cells within this box */ | |
385 | long colorcount; | |
386 | } box; | |
387 | ||
388 | typedef box * boxptr; | |
389 | ||
390 | ||
391 | boxptr | |
392 | find_biggest_color_pop (boxptr boxlist, int numboxes) | |
393 | /* Find the splittable box with the largest color population */ | |
394 | /* Returns NULL if no splittable boxes remain */ | |
395 | { | |
396 | register boxptr boxp; | |
397 | register int i; | |
398 | register long maxc = 0; | |
399 | boxptr which = NULL; | |
400 | ||
401 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | |
402 | if (boxp->colorcount > maxc && boxp->volume > 0) { | |
403 | which = boxp; | |
404 | maxc = boxp->colorcount; | |
405 | } | |
406 | } | |
407 | return which; | |
408 | } | |
409 | ||
410 | ||
411 | boxptr | |
412 | find_biggest_volume (boxptr boxlist, int numboxes) | |
413 | /* Find the splittable box with the largest (scaled) volume */ | |
414 | /* Returns NULL if no splittable boxes remain */ | |
415 | { | |
416 | register boxptr boxp; | |
417 | register int i; | |
418 | register INT32 maxv = 0; | |
419 | boxptr which = NULL; | |
420 | ||
421 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | |
422 | if (boxp->volume > maxv) { | |
423 | which = boxp; | |
424 | maxv = boxp->volume; | |
425 | } | |
426 | } | |
427 | return which; | |
428 | } | |
429 | ||
430 | ||
431 | void | |
432 | update_box (j_decompress_ptr cinfo, boxptr boxp) | |
433 | /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ | |
434 | /* and recompute its volume and population */ | |
435 | { | |
436 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
437 | hist3d histogram = cquantize->histogram; | |
438 | histptr histp; | |
439 | int c0,c1,c2; | |
440 | int c0min,c0max,c1min,c1max,c2min,c2max; | |
441 | INT32 dist0,dist1,dist2; | |
442 | long ccount; | |
443 | ||
444 | c0min = boxp->c0min; c0max = boxp->c0max; | |
445 | c1min = boxp->c1min; c1max = boxp->c1max; | |
446 | c2min = boxp->c2min; c2max = boxp->c2max; | |
447 | ||
448 | if (c0max > c0min) | |
449 | for (c0 = c0min; c0 <= c0max; c0++) | |
450 | for (c1 = c1min; c1 <= c1max; c1++) { | |
451 | histp = & histogram[c0][c1][c2min]; | |
452 | for (c2 = c2min; c2 <= c2max; c2++) | |
453 | if (*histp++ != 0) { | |
454 | boxp->c0min = c0min = c0; | |
455 | goto have_c0min; | |
456 | } | |
457 | } | |
458 | have_c0min: | |
459 | if (c0max > c0min) | |
460 | for (c0 = c0max; c0 >= c0min; c0--) | |
461 | for (c1 = c1min; c1 <= c1max; c1++) { | |
462 | histp = & histogram[c0][c1][c2min]; | |
463 | for (c2 = c2min; c2 <= c2max; c2++) | |
464 | if (*histp++ != 0) { | |
465 | boxp->c0max = c0max = c0; | |
466 | goto have_c0max; | |
467 | } | |
468 | } | |
469 | have_c0max: | |
470 | if (c1max > c1min) | |
471 | for (c1 = c1min; c1 <= c1max; c1++) | |
472 | for (c0 = c0min; c0 <= c0max; c0++) { | |
473 | histp = & histogram[c0][c1][c2min]; | |
474 | for (c2 = c2min; c2 <= c2max; c2++) | |
475 | if (*histp++ != 0) { | |
476 | boxp->c1min = c1min = c1; | |
477 | goto have_c1min; | |
478 | } | |
479 | } | |
480 | have_c1min: | |
481 | if (c1max > c1min) | |
482 | for (c1 = c1max; c1 >= c1min; c1--) | |
483 | for (c0 = c0min; c0 <= c0max; c0++) { | |
484 | histp = & histogram[c0][c1][c2min]; | |
485 | for (c2 = c2min; c2 <= c2max; c2++) | |
486 | if (*histp++ != 0) { | |
487 | boxp->c1max = c1max = c1; | |
488 | goto have_c1max; | |
489 | } | |
490 | } | |
491 | have_c1max: | |
492 | if (c2max > c2min) | |
493 | for (c2 = c2min; c2 <= c2max; c2++) | |
494 | for (c0 = c0min; c0 <= c0max; c0++) { | |
495 | histp = & histogram[c0][c1min][c2]; | |
496 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) | |
497 | if (*histp != 0) { | |
498 | boxp->c2min = c2min = c2; | |
499 | goto have_c2min; | |
500 | } | |
501 | } | |
502 | have_c2min: | |
503 | if (c2max > c2min) | |
504 | for (c2 = c2max; c2 >= c2min; c2--) | |
505 | for (c0 = c0min; c0 <= c0max; c0++) { | |
506 | histp = & histogram[c0][c1min][c2]; | |
507 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) | |
508 | if (*histp != 0) { | |
509 | boxp->c2max = c2max = c2; | |
510 | goto have_c2max; | |
511 | } | |
512 | } | |
513 | have_c2max: | |
514 | ||
515 | /* Update box volume. | |
516 | * We use 2-norm rather than real volume here; this biases the method | |
517 | * against making long narrow boxes, and it has the side benefit that | |
518 | * a box is splittable iff norm > 0. | |
519 | * Since the differences are expressed in histogram-cell units, | |
520 | * we have to shift back to JSAMPLE units to get consistent distances; | |
521 | * after which, we scale according to the selected distance scale factors. | |
522 | */ | |
523 | dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; | |
524 | dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; | |
525 | dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; | |
526 | boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; | |
527 | ||
528 | /* Now scan remaining volume of box and compute population */ | |
529 | ccount = 0; | |
530 | for (c0 = c0min; c0 <= c0max; c0++) | |
531 | for (c1 = c1min; c1 <= c1max; c1++) { | |
532 | histp = & histogram[c0][c1][c2min]; | |
533 | for (c2 = c2min; c2 <= c2max; c2++, histp++) | |
534 | if (*histp != 0) { | |
535 | ccount++; | |
536 | } | |
537 | } | |
538 | boxp->colorcount = ccount; | |
539 | } | |
540 | ||
541 | ||
542 | int | |
543 | median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, | |
544 | int desired_colors) | |
545 | /* Repeatedly select and split the largest box until we have enough boxes */ | |
546 | { | |
547 | int n,lb; | |
548 | int c0,c1,c2,cmax; | |
549 | register boxptr b1,b2; | |
550 | ||
551 | while (numboxes < desired_colors) { | |
552 | /* Select box to split. | |
553 | * Current algorithm: by population for first half, then by volume. | |
554 | */ | |
555 | if ((numboxes*2) <= desired_colors) { | |
556 | b1 = find_biggest_color_pop(boxlist, numboxes); | |
557 | } else { | |
558 | b1 = find_biggest_volume(boxlist, numboxes); | |
559 | } | |
560 | if (b1 == NULL) /* no splittable boxes left! */ | |
561 | break; | |
562 | b2 = &boxlist[numboxes]; /* where new box will go */ | |
563 | /* Copy the color bounds to the new box. */ | |
564 | b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; | |
565 | b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; | |
566 | /* Choose which axis to split the box on. | |
567 | * Current algorithm: longest scaled axis. | |
568 | * See notes in update_box about scaling distances. | |
569 | */ | |
570 | c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; | |
571 | c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; | |
572 | c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; | |
573 | /* We want to break any ties in favor of green, then red, blue last. | |
574 | * This code does the right thing for R,G,B or B,G,R color orders only. | |
575 | */ | |
576 | #if defined(__VISAGECPP__) | |
577 | ||
578 | #if RGB_RED_OS2 == 0 | |
579 | cmax = c1; n = 1; | |
580 | if (c0 > cmax) { cmax = c0; n = 0; } | |
581 | if (c2 > cmax) { n = 2; } | |
582 | #else | |
583 | cmax = c1; n = 1; | |
584 | if (c2 > cmax) { cmax = c2; n = 2; } | |
585 | if (c0 > cmax) { n = 0; } | |
586 | #endif | |
587 | ||
588 | #else | |
589 | ||
590 | #if RGB_RED == 0 | |
591 | cmax = c1; n = 1; | |
592 | if (c0 > cmax) { cmax = c0; n = 0; } | |
593 | if (c2 > cmax) { n = 2; } | |
594 | #else | |
595 | cmax = c1; n = 1; | |
596 | if (c2 > cmax) { cmax = c2; n = 2; } | |
597 | if (c0 > cmax) { n = 0; } | |
598 | #endif | |
599 | ||
600 | #endif | |
601 | /* Choose split point along selected axis, and update box bounds. | |
602 | * Current algorithm: split at halfway point. | |
603 | * (Since the box has been shrunk to minimum volume, | |
604 | * any split will produce two nonempty subboxes.) | |
605 | * Note that lb value is max for lower box, so must be < old max. | |
606 | */ | |
607 | switch (n) { | |
608 | case 0: | |
609 | lb = (b1->c0max + b1->c0min) / 2; | |
610 | b1->c0max = lb; | |
611 | b2->c0min = lb+1; | |
612 | break; | |
613 | case 1: | |
614 | lb = (b1->c1max + b1->c1min) / 2; | |
615 | b1->c1max = lb; | |
616 | b2->c1min = lb+1; | |
617 | break; | |
618 | case 2: | |
619 | lb = (b1->c2max + b1->c2min) / 2; | |
620 | b1->c2max = lb; | |
621 | b2->c2min = lb+1; | |
622 | break; | |
623 | } | |
624 | /* Update stats for boxes */ | |
625 | update_box(cinfo, b1); | |
626 | update_box(cinfo, b2); | |
627 | numboxes++; | |
628 | } | |
629 | return numboxes; | |
630 | } | |
631 | ||
632 | ||
633 | void | |
634 | compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) | |
635 | /* Compute representative color for a box, put it in colormap[icolor] */ | |
636 | { | |
637 | /* Current algorithm: mean weighted by pixels (not colors) */ | |
638 | /* Note it is important to get the rounding correct! */ | |
639 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
640 | hist3d histogram = cquantize->histogram; | |
641 | histptr histp; | |
642 | int c0,c1,c2; | |
643 | int c0min,c0max,c1min,c1max,c2min,c2max; | |
644 | long count; | |
645 | long total = 0; | |
646 | long c0total = 0; | |
647 | long c1total = 0; | |
648 | long c2total = 0; | |
649 | ||
650 | c0min = boxp->c0min; c0max = boxp->c0max; | |
651 | c1min = boxp->c1min; c1max = boxp->c1max; | |
652 | c2min = boxp->c2min; c2max = boxp->c2max; | |
653 | ||
654 | for (c0 = c0min; c0 <= c0max; c0++) | |
655 | for (c1 = c1min; c1 <= c1max; c1++) { | |
656 | histp = & histogram[c0][c1][c2min]; | |
657 | for (c2 = c2min; c2 <= c2max; c2++) { | |
658 | if ((count = *histp++) != 0) { | |
659 | total += count; | |
660 | c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; | |
661 | c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; | |
662 | c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; | |
663 | } | |
664 | } | |
665 | } | |
666 | ||
667 | cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); | |
668 | cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); | |
669 | cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); | |
670 | } | |
671 | ||
672 | ||
673 | static void | |
674 | select_colors (j_decompress_ptr cinfo, int desired_colors) | |
675 | /* Master routine for color selection */ | |
676 | { | |
677 | boxptr boxlist; | |
678 | int numboxes; | |
679 | int i; | |
680 | ||
681 | /* Allocate workspace for box list */ | |
682 | boxlist = (boxptr) malloc(desired_colors * sizeof(box)); | |
683 | /* Initialize one box containing whole space */ | |
684 | numboxes = 1; | |
685 | boxlist[0].c0min = 0; | |
686 | boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; | |
687 | boxlist[0].c1min = 0; | |
688 | boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; | |
689 | boxlist[0].c2min = 0; | |
690 | boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; | |
691 | /* Shrink it to actually-used volume and set its statistics */ | |
692 | update_box(cinfo, & boxlist[0]); | |
693 | /* Perform median-cut to produce final box list */ | |
694 | numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); | |
695 | /* Compute the representative color for each box, fill colormap */ | |
696 | for (i = 0; i < numboxes; i++) | |
697 | compute_color(cinfo, & boxlist[i], i); | |
698 | cinfo->actual_number_of_colors = numboxes; | |
699 | ||
700 | free(boxlist); //FIXME?? I don't know if this is correct - VS | |
701 | } | |
702 | ||
703 | ||
704 | /* | |
705 | * These routines are concerned with the time-critical task of mapping input | |
706 | * colors to the nearest color in the selected colormap. | |
707 | * | |
708 | * We re-use the histogram space as an "inverse color map", essentially a | |
709 | * cache for the results of nearest-color searches. All colors within a | |
710 | * histogram cell will be mapped to the same colormap entry, namely the one | |
711 | * closest to the cell's center. This may not be quite the closest entry to | |
712 | * the actual input color, but it's almost as good. A zero in the cache | |
713 | * indicates we haven't found the nearest color for that cell yet; the array | |
714 | * is cleared to zeroes before starting the mapping pass. When we find the | |
715 | * nearest color for a cell, its colormap index plus one is recorded in the | |
716 | * cache for future use. The pass2 scanning routines call fill_inverse_cmap | |
717 | * when they need to use an unfilled entry in the cache. | |
718 | * | |
719 | * Our method of efficiently finding nearest colors is based on the "locally | |
720 | * sorted search" idea described by Heckbert and on the incremental distance | |
721 | * calculation described by Spencer W. Thomas in chapter III.1 of Graphics | |
722 | * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that | |
723 | * the distances from a given colormap entry to each cell of the histogram can | |
724 | * be computed quickly using an incremental method: the differences between | |
725 | * distances to adjacent cells themselves differ by a constant. This allows a | |
726 | * fairly fast implementation of the "brute force" approach of computing the | |
727 | * distance from every colormap entry to every histogram cell. Unfortunately, | |
728 | * it needs a work array to hold the best-distance-so-far for each histogram | |
729 | * cell (because the inner loop has to be over cells, not colormap entries). | |
730 | * The work array elements have to be INT32s, so the work array would need | |
731 | * 256Kb at our recommended precision. This is not feasible in DOS machines. | |
732 | * | |
733 | * To get around these problems, we apply Thomas' method to compute the | |
734 | * nearest colors for only the cells within a small subbox of the histogram. | |
735 | * The work array need be only as big as the subbox, so the memory usage | |
736 | * problem is solved. Furthermore, we need not fill subboxes that are never | |
737 | * referenced in pass2; many images use only part of the color gamut, so a | |
738 | * fair amount of work is saved. An additional advantage of this | |
739 | * approach is that we can apply Heckbert's locality criterion to quickly | |
740 | * eliminate colormap entries that are far away from the subbox; typically | |
741 | * three-fourths of the colormap entries are rejected by Heckbert's criterion, | |
742 | * and we need not compute their distances to individual cells in the subbox. | |
743 | * The speed of this approach is heavily influenced by the subbox size: too | |
744 | * small means too much overhead, too big loses because Heckbert's criterion | |
745 | * can't eliminate as many colormap entries. Empirically the best subbox | |
746 | * size seems to be about 1/512th of the histogram (1/8th in each direction). | |
747 | * | |
748 | * Thomas' article also describes a refined method which is asymptotically | |
749 | * faster than the brute-force method, but it is also far more complex and | |
750 | * cannot efficiently be applied to small subboxes. It is therefore not | |
751 | * useful for programs intended to be portable to DOS machines. On machines | |
752 | * with plenty of memory, filling the whole histogram in one shot with Thomas' | |
753 | * refined method might be faster than the present code --- but then again, | |
754 | * it might not be any faster, and it's certainly more complicated. | |
755 | */ | |
756 | ||
757 | ||
758 | /* log2(histogram cells in update box) for each axis; this can be adjusted */ | |
759 | #define BOX_C0_LOG (HIST_C0_BITS-3) | |
760 | #define BOX_C1_LOG (HIST_C1_BITS-3) | |
761 | #define BOX_C2_LOG (HIST_C2_BITS-3) | |
762 | ||
763 | #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ | |
764 | #define BOX_C1_ELEMS (1<<BOX_C1_LOG) | |
765 | #define BOX_C2_ELEMS (1<<BOX_C2_LOG) | |
766 | ||
767 | #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) | |
768 | #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) | |
769 | #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) | |
770 | ||
771 | ||
772 | /* | |
773 | * The next three routines implement inverse colormap filling. They could | |
774 | * all be folded into one big routine, but splitting them up this way saves | |
775 | * some stack space (the mindist[] and bestdist[] arrays need not coexist) | |
776 | * and may allow some compilers to produce better code by registerizing more | |
777 | * inner-loop variables. | |
778 | */ | |
779 | ||
780 | static int | |
781 | find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | |
782 | JSAMPLE colorlist[]) | |
783 | /* Locate the colormap entries close enough to an update box to be candidates | |
784 | * for the nearest entry to some cell(s) in the update box. The update box | |
785 | * is specified by the center coordinates of its first cell. The number of | |
786 | * candidate colormap entries is returned, and their colormap indexes are | |
787 | * placed in colorlist[]. | |
788 | * This routine uses Heckbert's "locally sorted search" criterion to select | |
789 | * the colors that need further consideration. | |
790 | */ | |
791 | { | |
792 | int numcolors = cinfo->actual_number_of_colors; | |
793 | int maxc0, maxc1, maxc2; | |
794 | int centerc0, centerc1, centerc2; | |
795 | int i, x, ncolors; | |
796 | INT32 minmaxdist, min_dist, max_dist, tdist; | |
797 | INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ | |
798 | ||
799 | /* Compute true coordinates of update box's upper corner and center. | |
800 | * Actually we compute the coordinates of the center of the upper-corner | |
801 | * histogram cell, which are the upper bounds of the volume we care about. | |
802 | * Note that since ">>" rounds down, the "center" values may be closer to | |
803 | * min than to max; hence comparisons to them must be "<=", not "<". | |
804 | */ | |
805 | maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); | |
806 | centerc0 = (minc0 + maxc0) >> 1; | |
807 | maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); | |
808 | centerc1 = (minc1 + maxc1) >> 1; | |
809 | maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); | |
810 | centerc2 = (minc2 + maxc2) >> 1; | |
811 | ||
812 | /* For each color in colormap, find: | |
813 | * 1. its minimum squared-distance to any point in the update box | |
814 | * (zero if color is within update box); | |
815 | * 2. its maximum squared-distance to any point in the update box. | |
816 | * Both of these can be found by considering only the corners of the box. | |
817 | * We save the minimum distance for each color in mindist[]; | |
818 | * only the smallest maximum distance is of interest. | |
819 | */ | |
820 | minmaxdist = 0x7FFFFFFFL; | |
821 | ||
822 | for (i = 0; i < numcolors; i++) { | |
823 | /* We compute the squared-c0-distance term, then add in the other two. */ | |
824 | x = GETJSAMPLE(cinfo->colormap[0][i]); | |
825 | if (x < minc0) { | |
826 | tdist = (x - minc0) * C0_SCALE; | |
827 | min_dist = tdist*tdist; | |
828 | tdist = (x - maxc0) * C0_SCALE; | |
829 | max_dist = tdist*tdist; | |
830 | } else if (x > maxc0) { | |
831 | tdist = (x - maxc0) * C0_SCALE; | |
832 | min_dist = tdist*tdist; | |
833 | tdist = (x - minc0) * C0_SCALE; | |
834 | max_dist = tdist*tdist; | |
835 | } else { | |
836 | /* within cell range so no contribution to min_dist */ | |
837 | min_dist = 0; | |
838 | if (x <= centerc0) { | |
839 | tdist = (x - maxc0) * C0_SCALE; | |
840 | max_dist = tdist*tdist; | |
841 | } else { | |
842 | tdist = (x - minc0) * C0_SCALE; | |
843 | max_dist = tdist*tdist; | |
844 | } | |
845 | } | |
846 | ||
847 | x = GETJSAMPLE(cinfo->colormap[1][i]); | |
848 | if (x < minc1) { | |
849 | tdist = (x - minc1) * C1_SCALE; | |
850 | min_dist += tdist*tdist; | |
851 | tdist = (x - maxc1) * C1_SCALE; | |
852 | max_dist += tdist*tdist; | |
853 | } else if (x > maxc1) { | |
854 | tdist = (x - maxc1) * C1_SCALE; | |
855 | min_dist += tdist*tdist; | |
856 | tdist = (x - minc1) * C1_SCALE; | |
857 | max_dist += tdist*tdist; | |
858 | } else { | |
859 | /* within cell range so no contribution to min_dist */ | |
860 | if (x <= centerc1) { | |
861 | tdist = (x - maxc1) * C1_SCALE; | |
862 | max_dist += tdist*tdist; | |
863 | } else { | |
864 | tdist = (x - minc1) * C1_SCALE; | |
865 | max_dist += tdist*tdist; | |
866 | } | |
867 | } | |
868 | ||
869 | x = GETJSAMPLE(cinfo->colormap[2][i]); | |
870 | if (x < minc2) { | |
871 | tdist = (x - minc2) * C2_SCALE; | |
872 | min_dist += tdist*tdist; | |
873 | tdist = (x - maxc2) * C2_SCALE; | |
874 | max_dist += tdist*tdist; | |
875 | } else if (x > maxc2) { | |
876 | tdist = (x - maxc2) * C2_SCALE; | |
877 | min_dist += tdist*tdist; | |
878 | tdist = (x - minc2) * C2_SCALE; | |
879 | max_dist += tdist*tdist; | |
880 | } else { | |
881 | /* within cell range so no contribution to min_dist */ | |
882 | if (x <= centerc2) { | |
883 | tdist = (x - maxc2) * C2_SCALE; | |
884 | max_dist += tdist*tdist; | |
885 | } else { | |
886 | tdist = (x - minc2) * C2_SCALE; | |
887 | max_dist += tdist*tdist; | |
888 | } | |
889 | } | |
890 | ||
891 | mindist[i] = min_dist; /* save away the results */ | |
892 | if (max_dist < minmaxdist) | |
893 | minmaxdist = max_dist; | |
894 | } | |
895 | ||
896 | /* Now we know that no cell in the update box is more than minmaxdist | |
897 | * away from some colormap entry. Therefore, only colors that are | |
898 | * within minmaxdist of some part of the box need be considered. | |
899 | */ | |
900 | ncolors = 0; | |
901 | for (i = 0; i < numcolors; i++) { | |
902 | if (mindist[i] <= minmaxdist) | |
903 | colorlist[ncolors++] = (JSAMPLE) i; | |
904 | } | |
905 | return ncolors; | |
906 | } | |
907 | ||
908 | ||
909 | static void | |
910 | find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | |
911 | int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) | |
912 | /* Find the closest colormap entry for each cell in the update box, | |
913 | * given the list of candidate colors prepared by find_nearby_colors. | |
914 | * Return the indexes of the closest entries in the bestcolor[] array. | |
915 | * This routine uses Thomas' incremental distance calculation method to | |
916 | * find the distance from a colormap entry to successive cells in the box. | |
917 | */ | |
918 | { | |
919 | int ic0, ic1, ic2; | |
920 | int i, icolor; | |
921 | register INT32 * bptr; /* pointer into bestdist[] array */ | |
922 | JSAMPLE * cptr; /* pointer into bestcolor[] array */ | |
923 | INT32 dist0, dist1; /* initial distance values */ | |
924 | register INT32 dist2; /* current distance in inner loop */ | |
925 | INT32 xx0, xx1; /* distance increments */ | |
926 | register INT32 xx2; | |
927 | INT32 inc0, inc1, inc2; /* initial values for increments */ | |
928 | /* This array holds the distance to the nearest-so-far color for each cell */ | |
929 | INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; | |
930 | ||
931 | /* Initialize best-distance for each cell of the update box */ | |
932 | bptr = bestdist; | |
933 | for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) | |
934 | *bptr++ = 0x7FFFFFFFL; | |
935 | ||
936 | /* For each color selected by find_nearby_colors, | |
937 | * compute its distance to the center of each cell in the box. | |
938 | * If that's less than best-so-far, update best distance and color number. | |
939 | */ | |
940 | ||
941 | /* Nominal steps between cell centers ("x" in Thomas article) */ | |
942 | #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) | |
943 | #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) | |
944 | #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) | |
945 | ||
946 | for (i = 0; i < numcolors; i++) { | |
947 | icolor = GETJSAMPLE(colorlist[i]); | |
948 | /* Compute (square of) distance from minc0/c1/c2 to this color */ | |
949 | inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; | |
950 | dist0 = inc0*inc0; | |
951 | inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; | |
952 | dist0 += inc1*inc1; | |
953 | inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; | |
954 | dist0 += inc2*inc2; | |
955 | /* Form the initial difference increments */ | |
956 | inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; | |
957 | inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; | |
958 | inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; | |
959 | /* Now loop over all cells in box, updating distance per Thomas method */ | |
960 | bptr = bestdist; | |
961 | cptr = bestcolor; | |
962 | xx0 = inc0; | |
963 | for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { | |
964 | dist1 = dist0; | |
965 | xx1 = inc1; | |
966 | for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { | |
967 | dist2 = dist1; | |
968 | xx2 = inc2; | |
969 | for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { | |
970 | if (dist2 < *bptr) { | |
971 | *bptr = dist2; | |
972 | *cptr = (JSAMPLE) icolor; | |
973 | } | |
974 | dist2 += xx2; | |
975 | xx2 += 2 * STEP_C2 * STEP_C2; | |
976 | bptr++; | |
977 | cptr++; | |
978 | } | |
979 | dist1 += xx1; | |
980 | xx1 += 2 * STEP_C1 * STEP_C1; | |
981 | } | |
982 | dist0 += xx0; | |
983 | xx0 += 2 * STEP_C0 * STEP_C0; | |
984 | } | |
985 | } | |
986 | } | |
987 | ||
988 | ||
989 | static void | |
990 | fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) | |
991 | /* Fill the inverse-colormap entries in the update box that contains */ | |
992 | /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ | |
993 | /* we can fill as many others as we wish.) */ | |
994 | { | |
995 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
996 | hist3d histogram = cquantize->histogram; | |
997 | int minc0, minc1, minc2; /* lower left corner of update box */ | |
998 | int ic0, ic1, ic2; | |
999 | register JSAMPLE * cptr; /* pointer into bestcolor[] array */ | |
1000 | register histptr cachep; /* pointer into main cache array */ | |
1001 | /* This array lists the candidate colormap indexes. */ | |
1002 | JSAMPLE colorlist[MAXNUMCOLORS]; | |
1003 | int numcolors; /* number of candidate colors */ | |
1004 | /* This array holds the actually closest colormap index for each cell. */ | |
1005 | JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; | |
1006 | ||
1007 | /* Convert cell coordinates to update box ID */ | |
1008 | c0 >>= BOX_C0_LOG; | |
1009 | c1 >>= BOX_C1_LOG; | |
1010 | c2 >>= BOX_C2_LOG; | |
1011 | ||
1012 | /* Compute true coordinates of update box's origin corner. | |
1013 | * Actually we compute the coordinates of the center of the corner | |
1014 | * histogram cell, which are the lower bounds of the volume we care about. | |
1015 | */ | |
1016 | minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); | |
1017 | minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); | |
1018 | minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); | |
1019 | ||
1020 | /* Determine which colormap entries are close enough to be candidates | |
1021 | * for the nearest entry to some cell in the update box. | |
1022 | */ | |
1023 | numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); | |
1024 | ||
1025 | /* Determine the actually nearest colors. */ | |
1026 | find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, | |
1027 | bestcolor); | |
1028 | ||
1029 | /* Save the best color numbers (plus 1) in the main cache array */ | |
1030 | c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ | |
1031 | c1 <<= BOX_C1_LOG; | |
1032 | c2 <<= BOX_C2_LOG; | |
1033 | cptr = bestcolor; | |
1034 | for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { | |
1035 | for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { | |
1036 | cachep = & histogram[c0+ic0][c1+ic1][c2]; | |
1037 | for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { | |
1038 | *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); | |
1039 | } | |
1040 | } | |
1041 | } | |
1042 | } | |
1043 | ||
1044 | ||
1045 | /* | |
1046 | * Map some rows of pixels to the output colormapped representation. | |
1047 | */ | |
1048 | ||
1049 | void | |
1050 | pass2_no_dither (j_decompress_ptr cinfo, | |
1051 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | |
1052 | /* This version performs no dithering */ | |
1053 | { | |
1054 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1055 | hist3d histogram = cquantize->histogram; | |
1056 | register JSAMPROW inptr, outptr; | |
1057 | register histptr cachep; | |
1058 | register int c0, c1, c2; | |
1059 | int row; | |
1060 | JDIMENSION col; | |
1061 | JDIMENSION width = cinfo->output_width; | |
1062 | ||
1063 | for (row = 0; row < num_rows; row++) { | |
1064 | inptr = input_buf[row]; | |
1065 | outptr = output_buf[row]; | |
1066 | for (col = width; col > 0; col--) { | |
1067 | /* get pixel value and index into the cache */ | |
1068 | c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; | |
1069 | c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; | |
1070 | c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; | |
1071 | cachep = & histogram[c0][c1][c2]; | |
1072 | /* If we have not seen this color before, find nearest colormap entry */ | |
1073 | /* and update the cache */ | |
1074 | if (*cachep == 0) | |
1075 | fill_inverse_cmap(cinfo, c0,c1,c2); | |
1076 | /* Now emit the colormap index for this cell */ | |
1077 | *outptr++ = (JSAMPLE) (*cachep - 1); | |
1078 | } | |
1079 | } | |
1080 | } | |
1081 | ||
1082 | ||
1083 | void | |
1084 | pass2_fs_dither (j_decompress_ptr cinfo, | |
1085 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | |
1086 | /* This version performs Floyd-Steinberg dithering */ | |
1087 | { | |
1088 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1089 | hist3d histogram = cquantize->histogram; | |
1090 | register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ | |
1091 | LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ | |
1092 | LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ | |
1093 | register FSERRPTR errorptr; /* => fserrors[] at column before current */ | |
1094 | JSAMPROW inptr; /* => current input pixel */ | |
1095 | JSAMPROW outptr; /* => current output pixel */ | |
1096 | histptr cachep; | |
1097 | int dir; /* +1 or -1 depending on direction */ | |
1098 | int dir3; /* 3*dir, for advancing inptr & errorptr */ | |
1099 | int row; | |
1100 | JDIMENSION col; | |
1101 | JDIMENSION width = cinfo->output_width; | |
1102 | JSAMPLE *range_limit = cinfo->sample_range_limit; | |
1103 | int *error_limit = cquantize->error_limiter; | |
1104 | JSAMPROW colormap0 = cinfo->colormap[0]; | |
1105 | JSAMPROW colormap1 = cinfo->colormap[1]; | |
1106 | JSAMPROW colormap2 = cinfo->colormap[2]; | |
1107 | ||
1108 | ||
1109 | for (row = 0; row < num_rows; row++) { | |
1110 | inptr = input_buf[row]; | |
1111 | outptr = output_buf[row]; | |
1112 | if (cquantize->on_odd_row) { | |
1113 | /* work right to left in this row */ | |
1114 | inptr += (width-1) * 3; /* so point to rightmost pixel */ | |
1115 | outptr += width-1; | |
1116 | dir = -1; | |
1117 | dir3 = -3; | |
1118 | errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ | |
1119 | cquantize->on_odd_row = FALSE; /* flip for next time */ | |
1120 | } else { | |
1121 | /* work left to right in this row */ | |
1122 | dir = 1; | |
1123 | dir3 = 3; | |
1124 | errorptr = cquantize->fserrors; /* => entry before first real column */ | |
1125 | cquantize->on_odd_row = TRUE; /* flip for next time */ | |
1126 | } | |
1127 | /* Preset error values: no error propagated to first pixel from left */ | |
1128 | cur0 = cur1 = cur2 = 0; | |
1129 | /* and no error propagated to row below yet */ | |
1130 | belowerr0 = belowerr1 = belowerr2 = 0; | |
1131 | bpreverr0 = bpreverr1 = bpreverr2 = 0; | |
1132 | ||
1133 | for (col = width; col > 0; col--) { | |
1134 | /* curN holds the error propagated from the previous pixel on the | |
1135 | * current line. Add the error propagated from the previous line | |
1136 | * to form the complete error correction term for this pixel, and | |
1137 | * round the error term (which is expressed * 16) to an integer. | |
1138 | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | |
1139 | * for either sign of the error value. | |
1140 | * Note: errorptr points to *previous* column's array entry. | |
1141 | */ | |
1142 | cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); | |
1143 | cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); | |
1144 | cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); | |
1145 | /* Limit the error using transfer function set by init_error_limit. | |
1146 | * See comments with init_error_limit for rationale. | |
1147 | */ | |
1148 | cur0 = error_limit[cur0]; | |
1149 | cur1 = error_limit[cur1]; | |
1150 | cur2 = error_limit[cur2]; | |
1151 | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | |
1152 | * The maximum error is +- MAXJSAMPLE (or less with error limiting); | |
1153 | * this sets the required size of the range_limit array. | |
1154 | */ | |
1155 | cur0 += GETJSAMPLE(inptr[0]); | |
1156 | cur1 += GETJSAMPLE(inptr[1]); | |
1157 | cur2 += GETJSAMPLE(inptr[2]); | |
1158 | cur0 = GETJSAMPLE(range_limit[cur0]); | |
1159 | cur1 = GETJSAMPLE(range_limit[cur1]); | |
1160 | cur2 = GETJSAMPLE(range_limit[cur2]); | |
1161 | /* Index into the cache with adjusted pixel value */ | |
1162 | cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; | |
1163 | /* If we have not seen this color before, find nearest colormap */ | |
1164 | /* entry and update the cache */ | |
1165 | if (*cachep == 0) | |
1166 | fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); | |
1167 | /* Now emit the colormap index for this cell */ | |
1168 | { register int pixcode = *cachep - 1; | |
1169 | *outptr = (JSAMPLE) pixcode; | |
1170 | /* Compute representation error for this pixel */ | |
1171 | cur0 -= GETJSAMPLE(colormap0[pixcode]); | |
1172 | cur1 -= GETJSAMPLE(colormap1[pixcode]); | |
1173 | cur2 -= GETJSAMPLE(colormap2[pixcode]); | |
1174 | } | |
1175 | /* Compute error fractions to be propagated to adjacent pixels. | |
1176 | * Add these into the running sums, and simultaneously shift the | |
1177 | * next-line error sums left by 1 column. | |
1178 | */ | |
1179 | { register LOCFSERROR bnexterr, delta; | |
1180 | ||
1181 | bnexterr = cur0; /* Process component 0 */ | |
1182 | delta = cur0 * 2; | |
1183 | cur0 += delta; /* form error * 3 */ | |
1184 | errorptr[0] = (FSERROR) (bpreverr0 + cur0); | |
1185 | cur0 += delta; /* form error * 5 */ | |
1186 | bpreverr0 = belowerr0 + cur0; | |
1187 | belowerr0 = bnexterr; | |
1188 | cur0 += delta; /* form error * 7 */ | |
1189 | bnexterr = cur1; /* Process component 1 */ | |
1190 | delta = cur1 * 2; | |
1191 | cur1 += delta; /* form error * 3 */ | |
1192 | errorptr[1] = (FSERROR) (bpreverr1 + cur1); | |
1193 | cur1 += delta; /* form error * 5 */ | |
1194 | bpreverr1 = belowerr1 + cur1; | |
1195 | belowerr1 = bnexterr; | |
1196 | cur1 += delta; /* form error * 7 */ | |
1197 | bnexterr = cur2; /* Process component 2 */ | |
1198 | delta = cur2 * 2; | |
1199 | cur2 += delta; /* form error * 3 */ | |
1200 | errorptr[2] = (FSERROR) (bpreverr2 + cur2); | |
1201 | cur2 += delta; /* form error * 5 */ | |
1202 | bpreverr2 = belowerr2 + cur2; | |
1203 | belowerr2 = bnexterr; | |
1204 | cur2 += delta; /* form error * 7 */ | |
1205 | } | |
1206 | /* At this point curN contains the 7/16 error value to be propagated | |
1207 | * to the next pixel on the current line, and all the errors for the | |
1208 | * next line have been shifted over. We are therefore ready to move on. | |
1209 | */ | |
1210 | inptr += dir3; /* Advance pixel pointers to next column */ | |
1211 | outptr += dir; | |
1212 | errorptr += dir3; /* advance errorptr to current column */ | |
1213 | } | |
1214 | /* Post-loop cleanup: we must unload the final error values into the | |
1215 | * final fserrors[] entry. Note we need not unload belowerrN because | |
1216 | * it is for the dummy column before or after the actual array. | |
1217 | */ | |
1218 | errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ | |
1219 | errorptr[1] = (FSERROR) bpreverr1; | |
1220 | errorptr[2] = (FSERROR) bpreverr2; | |
1221 | } | |
1222 | } | |
1223 | ||
1224 | ||
1225 | /* | |
1226 | * Initialize the error-limiting transfer function (lookup table). | |
1227 | * The raw F-S error computation can potentially compute error values of up to | |
1228 | * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be | |
1229 | * much less, otherwise obviously wrong pixels will be created. (Typical | |
1230 | * effects include weird fringes at color-area boundaries, isolated bright | |
1231 | * pixels in a dark area, etc.) The standard advice for avoiding this problem | |
1232 | * is to ensure that the "corners" of the color cube are allocated as output | |
1233 | * colors; then repeated errors in the same direction cannot cause cascading | |
1234 | * error buildup. However, that only prevents the error from getting | |
1235 | * completely out of hand; Aaron Giles reports that error limiting improves | |
1236 | * the results even with corner colors allocated. | |
1237 | * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty | |
1238 | * well, but the smoother transfer function used below is even better. Thanks | |
1239 | * to Aaron Giles for this idea. | |
1240 | */ | |
1241 | ||
1242 | static void | |
1243 | init_error_limit (j_decompress_ptr cinfo) | |
1244 | /* Allocate and fill in the error_limiter table */ | |
1245 | { | |
1246 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1247 | int * table; | |
1248 | int in, out; | |
1249 | ||
1250 | table = (int *) malloc((MAXJSAMPLE*2+1) * sizeof(int)); | |
1251 | table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ | |
1252 | cquantize->error_limiter = table; | |
1253 | ||
1254 | #define STEPSIZE ((MAXJSAMPLE+1)/16) | |
1255 | /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ | |
1256 | out = 0; | |
1257 | for (in = 0; in < STEPSIZE; in++, out++) { | |
1258 | table[in] = out; table[-in] = -out; | |
1259 | } | |
1260 | /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ | |
1261 | for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { | |
1262 | table[in] = out; table[-in] = -out; | |
1263 | } | |
1264 | /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ | |
1265 | for (; in <= MAXJSAMPLE; in++) { | |
1266 | table[in] = out; table[-in] = -out; | |
1267 | } | |
1268 | #undef STEPSIZE | |
1269 | } | |
1270 | ||
1271 | ||
1272 | /* | |
1273 | * Finish up at the end of each pass. | |
1274 | */ | |
1275 | ||
1276 | void | |
1277 | finish_pass1 (j_decompress_ptr cinfo) | |
1278 | { | |
1279 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1280 | ||
1281 | /* Select the representative colors and fill in cinfo->colormap */ | |
1282 | cinfo->colormap = cquantize->sv_colormap; | |
1283 | select_colors(cinfo, cquantize->desired); | |
1284 | /* Force next pass to zero the color index table */ | |
1285 | cquantize->needs_zeroed = TRUE; | |
1286 | } | |
1287 | ||
1288 | ||
1289 | void | |
1290 | finish_pass2 (j_decompress_ptr WXUNUSED(cinfo)) | |
1291 | { | |
1292 | /* no work */ | |
1293 | } | |
1294 | ||
1295 | ||
1296 | /* | |
1297 | * Initialize for each processing pass. | |
1298 | */ | |
1299 | ||
1300 | void | |
1301 | start_pass_2_quant (j_decompress_ptr cinfo, bool is_pre_scan) | |
1302 | { | |
1303 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1304 | hist3d histogram = cquantize->histogram; | |
1305 | int i; | |
1306 | ||
1307 | if (is_pre_scan) { | |
1308 | /* Set up method pointers */ | |
1309 | cquantize->pub.color_quantize = prescan_quantize; | |
1310 | cquantize->pub.finish_pass = finish_pass1; | |
1311 | cquantize->needs_zeroed = TRUE; /* Always zero histogram */ | |
1312 | } else { | |
1313 | /* Set up method pointers */ | |
1314 | cquantize->pub.color_quantize = pass2_fs_dither; | |
1315 | cquantize->pub.finish_pass = finish_pass2; | |
1316 | ||
1317 | /* Make sure color count is acceptable */ | |
1318 | i = cinfo->actual_number_of_colors; | |
1319 | ||
1320 | { | |
1321 | size_t arraysize = (size_t) ((cinfo->output_width + 2) * | |
1322 | (3 * sizeof(FSERROR))); | |
1323 | /* Allocate Floyd-Steinberg workspace if we didn't already. */ | |
1324 | if (cquantize->fserrors == NULL) | |
1325 | cquantize->fserrors = (INT16*) malloc(arraysize); | |
1326 | /* Initialize the propagated errors to zero. */ | |
1327 | memset((void *) cquantize->fserrors, 0, arraysize); | |
1328 | /* Make the error-limit table if we didn't already. */ | |
1329 | if (cquantize->error_limiter == NULL) | |
1330 | init_error_limit(cinfo); | |
1331 | cquantize->on_odd_row = FALSE; | |
1332 | } | |
1333 | ||
1334 | } | |
1335 | /* Zero the histogram or inverse color map, if necessary */ | |
1336 | if (cquantize->needs_zeroed) { | |
1337 | for (i = 0; i < HIST_C0_ELEMS; i++) { | |
1338 | memset((void *) histogram[i], 0, | |
1339 | HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell)); | |
1340 | } | |
1341 | cquantize->needs_zeroed = FALSE; | |
1342 | } | |
1343 | } | |
1344 | ||
1345 | ||
1346 | /* | |
1347 | * Switch to a new external colormap between output passes. | |
1348 | */ | |
1349 | ||
1350 | void | |
1351 | new_color_map_2_quant (j_decompress_ptr cinfo) | |
1352 | { | |
1353 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1354 | ||
1355 | /* Reset the inverse color map */ | |
1356 | cquantize->needs_zeroed = TRUE; | |
1357 | } | |
1358 | ||
1359 | ||
1360 | /* | |
1361 | * Module initialization routine for 2-pass color quantization. | |
1362 | */ | |
1363 | ||
1364 | void | |
1365 | jinit_2pass_quantizer (j_decompress_ptr cinfo) | |
1366 | { | |
1367 | my_cquantize_ptr cquantize; | |
1368 | int i; | |
1369 | ||
1370 | cquantize = (my_cquantize_ptr) malloc(sizeof(my_cquantizer)); | |
1371 | cinfo->cquantize = (jpeg_color_quantizer *) cquantize; | |
1372 | cquantize->pub.start_pass = start_pass_2_quant; | |
1373 | cquantize->pub.new_color_map = new_color_map_2_quant; | |
1374 | cquantize->fserrors = NULL; /* flag optional arrays not allocated */ | |
1375 | cquantize->error_limiter = NULL; | |
1376 | ||
1377 | ||
1378 | /* Allocate the histogram/inverse colormap storage */ | |
1379 | cquantize->histogram = (hist3d) malloc(HIST_C0_ELEMS * sizeof(hist2d)); | |
1380 | for (i = 0; i < HIST_C0_ELEMS; i++) { | |
1381 | cquantize->histogram[i] = (hist2d) malloc(HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell)); | |
1382 | } | |
1383 | cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ | |
1384 | ||
1385 | /* Allocate storage for the completed colormap, if required. | |
1386 | * We do this now since it is storage and may affect | |
1387 | * the memory manager's space calculations. | |
1388 | */ | |
1389 | { | |
1390 | /* Make sure color count is acceptable */ | |
1391 | int desired = cinfo->desired_number_of_colors; | |
1392 | ||
1393 | cquantize->sv_colormap = (JSAMPARRAY) malloc(sizeof(JSAMPROW) * 3); | |
1394 | cquantize->sv_colormap[0] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired); | |
1395 | cquantize->sv_colormap[1] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired); | |
1396 | cquantize->sv_colormap[2] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired); | |
1397 | ||
1398 | cquantize->desired = desired; | |
1399 | } | |
1400 | ||
1401 | /* Allocate Floyd-Steinberg workspace if necessary. | |
1402 | * This isn't really needed until pass 2, but again it is storage. | |
1403 | * Although we will cope with a later change in dither_mode, | |
1404 | * we do not promise to honor max_memory_to_use if dither_mode changes. | |
1405 | */ | |
1406 | { | |
1407 | cquantize->fserrors = (FSERRPTR) malloc( | |
1408 | (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR)))); | |
1409 | /* Might as well create the error-limiting table too. */ | |
1410 | init_error_limit(cinfo); | |
1411 | } | |
1412 | } | |
1413 | ||
1414 | ||
1415 | ||
1416 | ||
1417 | ||
1418 | ||
1419 | ||
1420 | ||
1421 | ||
1422 | ||
1423 | void | |
1424 | prepare_range_limit_table (j_decompress_ptr cinfo) | |
1425 | /* Allocate and fill in the sample_range_limit table */ | |
1426 | { | |
1427 | JSAMPLE * table; | |
1428 | int i; | |
1429 | ||
1430 | table = (JSAMPLE *) malloc((5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * sizeof(JSAMPLE)); | |
1431 | cinfo->srl_orig = table; | |
1432 | table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */ | |
1433 | cinfo->sample_range_limit = table; | |
1434 | /* First segment of "simple" table: limit[x] = 0 for x < 0 */ | |
1435 | memset(table - (MAXJSAMPLE+1), 0, (MAXJSAMPLE+1) * sizeof(JSAMPLE)); | |
1436 | /* Main part of "simple" table: limit[x] = x */ | |
1437 | for (i = 0; i <= MAXJSAMPLE; i++) | |
1438 | table[i] = (JSAMPLE) i; | |
1439 | table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ | |
1440 | /* End of simple table, rest of first half of post-IDCT table */ | |
1441 | for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) | |
1442 | table[i] = MAXJSAMPLE; | |
1443 | /* Second half of post-IDCT table */ | |
1444 | memset(table + (2 * (MAXJSAMPLE+1)), 0, | |
1445 | (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * sizeof(JSAMPLE)); | |
1446 | memcpy(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), | |
1447 | cinfo->sample_range_limit, CENTERJSAMPLE * sizeof(JSAMPLE)); | |
1448 | } | |
1449 | ||
1450 | ||
1451 | ||
1452 | ||
1453 | /* | |
1454 | * wxQuantize | |
1455 | */ | |
1456 | ||
1457 | IMPLEMENT_DYNAMIC_CLASS(wxQuantize, wxObject) | |
1458 | ||
1459 | void wxQuantize::DoQuantize(unsigned w, unsigned h, unsigned char **in_rows, unsigned char **out_rows, | |
1460 | unsigned char *palette, int desiredNoColours) | |
1461 | { | |
1462 | j_decompress dec; | |
1463 | my_cquantize_ptr cquantize; | |
1464 | ||
1465 | dec.output_width = w; | |
1466 | dec.desired_number_of_colors = desiredNoColours; | |
1467 | prepare_range_limit_table(&dec); | |
1468 | jinit_2pass_quantizer(&dec); | |
1469 | cquantize = (my_cquantize_ptr) dec.cquantize; | |
1470 | ||
1471 | ||
1472 | cquantize->pub.start_pass(&dec, TRUE); | |
1473 | cquantize->pub.color_quantize(&dec, in_rows, out_rows, h); | |
1474 | cquantize->pub.finish_pass(&dec); | |
1475 | ||
1476 | cquantize->pub.start_pass(&dec, FALSE); | |
1477 | cquantize->pub.color_quantize(&dec, in_rows, out_rows, h); | |
1478 | cquantize->pub.finish_pass(&dec); | |
1479 | ||
1480 | ||
1481 | for (int i = 0; i < dec.desired_number_of_colors; i++) { | |
1482 | palette[3 * i + 0] = dec.colormap[0][i]; | |
1483 | palette[3 * i + 1] = dec.colormap[1][i]; | |
1484 | palette[3 * i + 2] = dec.colormap[2][i]; | |
1485 | } | |
1486 | ||
1487 | for (int ii = 0; ii < HIST_C0_ELEMS; ii++) free(cquantize->histogram[ii]); | |
1488 | free(cquantize->histogram); | |
1489 | free(dec.colormap[0]); | |
1490 | free(dec.colormap[1]); | |
1491 | free(dec.colormap[2]); | |
1492 | free(dec.colormap); | |
1493 | free(dec.srl_orig); | |
1494 | ||
1495 | //free(cquantize->error_limiter); | |
1496 | free((void*)(cquantize->error_limiter - MAXJSAMPLE)); // To reverse what was done to it | |
1497 | ||
1498 | free(cquantize->fserrors); | |
1499 | free(cquantize); | |
1500 | } | |
1501 | ||
1502 | // TODO: somehow make use of the Windows system colours, rather than ignoring them for the | |
1503 | // purposes of quantization. | |
1504 | ||
1505 | bool wxQuantize::Quantize(const wxImage& src, wxImage& dest, | |
1506 | wxPalette** pPalette, | |
1507 | int desiredNoColours, | |
1508 | unsigned char** eightBitData, | |
1509 | int flags) | |
1510 | ||
1511 | { | |
1512 | int i; | |
1513 | int w = src.GetWidth(); | |
1514 | int h = src.GetHeight(); | |
1515 | ||
1516 | int windowsSystemColourCount = 20; | |
1517 | ||
1518 | int paletteShift = 0; | |
1519 | ||
1520 | // Shift the palette up by the number of Windows system colours, | |
1521 | // if necessary | |
1522 | if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS) | |
1523 | paletteShift = windowsSystemColourCount; | |
1524 | ||
1525 | // Make room for the Windows system colours | |
1526 | #ifdef __WXMSW__ | |
1527 | if ((flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS) && (desiredNoColours > (256 - windowsSystemColourCount))) | |
1528 | desiredNoColours = 256 - windowsSystemColourCount; | |
1529 | #endif | |
1530 | ||
1531 | // create rows info: | |
1532 | unsigned char **rows = new unsigned char *[h]; | |
1533 | h = src.GetHeight(), w = src.GetWidth(); | |
1534 | unsigned char *imgdt = src.GetData(); | |
1535 | for (i = 0; i < h; i++) | |
1536 | rows[i] = imgdt + 3/*RGB*/ * w * i; | |
1537 | ||
1538 | unsigned char palette[3*256]; | |
1539 | ||
1540 | // This is the image as represented by palette indexes. | |
1541 | unsigned char *data8bit = new unsigned char[w * h]; | |
1542 | unsigned char **outrows = new unsigned char *[h]; | |
1543 | for (i = 0; i < h; i++) | |
1544 | outrows[i] = data8bit + w * i; | |
1545 | ||
1546 | //RGB->palette | |
1547 | DoQuantize(w, h, rows, outrows, palette, desiredNoColours); | |
1548 | ||
1549 | delete[] rows; | |
1550 | delete[] outrows; | |
1551 | ||
1552 | // palette->RGB(max.256) | |
1553 | ||
1554 | if (flags & wxQUANTIZE_FILL_DESTINATION_IMAGE) | |
1555 | { | |
1556 | if (!dest.Ok()) | |
1557 | dest.Create(w, h); | |
1558 | ||
1559 | imgdt = dest.GetData(); | |
1560 | for (i = 0; i < w * h; i++) | |
1561 | { | |
1562 | unsigned char c = data8bit[i]; | |
1563 | imgdt[3 * i + 0/*R*/] = palette[3 * c + 0]; | |
1564 | imgdt[3 * i + 1/*G*/] = palette[3 * c + 1]; | |
1565 | imgdt[3 * i + 2/*B*/] = palette[3 * c + 2]; | |
1566 | } | |
1567 | } | |
1568 | ||
1569 | if (eightBitData && (flags & wxQUANTIZE_RETURN_8BIT_DATA)) | |
1570 | { | |
1571 | #ifdef __WXMSW__ | |
1572 | if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS) | |
1573 | { | |
1574 | // We need to shift the palette entries up | |
1575 | // to make room for the Windows system colours. | |
1576 | for (i = 0; i < w * h; i++) | |
1577 | data8bit[i] = data8bit[i] + paletteShift; | |
1578 | } | |
1579 | #endif | |
1580 | *eightBitData = data8bit; | |
1581 | } | |
1582 | else | |
1583 | delete[] data8bit; | |
1584 | ||
1585 | #if wxUSE_PALETTE | |
1586 | // Make a wxWindows palette | |
1587 | if (pPalette) | |
1588 | { | |
1589 | unsigned char* r = new unsigned char[256]; | |
1590 | unsigned char* g = new unsigned char[256]; | |
1591 | unsigned char* b = new unsigned char[256]; | |
1592 | ||
1593 | #ifdef __WXMSW__ | |
1594 | // Fill the first 20 entries with Windows system colours | |
1595 | if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS) | |
1596 | { | |
1597 | HDC hDC = ::GetDC(NULL); | |
1598 | PALETTEENTRY* entries = new PALETTEENTRY[windowsSystemColourCount]; | |
1599 | ::GetSystemPaletteEntries(hDC, 0, windowsSystemColourCount, entries); | |
1600 | ::ReleaseDC(NULL, hDC); | |
1601 | ||
1602 | for (i = 0; i < windowsSystemColourCount; i++) | |
1603 | { | |
1604 | r[i] = entries[i].peRed; | |
1605 | g[i] = entries[i].peGreen; | |
1606 | b[i] = entries[i].peBlue; | |
1607 | } | |
1608 | delete[] entries; | |
1609 | } | |
1610 | #endif | |
1611 | ||
1612 | for (i = 0; i < desiredNoColours; i++) | |
1613 | { | |
1614 | r[i+paletteShift] = palette[i*3 + 0]; | |
1615 | g[i+paletteShift] = palette[i*3 + 1]; | |
1616 | b[i+paletteShift] = palette[i*3 + 2]; | |
1617 | } | |
1618 | ||
1619 | // Blank out any remaining palette entries | |
1620 | for (i = desiredNoColours+paletteShift; i < 256; i++) | |
1621 | { | |
1622 | r[i] = 0; | |
1623 | g[i] = 0; | |
1624 | b[i] = 0; | |
1625 | } | |
1626 | *pPalette = new wxPalette(256, r, g, b); | |
1627 | delete[] r; | |
1628 | delete[] g; | |
1629 | delete[] b; | |
1630 | } | |
1631 | #endif // wxUSE_PALETTE | |
1632 | ||
1633 | return TRUE; | |
1634 | } | |
1635 | ||
1636 | // This version sets a palette in the destination image so you don't | |
1637 | // have to manage it yourself. | |
1638 | ||
1639 | bool wxQuantize::Quantize(const wxImage& src, | |
1640 | wxImage& dest, | |
1641 | int desiredNoColours, | |
1642 | unsigned char** eightBitData, | |
1643 | int flags) | |
1644 | { | |
1645 | wxPalette* palette = NULL; | |
1646 | if ( !Quantize(src, dest, & palette, desiredNoColours, eightBitData, flags) ) | |
1647 | return FALSE; | |
1648 | ||
1649 | #if wxUSE_PALETTE | |
1650 | if (palette) | |
1651 | { | |
1652 | dest.SetPalette(* palette); | |
1653 | delete palette; | |
1654 | } | |
1655 | #endif // wxUSE_PALETTE | |
1656 | ||
1657 | return TRUE; | |
1658 | } | |
1659 | ||
1660 | #endif | |
1661 | // wxUSE_IMAGE | |
1662 |