]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * This source code is a product of Sun Microsystems, Inc. and is provided | |
3 | * for unrestricted use. Users may copy or modify this source code without | |
4 | * charge. | |
5 | * | |
6 | * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING | |
7 | * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR | |
8 | * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. | |
9 | * | |
10 | * Sun source code is provided with no support and without any obligation on | |
11 | * the part of Sun Microsystems, Inc. to assist in its use, correction, | |
12 | * modification or enhancement. | |
13 | * | |
14 | * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE | |
15 | * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE | |
16 | * OR ANY PART THEREOF. | |
17 | * | |
18 | * In no event will Sun Microsystems, Inc. be liable for any lost revenue | |
19 | * or profits or other special, indirect and consequential damages, even if | |
20 | * Sun has been advised of the possibility of such damages. | |
21 | * | |
22 | * Sun Microsystems, Inc. | |
23 | * 2550 Garcia Avenue | |
24 | * Mountain View, California 94043 | |
25 | */ | |
26 | ||
27 | /* | |
28 | * g723_24.c | |
29 | * | |
30 | * Description: | |
31 | * | |
32 | * g723_24_encoder(), g723_24_decoder() | |
33 | * | |
34 | * These routines comprise an implementation of the CCITT G.723 24 Kbps | |
35 | * ADPCM coding algorithm. Essentially, this implementation is identical to | |
36 | * the bit level description except for a few deviations which take advantage | |
37 | * of workstation attributes, such as hardware 2's complement arithmetic. | |
38 | * | |
39 | */ | |
40 | #include "wx/wxprec.h" | |
41 | #include "wx/mmedia/internal/g72x.h" | |
42 | ||
43 | /* | |
44 | * Maps G.723_24 code word to reconstructed scale factor normalized log | |
45 | * magnitude values. | |
46 | */ | |
47 | static short _dqlntab[8] = {-2048, 135, 273, 373, 373, 273, 135, -2048}; | |
48 | ||
49 | /* Maps G.723_24 code word to log of scale factor multiplier. */ | |
50 | static short _witab[8] = {-128, 960, 4384, 18624, 18624, 4384, 960, -128}; | |
51 | ||
52 | /* | |
53 | * Maps G.723_24 code words to a set of values whose long and short | |
54 | * term averages are computed and then compared to give an indication | |
55 | * how stationary (steady state) the signal is. | |
56 | */ | |
57 | static short _fitab[8] = {0, 0x200, 0x400, 0xE00, 0xE00, 0x400, 0x200, 0}; | |
58 | ||
59 | static short qtab_723_24[3] = {8, 218, 331}; | |
60 | ||
61 | /* | |
62 | * g723_24_encoder() | |
63 | * | |
64 | * Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code. | |
65 | * Returns -1 if invalid input coding value. | |
66 | */ | |
67 | int | |
68 | g723_24_encoder( | |
69 | int sl, | |
70 | int in_coding, | |
71 | struct g72x_state *state_ptr) | |
72 | { | |
73 | short sei, sezi, se, sez; /* ACCUM */ | |
74 | short d; /* SUBTA */ | |
75 | short y; /* MIX */ | |
76 | short sr; /* ADDB */ | |
77 | short dqsez; /* ADDC */ | |
78 | short dq, i; | |
79 | ||
80 | switch (in_coding) { /* linearize input sample to 14-bit PCM */ | |
81 | case AUDIO_ENCODING_ALAW: | |
82 | sl = alaw2linear(sl) >> 2; | |
83 | break; | |
84 | case AUDIO_ENCODING_ULAW: | |
85 | sl = ulaw2linear(sl) >> 2; | |
86 | break; | |
87 | case AUDIO_ENCODING_LINEAR: | |
88 | sl = ((short)sl) >> 2; /* sl of 14-bit dynamic range */ | |
89 | break; | |
90 | default: | |
91 | return (-1); | |
92 | } | |
93 | ||
94 | sezi = predictor_zero(state_ptr); | |
95 | sez = sezi >> 1; | |
96 | sei = sezi + predictor_pole(state_ptr); | |
97 | se = sei >> 1; /* se = estimated signal */ | |
98 | ||
99 | d = sl - se; /* d = estimation diff. */ | |
100 | ||
101 | /* quantize prediction difference d */ | |
102 | y = step_size(state_ptr); /* quantizer step size */ | |
103 | i = quantize(d, y, qtab_723_24, 3); /* i = ADPCM code */ | |
104 | dq = reconstruct(i & 4, _dqlntab[i], y); /* quantized diff. */ | |
105 | ||
106 | sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconstructed signal */ | |
107 | ||
108 | dqsez = sr + sez - se; /* pole prediction diff. */ | |
109 | ||
110 | update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); | |
111 | ||
112 | return (i); | |
113 | } | |
114 | ||
115 | /* | |
116 | * g723_24_decoder() | |
117 | * | |
118 | * Decodes a 3-bit CCITT G.723_24 ADPCM code and returns | |
119 | * the resulting 16-bit linear PCM, A-law or u-law sample value. | |
120 | * -1 is returned if the output coding is unknown. | |
121 | */ | |
122 | int | |
123 | g723_24_decoder( | |
124 | int i, | |
125 | int out_coding, | |
126 | struct g72x_state *state_ptr) | |
127 | { | |
128 | short sezi, sei, sez, se; /* ACCUM */ | |
129 | short y; /* MIX */ | |
130 | short sr; /* ADDB */ | |
131 | short dq; | |
132 | short dqsez; | |
133 | ||
134 | i &= 0x07; /* mask to get proper bits */ | |
135 | sezi = predictor_zero(state_ptr); | |
136 | sez = sezi >> 1; | |
137 | sei = sezi + predictor_pole(state_ptr); | |
138 | se = sei >> 1; /* se = estimated signal */ | |
139 | ||
140 | y = step_size(state_ptr); /* adaptive quantizer step size */ | |
141 | dq = reconstruct(i & 0x04, _dqlntab[i], y); /* unquantize pred diff */ | |
142 | ||
143 | sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); /* reconst. signal */ | |
144 | ||
145 | dqsez = sr - se + sez; /* pole prediction diff. */ | |
146 | ||
147 | update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); | |
148 | ||
149 | switch (out_coding) { | |
150 | case AUDIO_ENCODING_ALAW: | |
151 | return (tandem_adjust_alaw(sr, se, y, i, 4, qtab_723_24)); | |
152 | case AUDIO_ENCODING_ULAW: | |
153 | return (tandem_adjust_ulaw(sr, se, y, i, 4, qtab_723_24)); | |
154 | case AUDIO_ENCODING_LINEAR: | |
155 | return (sr << 2); /* sr was of 14-bit dynamic range */ | |
156 | default: | |
157 | return (-1); | |
158 | } | |
159 | } |