]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * Copyright (c) 1997 Greg Ward Larson | |
3 | * Copyright (c) 1997 Silicon Graphics, Inc. | |
4 | * | |
5 | * Permission to use, copy, modify, distribute, and sell this software and | |
6 | * its documentation for any purpose is hereby granted without fee, provided | |
7 | * that (i) the above copyright notices and this permission notice appear in | |
8 | * all copies of the software and related documentation, and (ii) the names of | |
9 | * Sam Leffler, Greg Larson and Silicon Graphics may not be used in any | |
10 | * advertising or publicity relating to the software without the specific, | |
11 | * prior written permission of Sam Leffler, Greg Larson and Silicon Graphics. | |
12 | * | |
13 | * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
14 | * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
15 | * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
16 | * | |
17 | * IN NO EVENT SHALL SAM LEFFLER, GREG LARSON OR SILICON GRAPHICS BE LIABLE | |
18 | * FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, | |
19 | * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, | |
20 | * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF | |
21 | * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE | |
22 | * OF THIS SOFTWARE. | |
23 | */ | |
24 | ||
25 | #include "tiffiop.h" | |
26 | #ifdef LOGLUV_SUPPORT | |
27 | ||
28 | /* | |
29 | * TIFF Library. | |
30 | * LogLuv compression support for high dynamic range images. | |
31 | * | |
32 | * Contributed by Greg Larson. | |
33 | * | |
34 | * LogLuv image support uses the TIFF library to store 16 or 10-bit | |
35 | * log luminance values with 8 bits each of u and v or a 14-bit index. | |
36 | * | |
37 | * The codec can take as input and produce as output 32-bit IEEE float values | |
38 | * as well as 16-bit integer values. A 16-bit luminance is interpreted | |
39 | * as a sign bit followed by a 15-bit integer that is converted | |
40 | * to and from a linear magnitude using the transformation: | |
41 | * | |
42 | * L = 2^( (Le+.5)/256 - 64 ) # real from 15-bit | |
43 | * | |
44 | * Le = floor( 256*(log2(L) + 64) ) # 15-bit from real | |
45 | * | |
46 | * The actual conversion to world luminance units in candelas per sq. meter | |
47 | * requires an additional multiplier, which is stored in the TIFFTAG_STONITS. | |
48 | * This value is usually set such that a reasonable exposure comes from | |
49 | * clamping decoded luminances above 1 to 1 in the displayed image. | |
50 | * | |
51 | * The 16-bit values for u and v may be converted to real values by dividing | |
52 | * each by 32768. (This allows for negative values, which aren't useful as | |
53 | * far as we know, but are left in case of future improvements in human | |
54 | * color vision.) | |
55 | * | |
56 | * Conversion from (u,v), which is actually the CIE (u',v') system for | |
57 | * you color scientists, is accomplished by the following transformation: | |
58 | * | |
59 | * u = 4*x / (-2*x + 12*y + 3) | |
60 | * v = 9*y / (-2*x + 12*y + 3) | |
61 | * | |
62 | * x = 9*u / (6*u - 16*v + 12) | |
63 | * y = 4*v / (6*u - 16*v + 12) | |
64 | * | |
65 | * This process is greatly simplified by passing 32-bit IEEE floats | |
66 | * for each of three CIE XYZ coordinates. The codec then takes care | |
67 | * of conversion to and from LogLuv, though the application is still | |
68 | * responsible for interpreting the TIFFTAG_STONITS calibration factor. | |
69 | * | |
70 | * By definition, a CIE XYZ vector of [1 1 1] corresponds to a neutral white | |
71 | * point of (x,y)=(1/3,1/3). However, most color systems assume some other | |
72 | * white point, such as D65, and an absolute color conversion to XYZ then | |
73 | * to another color space with a different white point may introduce an | |
74 | * unwanted color cast to the image. It is often desirable, therefore, to | |
75 | * perform a white point conversion that maps the input white to [1 1 1] | |
76 | * in XYZ, then record the original white point using the TIFFTAG_WHITEPOINT | |
77 | * tag value. A decoder that demands absolute color calibration may use | |
78 | * this white point tag to get back the original colors, but usually it | |
79 | * will be ignored and the new white point will be used instead that | |
80 | * matches the output color space. | |
81 | * | |
82 | * Pixel information is compressed into one of two basic encodings, depending | |
83 | * on the setting of the compression tag, which is one of COMPRESSION_SGILOG | |
84 | * or COMPRESSION_SGILOG24. For COMPRESSION_SGILOG, greyscale data is | |
85 | * stored as: | |
86 | * | |
87 | * 1 15 | |
88 | * |-+---------------| | |
89 | * | |
90 | * COMPRESSION_SGILOG color data is stored as: | |
91 | * | |
92 | * 1 15 8 8 | |
93 | * |-+---------------|--------+--------| | |
94 | * S Le ue ve | |
95 | * | |
96 | * For the 24-bit COMPRESSION_SGILOG24 color format, the data is stored as: | |
97 | * | |
98 | * 10 14 | |
99 | * |----------|--------------| | |
100 | * Le' Ce | |
101 | * | |
102 | * There is no sign bit in the 24-bit case, and the (u,v) chromaticity is | |
103 | * encoded as an index for optimal color resolution. The 10 log bits are | |
104 | * defined by the following conversions: | |
105 | * | |
106 | * L = 2^((Le'+.5)/64 - 12) # real from 10-bit | |
107 | * | |
108 | * Le' = floor( 64*(log2(L) + 12) ) # 10-bit from real | |
109 | * | |
110 | * The 10 bits of the smaller format may be converted into the 15 bits of | |
111 | * the larger format by multiplying by 4 and adding 13314. Obviously, | |
112 | * a smaller range of magnitudes is covered (about 5 orders of magnitude | |
113 | * instead of 38), and the lack of a sign bit means that negative luminances | |
114 | * are not allowed. (Well, they aren't allowed in the real world, either, | |
115 | * but they are useful for certain types of image processing.) | |
116 | * | |
117 | * The desired user format is controlled by the setting the internal | |
118 | * pseudo tag TIFFTAG_SGILOGDATAFMT to one of: | |
119 | * SGILOGDATAFMT_FLOAT = IEEE 32-bit float XYZ values | |
120 | * SGILOGDATAFMT_16BIT = 16-bit integer encodings of logL, u and v | |
121 | * Raw data i/o is also possible using: | |
122 | * SGILOGDATAFMT_RAW = 32-bit unsigned integer with encoded pixel | |
123 | * In addition, the following decoding is provided for ease of display: | |
124 | * SGILOGDATAFMT_8BIT = 8-bit default RGB gamma-corrected values | |
125 | * | |
126 | * For grayscale images, we provide the following data formats: | |
127 | * SGILOGDATAFMT_FLOAT = IEEE 32-bit float Y values | |
128 | * SGILOGDATAFMT_16BIT = 16-bit integer w/ encoded luminance | |
129 | * SGILOGDATAFMT_8BIT = 8-bit gray monitor values | |
130 | * | |
131 | * Note that the COMPRESSION_SGILOG applies a simple run-length encoding | |
132 | * scheme by separating the logL, u and v bytes for each row and applying | |
133 | * a PackBits type of compression. Since the 24-bit encoding is not | |
134 | * adaptive, the 32-bit color format takes less space in many cases. | |
135 | * | |
136 | * Further control is provided over the conversion from higher-resolution | |
137 | * formats to final encoded values through the pseudo tag | |
138 | * TIFFTAG_SGILOGENCODE: | |
139 | * SGILOGENCODE_NODITHER = do not dither encoded values | |
140 | * SGILOGENCODE_RANDITHER = apply random dithering during encoding | |
141 | * | |
142 | * The default value of this tag is SGILOGENCODE_NODITHER for | |
143 | * COMPRESSION_SGILOG to maximize run-length encoding and | |
144 | * SGILOGENCODE_RANDITHER for COMPRESSION_SGILOG24 to turn | |
145 | * quantization errors into noise. | |
146 | */ | |
147 | ||
148 | #include <stdio.h> | |
149 | #include <assert.h> | |
150 | #include <stdlib.h> | |
151 | #include <math.h> | |
152 | ||
153 | /* | |
154 | * State block for each open TIFF | |
155 | * file using LogLuv compression/decompression. | |
156 | */ | |
157 | typedef struct logLuvState LogLuvState; | |
158 | ||
159 | struct logLuvState { | |
160 | int user_datafmt; /* user data format */ | |
161 | int encode_meth; /* encoding method */ | |
162 | int pixel_size; /* bytes per pixel */ | |
163 | ||
164 | tidata_t* tbuf; /* translation buffer */ | |
165 | int tbuflen; /* buffer length */ | |
166 | void (*tfunc)(LogLuvState*, tidata_t, int); | |
167 | ||
168 | TIFFVSetMethod vgetparent; /* super-class method */ | |
169 | TIFFVSetMethod vsetparent; /* super-class method */ | |
170 | }; | |
171 | ||
172 | #define DecoderState(tif) ((LogLuvState*) (tif)->tif_data) | |
173 | #define EncoderState(tif) ((LogLuvState*) (tif)->tif_data) | |
174 | ||
175 | #define N(a) (sizeof(a)/sizeof(a[0])) | |
176 | #define SGILOGDATAFMT_UNKNOWN -1 | |
177 | ||
178 | #define MINRUN 4 /* minimum run length */ | |
179 | ||
180 | /* | |
181 | * Decode a string of 16-bit gray pixels. | |
182 | */ | |
183 | static int | |
184 | LogL16Decode(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s) | |
185 | { | |
186 | LogLuvState* sp = DecoderState(tif); | |
187 | int shft, i, npixels; | |
188 | u_char* bp; | |
189 | int16* tp; | |
190 | int16 b; | |
191 | int cc, rc; | |
192 | ||
193 | assert(s == 0); | |
194 | assert(sp != NULL); | |
195 | ||
196 | npixels = occ / sp->pixel_size; | |
197 | ||
198 | if (sp->user_datafmt == SGILOGDATAFMT_16BIT) | |
199 | tp = (int16*) op; | |
200 | else { | |
201 | assert(sp->tbuflen >= npixels); | |
202 | tp = (int16*) sp->tbuf; | |
203 | } | |
204 | _TIFFmemset((tdata_t) tp, 0, npixels*sizeof (tp[0])); | |
205 | ||
206 | bp = (u_char*) tif->tif_rawcp; | |
207 | cc = tif->tif_rawcc; | |
208 | /* get each byte string */ | |
209 | for (shft = 2*8; (shft -= 8) >= 0; ) { | |
210 | for (i = 0; i < npixels && cc > 0; ) | |
211 | if (*bp >= 128) { /* run */ | |
212 | rc = *bp++ + (2-128); | |
213 | b = (int16)(*bp++ << shft); | |
214 | cc -= 2; | |
215 | while (rc-- && i < npixels) | |
216 | tp[i++] |= b; | |
217 | } else { /* non-run */ | |
218 | rc = *bp++; /* nul is noop */ | |
219 | while (--cc && rc-- && i < npixels) | |
220 | tp[i++] |= (int16)*bp++ << shft; | |
221 | } | |
222 | if (i != npixels) { | |
223 | TIFFError(tif->tif_name, | |
224 | "LogL16Decode: Not enough data at row %d (short %d pixels)", | |
225 | tif->tif_row, npixels - i); | |
226 | tif->tif_rawcp = (tidata_t) bp; | |
227 | tif->tif_rawcc = cc; | |
228 | return (0); | |
229 | } | |
230 | } | |
231 | (*sp->tfunc)(sp, op, npixels); | |
232 | tif->tif_rawcp = (tidata_t) bp; | |
233 | tif->tif_rawcc = cc; | |
234 | return (1); | |
235 | } | |
236 | ||
237 | /* | |
238 | * Decode a string of 24-bit pixels. | |
239 | */ | |
240 | static int | |
241 | LogLuvDecode24(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s) | |
242 | { | |
243 | LogLuvState* sp = DecoderState(tif); | |
244 | int cc, i, npixels; | |
245 | u_char* bp; | |
246 | uint32* tp; | |
247 | ||
248 | assert(s == 0); | |
249 | assert(sp != NULL); | |
250 | ||
251 | npixels = occ / sp->pixel_size; | |
252 | ||
253 | if (sp->user_datafmt == SGILOGDATAFMT_RAW) | |
254 | tp = (uint32 *)op; | |
255 | else { | |
256 | assert(sp->tbuflen >= npixels); | |
257 | tp = (uint32 *) sp->tbuf; | |
258 | } | |
259 | /* copy to array of uint32 */ | |
260 | bp = (u_char*) tif->tif_rawcp; | |
261 | cc = tif->tif_rawcc; | |
262 | for (i = 0; i < npixels && cc > 0; i++) { | |
263 | tp[i] = bp[0] << 16 | bp[1] << 8 | bp[2]; | |
264 | bp += 3; | |
265 | cc -= 3; | |
266 | } | |
267 | tif->tif_rawcp = (tidata_t) bp; | |
268 | tif->tif_rawcc = cc; | |
269 | if (i != npixels) { | |
270 | TIFFError(tif->tif_name, | |
271 | "LogLuvDecode24: Not enough data at row %d (short %d pixels)", | |
272 | tif->tif_row, npixels - i); | |
273 | return (0); | |
274 | } | |
275 | (*sp->tfunc)(sp, op, npixels); | |
276 | return (1); | |
277 | } | |
278 | ||
279 | /* | |
280 | * Decode a string of 32-bit pixels. | |
281 | */ | |
282 | static int | |
283 | LogLuvDecode32(TIFF* tif, tidata_t op, tsize_t occ, tsample_t s) | |
284 | { | |
285 | LogLuvState* sp; | |
286 | int shft, i, npixels; | |
287 | u_char* bp; | |
288 | uint32* tp; | |
289 | uint32 b; | |
290 | int cc, rc; | |
291 | ||
292 | assert(s == 0); | |
293 | sp = DecoderState(tif); | |
294 | assert(sp != NULL); | |
295 | ||
296 | npixels = occ / sp->pixel_size; | |
297 | ||
298 | if (sp->user_datafmt == SGILOGDATAFMT_RAW) | |
299 | tp = (uint32*) op; | |
300 | else { | |
301 | assert(sp->tbuflen >= npixels); | |
302 | tp = (uint32*) sp->tbuf; | |
303 | } | |
304 | _TIFFmemset((tdata_t) tp, 0, npixels*sizeof (tp[0])); | |
305 | ||
306 | bp = (u_char*) tif->tif_rawcp; | |
307 | cc = tif->tif_rawcc; | |
308 | /* get each byte string */ | |
309 | for (shft = 4*8; (shft -= 8) >= 0; ) { | |
310 | for (i = 0; i < npixels && cc > 0; ) | |
311 | if (*bp >= 128) { /* run */ | |
312 | rc = *bp++ + (2-128); | |
313 | b = (uint32)*bp++ << shft; | |
314 | cc -= 2; | |
315 | while (rc-- && i < npixels) | |
316 | tp[i++] |= b; | |
317 | } else { /* non-run */ | |
318 | rc = *bp++; /* nul is noop */ | |
319 | while (--cc && rc-- && i < npixels) | |
320 | tp[i++] |= (uint32)*bp++ << shft; | |
321 | } | |
322 | if (i != npixels) { | |
323 | TIFFError(tif->tif_name, | |
324 | "LogLuvDecode32: Not enough data at row %d (short %d pixels)", | |
325 | tif->tif_row, npixels - i); | |
326 | tif->tif_rawcp = (tidata_t) bp; | |
327 | tif->tif_rawcc = cc; | |
328 | return (0); | |
329 | } | |
330 | } | |
331 | (*sp->tfunc)(sp, op, npixels); | |
332 | tif->tif_rawcp = (tidata_t) bp; | |
333 | tif->tif_rawcc = cc; | |
334 | return (1); | |
335 | } | |
336 | ||
337 | /* | |
338 | * Decode a strip of pixels. We break it into rows to | |
339 | * maintain synchrony with the encode algorithm, which | |
340 | * is row by row. | |
341 | */ | |
342 | static int | |
343 | LogLuvDecodeStrip(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s) | |
344 | { | |
345 | tsize_t rowlen = TIFFScanlineSize(tif); | |
346 | ||
347 | assert(cc%rowlen == 0); | |
348 | while (cc && (*tif->tif_decoderow)(tif, bp, rowlen, s)) | |
349 | bp += rowlen, cc -= rowlen; | |
350 | return (cc == 0); | |
351 | } | |
352 | ||
353 | /* | |
354 | * Decode a tile of pixels. We break it into rows to | |
355 | * maintain synchrony with the encode algorithm, which | |
356 | * is row by row. | |
357 | */ | |
358 | static int | |
359 | LogLuvDecodeTile(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s) | |
360 | { | |
361 | tsize_t rowlen = TIFFTileRowSize(tif); | |
362 | ||
363 | assert(cc%rowlen == 0); | |
364 | while (cc && (*tif->tif_decoderow)(tif, bp, rowlen, s)) | |
365 | bp += rowlen, cc -= rowlen; | |
366 | return (cc == 0); | |
367 | } | |
368 | ||
369 | /* | |
370 | * Encode a row of 16-bit pixels. | |
371 | */ | |
372 | static int | |
373 | LogL16Encode(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s) | |
374 | { | |
375 | LogLuvState* sp = EncoderState(tif); | |
376 | int shft, i, j, npixels; | |
377 | tidata_t op; | |
378 | int16* tp; | |
379 | int16 b; | |
380 | int occ, rc=0, mask, beg; | |
381 | ||
382 | assert(s == 0); | |
383 | assert(sp != NULL); | |
384 | npixels = cc / sp->pixel_size; | |
385 | ||
386 | if (sp->user_datafmt == SGILOGDATAFMT_16BIT) | |
387 | tp = (int16*) bp; | |
388 | else { | |
389 | tp = (int16*) sp->tbuf; | |
390 | assert(sp->tbuflen >= npixels); | |
391 | (*sp->tfunc)(sp, bp, npixels); | |
392 | } | |
393 | /* compress each byte string */ | |
394 | op = tif->tif_rawcp; | |
395 | occ = tif->tif_rawdatasize - tif->tif_rawcc; | |
396 | for (shft = 2*8; (shft -= 8) >= 0; ) | |
397 | for (i = 0; i < npixels; i += rc) { | |
398 | if (occ < 4) { | |
399 | tif->tif_rawcp = op; | |
400 | tif->tif_rawcc = tif->tif_rawdatasize - occ; | |
401 | if (!TIFFFlushData1(tif)) | |
402 | return (-1); | |
403 | op = tif->tif_rawcp; | |
404 | occ = tif->tif_rawdatasize - tif->tif_rawcc; | |
405 | } | |
406 | mask = 0xff << shft; /* find next run */ | |
407 | for (beg = i; beg < npixels; beg += rc) { | |
408 | b = (int16) (tp[beg] & mask); | |
409 | rc = 1; | |
410 | while (rc < 127+2 && beg+rc < npixels && | |
411 | (tp[beg+rc] & mask) == b) | |
412 | rc++; | |
413 | if (rc >= MINRUN) | |
414 | break; /* long enough */ | |
415 | } | |
416 | if (beg-i > 1 && beg-i < MINRUN) { | |
417 | b = (int16) (tp[i] & mask);/*check short run */ | |
418 | j = i+1; | |
419 | while ((tp[j++] & mask) == b) | |
420 | if (j == beg) { | |
421 | *op++ = (tidataval_t)(128-2+j-i); | |
422 | *op++ = (tidataval_t) (b >> shft); | |
423 | occ -= 2; | |
424 | i = beg; | |
425 | break; | |
426 | } | |
427 | } | |
428 | while (i < beg) { /* write out non-run */ | |
429 | if ((j = beg-i) > 127) j = 127; | |
430 | if (occ < j+3) { | |
431 | tif->tif_rawcp = op; | |
432 | tif->tif_rawcc = tif->tif_rawdatasize - occ; | |
433 | if (!TIFFFlushData1(tif)) | |
434 | return (-1); | |
435 | op = tif->tif_rawcp; | |
436 | occ = tif->tif_rawdatasize - tif->tif_rawcc; | |
437 | } | |
438 | *op++ = (tidataval_t) j; occ--; | |
439 | while (j--) { | |
440 | *op++ = (tidataval_t) (tp[i++] >> shft & 0xff); | |
441 | occ--; | |
442 | } | |
443 | } | |
444 | if (rc >= MINRUN) { /* write out run */ | |
445 | *op++ = (tidataval_t) (128-2+rc); | |
446 | *op++ = (tidataval_t) (tp[beg] >> shft & 0xff); | |
447 | occ -= 2; | |
448 | } else | |
449 | rc = 0; | |
450 | } | |
451 | tif->tif_rawcp = op; | |
452 | tif->tif_rawcc = tif->tif_rawdatasize - occ; | |
453 | ||
454 | return (0); | |
455 | } | |
456 | ||
457 | /* | |
458 | * Encode a row of 24-bit pixels. | |
459 | */ | |
460 | static int | |
461 | LogLuvEncode24(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s) | |
462 | { | |
463 | LogLuvState* sp = EncoderState(tif); | |
464 | int i, npixels, occ; | |
465 | tidata_t op; | |
466 | uint32* tp; | |
467 | ||
468 | assert(s == 0); | |
469 | assert(sp != NULL); | |
470 | npixels = cc / sp->pixel_size; | |
471 | ||
472 | if (sp->user_datafmt == SGILOGDATAFMT_RAW) | |
473 | tp = (uint32*) bp; | |
474 | else { | |
475 | tp = (uint32*) sp->tbuf; | |
476 | assert(sp->tbuflen >= npixels); | |
477 | (*sp->tfunc)(sp, bp, npixels); | |
478 | } | |
479 | /* write out encoded pixels */ | |
480 | op = tif->tif_rawcp; | |
481 | occ = tif->tif_rawdatasize - tif->tif_rawcc; | |
482 | for (i = npixels; i--; ) { | |
483 | if (occ < 3) { | |
484 | tif->tif_rawcp = op; | |
485 | tif->tif_rawcc = tif->tif_rawdatasize - occ; | |
486 | if (!TIFFFlushData1(tif)) | |
487 | return (-1); | |
488 | op = tif->tif_rawcp; | |
489 | occ = tif->tif_rawdatasize - tif->tif_rawcc; | |
490 | } | |
491 | *op++ = (tidataval_t)(*tp >> 16); | |
492 | *op++ = (tidataval_t)(*tp >> 8 & 0xff); | |
493 | *op++ = (tidataval_t)(*tp++ & 0xff); | |
494 | occ -= 3; | |
495 | } | |
496 | tif->tif_rawcp = op; | |
497 | tif->tif_rawcc = tif->tif_rawdatasize - occ; | |
498 | ||
499 | return (0); | |
500 | } | |
501 | ||
502 | /* | |
503 | * Encode a row of 32-bit pixels. | |
504 | */ | |
505 | static int | |
506 | LogLuvEncode32(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s) | |
507 | { | |
508 | LogLuvState* sp = EncoderState(tif); | |
509 | int shft, i, j, npixels; | |
510 | tidata_t op; | |
511 | uint32* tp; | |
512 | uint32 b; | |
513 | int occ, rc=0, mask, beg; | |
514 | ||
515 | assert(s == 0); | |
516 | assert(sp != NULL); | |
517 | ||
518 | npixels = cc / sp->pixel_size; | |
519 | ||
520 | if (sp->user_datafmt == SGILOGDATAFMT_RAW) | |
521 | tp = (uint32*) bp; | |
522 | else { | |
523 | tp = (uint32*) sp->tbuf; | |
524 | assert(sp->tbuflen >= npixels); | |
525 | (*sp->tfunc)(sp, bp, npixels); | |
526 | } | |
527 | /* compress each byte string */ | |
528 | op = tif->tif_rawcp; | |
529 | occ = tif->tif_rawdatasize - tif->tif_rawcc; | |
530 | for (shft = 4*8; (shft -= 8) >= 0; ) | |
531 | for (i = 0; i < npixels; i += rc) { | |
532 | if (occ < 4) { | |
533 | tif->tif_rawcp = op; | |
534 | tif->tif_rawcc = tif->tif_rawdatasize - occ; | |
535 | if (!TIFFFlushData1(tif)) | |
536 | return (-1); | |
537 | op = tif->tif_rawcp; | |
538 | occ = tif->tif_rawdatasize - tif->tif_rawcc; | |
539 | } | |
540 | mask = 0xff << shft; /* find next run */ | |
541 | for (beg = i; beg < npixels; beg += rc) { | |
542 | b = tp[beg] & mask; | |
543 | rc = 1; | |
544 | while (rc < 127+2 && beg+rc < npixels && | |
545 | (tp[beg+rc] & mask) == b) | |
546 | rc++; | |
547 | if (rc >= MINRUN) | |
548 | break; /* long enough */ | |
549 | } | |
550 | if (beg-i > 1 && beg-i < MINRUN) { | |
551 | b = tp[i] & mask; /* check short run */ | |
552 | j = i+1; | |
553 | while ((tp[j++] & mask) == b) | |
554 | if (j == beg) { | |
555 | *op++ = (tidataval_t)(128-2+j-i); | |
556 | *op++ = (tidataval_t)(b >> shft); | |
557 | occ -= 2; | |
558 | i = beg; | |
559 | break; | |
560 | } | |
561 | } | |
562 | while (i < beg) { /* write out non-run */ | |
563 | if ((j = beg-i) > 127) j = 127; | |
564 | if (occ < j+3) { | |
565 | tif->tif_rawcp = op; | |
566 | tif->tif_rawcc = tif->tif_rawdatasize - occ; | |
567 | if (!TIFFFlushData1(tif)) | |
568 | return (-1); | |
569 | op = tif->tif_rawcp; | |
570 | occ = tif->tif_rawdatasize - tif->tif_rawcc; | |
571 | } | |
572 | *op++ = (tidataval_t) j; occ--; | |
573 | while (j--) { | |
574 | *op++ = (tidataval_t)(tp[i++] >> shft & 0xff); | |
575 | occ--; | |
576 | } | |
577 | } | |
578 | if (rc >= MINRUN) { /* write out run */ | |
579 | *op++ = (tidataval_t) (128-2+rc); | |
580 | *op++ = (tidataval_t)(tp[beg] >> shft & 0xff); | |
581 | occ -= 2; | |
582 | } else | |
583 | rc = 0; | |
584 | } | |
585 | tif->tif_rawcp = op; | |
586 | tif->tif_rawcc = tif->tif_rawdatasize - occ; | |
587 | ||
588 | return (0); | |
589 | } | |
590 | ||
591 | /* | |
592 | * Encode a strip of pixels. We break it into rows to | |
593 | * avoid encoding runs across row boundaries. | |
594 | */ | |
595 | static int | |
596 | LogLuvEncodeStrip(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s) | |
597 | { | |
598 | tsize_t rowlen = TIFFScanlineSize(tif); | |
599 | ||
600 | assert(cc%rowlen == 0); | |
601 | while (cc && (*tif->tif_encoderow)(tif, bp, rowlen, s) == 0) | |
602 | bp += rowlen, cc -= rowlen; | |
603 | return (cc == 0); | |
604 | } | |
605 | ||
606 | /* | |
607 | * Encode a tile of pixels. We break it into rows to | |
608 | * avoid encoding runs across row boundaries. | |
609 | */ | |
610 | static int | |
611 | LogLuvEncodeTile(TIFF* tif, tidata_t bp, tsize_t cc, tsample_t s) | |
612 | { | |
613 | tsize_t rowlen = TIFFTileRowSize(tif); | |
614 | ||
615 | assert(cc%rowlen == 0); | |
616 | while (cc && (*tif->tif_encoderow)(tif, bp, rowlen, s) == 0) | |
617 | bp += rowlen, cc -= rowlen; | |
618 | return (cc == 0); | |
619 | } | |
620 | ||
621 | /* | |
622 | * Encode/Decode functions for converting to and from user formats. | |
623 | */ | |
624 | ||
625 | #include "uvcode.h" | |
626 | ||
627 | #ifndef UVSCALE | |
628 | #define U_NEU 0.210526316 | |
629 | #define V_NEU 0.473684211 | |
630 | #define UVSCALE 410. | |
631 | #endif | |
632 | ||
633 | #ifndef M_LN2 | |
634 | #define M_LN2 0.69314718055994530942 | |
635 | #endif | |
636 | #ifndef M_PI | |
637 | #define M_PI 3.14159265358979323846 | |
638 | #endif | |
639 | #define log2(x) ((1./M_LN2)*log(x)) | |
640 | #define exp2(x) exp(M_LN2*(x)) | |
641 | ||
642 | #define itrunc(x,m) ((m)==SGILOGENCODE_NODITHER ? \ | |
643 | (int)(x) : \ | |
644 | (int)((x) + rand()*(1./RAND_MAX) - .5)) | |
645 | ||
646 | #if !LOGLUV_PUBLIC | |
647 | static | |
648 | #endif | |
649 | double | |
650 | LogL16toY(int p16) /* compute luminance from 16-bit LogL */ | |
651 | { | |
652 | int Le = p16 & 0x7fff; | |
653 | double Y; | |
654 | ||
655 | if (!Le) | |
656 | return (0.); | |
657 | Y = exp(M_LN2/256.*(Le+.5) - M_LN2*64.); | |
658 | return (!(p16 & 0x8000) ? Y : -Y); | |
659 | } | |
660 | ||
661 | #if !LOGLUV_PUBLIC | |
662 | static | |
663 | #endif | |
664 | int | |
665 | LogL16fromY(double Y, int em) /* get 16-bit LogL from Y */ | |
666 | { | |
667 | if (Y >= 1.8371976e19) | |
668 | return (0x7fff); | |
669 | if (Y <= -1.8371976e19) | |
670 | return (0xffff); | |
671 | if (Y > 5.4136769e-20) | |
672 | return itrunc(256.*(log2(Y) + 64.), em); | |
673 | if (Y < -5.4136769e-20) | |
674 | return (~0x7fff | itrunc(256.*(log2(-Y) + 64.), em)); | |
675 | return (0); | |
676 | } | |
677 | ||
678 | static void | |
679 | L16toY(LogLuvState* sp, tidata_t op, int n) | |
680 | { | |
681 | int16* l16 = (int16*) sp->tbuf; | |
682 | float* yp = (float*) op; | |
683 | ||
684 | while (n-- > 0) | |
685 | *yp++ = (float)LogL16toY(*l16++); | |
686 | } | |
687 | ||
688 | static void | |
689 | L16toGry(LogLuvState* sp, tidata_t op, int n) | |
690 | { | |
691 | int16* l16 = (int16*) sp->tbuf; | |
692 | uint8* gp = (uint8*) op; | |
693 | ||
694 | while (n-- > 0) { | |
695 | double Y = LogL16toY(*l16++); | |
696 | *gp++ = (uint8) ((Y <= 0.) ? 0 : (Y >= 1.) ? 255 : (int)(256.*sqrt(Y))); | |
697 | } | |
698 | } | |
699 | ||
700 | static void | |
701 | L16fromY(LogLuvState* sp, tidata_t op, int n) | |
702 | { | |
703 | int16* l16 = (int16*) sp->tbuf; | |
704 | float* yp = (float*) op; | |
705 | ||
706 | while (n-- > 0) | |
707 | *l16++ = (int16) (LogL16fromY(*yp++, sp->encode_meth)); | |
708 | } | |
709 | ||
710 | #if !LOGLUV_PUBLIC | |
711 | static | |
712 | #endif | |
713 | void | |
714 | XYZtoRGB24(float xyz[3], uint8 rgb[3]) | |
715 | { | |
716 | double r, g, b; | |
717 | /* assume CCIR-709 primaries */ | |
718 | r = 2.690*xyz[0] + -1.276*xyz[1] + -0.414*xyz[2]; | |
719 | g = -1.022*xyz[0] + 1.978*xyz[1] + 0.044*xyz[2]; | |
720 | b = 0.061*xyz[0] + -0.224*xyz[1] + 1.163*xyz[2]; | |
721 | /* assume 2.0 gamma for speed */ | |
722 | /* could use integer sqrt approx., but this is probably faster */ | |
723 | rgb[0] = (uint8)((r<=0.) ? 0 : (r >= 1.) ? 255 : (int)(256.*sqrt(r))); | |
724 | rgb[1] = (uint8)((g<=0.) ? 0 : (g >= 1.) ? 255 : (int)(256.*sqrt(g))); | |
725 | rgb[2] = (uint8)((b<=0.) ? 0 : (b >= 1.) ? 255 : (int)(256.*sqrt(b))); | |
726 | } | |
727 | ||
728 | #if !LOGLUV_PUBLIC | |
729 | static | |
730 | #endif | |
731 | double | |
732 | LogL10toY(int p10) /* compute luminance from 10-bit LogL */ | |
733 | { | |
734 | if (p10 == 0) | |
735 | return (0.); | |
736 | return (exp(M_LN2/64.*(p10+.5) - M_LN2*12.)); | |
737 | } | |
738 | ||
739 | #if !LOGLUV_PUBLIC | |
740 | static | |
741 | #endif | |
742 | int | |
743 | LogL10fromY(double Y, int em) /* get 10-bit LogL from Y */ | |
744 | { | |
745 | if (Y >= 15.742) | |
746 | return (0x3ff); | |
747 | else if (Y <= .00024283) | |
748 | return (0); | |
749 | else | |
750 | return itrunc(64.*(log2(Y) + 12.), em); | |
751 | } | |
752 | ||
753 | #define NANGLES 100 | |
754 | #define uv2ang(u, v) ( (NANGLES*.499999999/M_PI) \ | |
755 | * atan2((v)-V_NEU,(u)-U_NEU) + .5*NANGLES ) | |
756 | ||
757 | static int | |
758 | oog_encode(double u, double v) /* encode out-of-gamut chroma */ | |
759 | { | |
760 | static int oog_table[NANGLES]; | |
761 | static int initialized = 0; | |
762 | register int i; | |
763 | ||
764 | if (!initialized) { /* set up perimeter table */ | |
765 | double eps[NANGLES], ua, va, ang, epsa; | |
766 | int ui, vi, ustep; | |
767 | for (i = NANGLES; i--; ) | |
768 | eps[i] = 2.; | |
769 | for (vi = UV_NVS; vi--; ) { | |
770 | va = UV_VSTART + (vi+.5)*UV_SQSIZ; | |
771 | ustep = uv_row[vi].nus-1; | |
772 | if (vi == UV_NVS-1 || vi == 0 || ustep <= 0) | |
773 | ustep = 1; | |
774 | for (ui = uv_row[vi].nus-1; ui >= 0; ui -= ustep) { | |
775 | ua = uv_row[vi].ustart + (ui+.5)*UV_SQSIZ; | |
776 | ang = uv2ang(ua, va); | |
777 | i = (int) ang; | |
778 | epsa = fabs(ang - (i+.5)); | |
779 | if (epsa < eps[i]) { | |
780 | oog_table[i] = uv_row[vi].ncum + ui; | |
781 | eps[i] = epsa; | |
782 | } | |
783 | } | |
784 | } | |
785 | for (i = NANGLES; i--; ) /* fill any holes */ | |
786 | if (eps[i] > 1.5) { | |
787 | int i1, i2; | |
788 | for (i1 = 1; i1 < NANGLES/2; i1++) | |
789 | if (eps[(i+i1)%NANGLES] < 1.5) | |
790 | break; | |
791 | for (i2 = 1; i2 < NANGLES/2; i2++) | |
792 | if (eps[(i+NANGLES-i2)%NANGLES] < 1.5) | |
793 | break; | |
794 | if (i1 < i2) | |
795 | oog_table[i] = | |
796 | oog_table[(i+i1)%NANGLES]; | |
797 | else | |
798 | oog_table[i] = | |
799 | oog_table[(i+NANGLES-i2)%NANGLES]; | |
800 | } | |
801 | initialized = 1; | |
802 | } | |
803 | i = (int) uv2ang(u, v); /* look up hue angle */ | |
804 | return (oog_table[i]); | |
805 | } | |
806 | ||
807 | #undef uv2ang | |
808 | #undef NANGLES | |
809 | ||
810 | #if !LOGLUV_PUBLIC | |
811 | static | |
812 | #endif | |
813 | int | |
814 | uv_encode(double u, double v, int em) /* encode (u',v') coordinates */ | |
815 | { | |
816 | register int vi, ui; | |
817 | ||
818 | if (v < UV_VSTART) | |
819 | return oog_encode(u, v); | |
820 | vi = itrunc((v - UV_VSTART)*(1./UV_SQSIZ), em); | |
821 | if (vi >= UV_NVS) | |
822 | return oog_encode(u, v); | |
823 | if (u < uv_row[vi].ustart) | |
824 | return oog_encode(u, v); | |
825 | ui = itrunc((u - uv_row[vi].ustart)*(1./UV_SQSIZ), em); | |
826 | if (ui >= uv_row[vi].nus) | |
827 | return oog_encode(u, v); | |
828 | ||
829 | return (uv_row[vi].ncum + ui); | |
830 | } | |
831 | ||
832 | #if !LOGLUV_PUBLIC | |
833 | static | |
834 | #endif | |
835 | int | |
836 | uv_decode(double *up, double *vp, int c) /* decode (u',v') index */ | |
837 | { | |
838 | int upper, lower; | |
839 | register int ui, vi; | |
840 | ||
841 | if (c < 0 || c >= UV_NDIVS) | |
842 | return (-1); | |
843 | lower = 0; /* binary search */ | |
844 | upper = UV_NVS; | |
845 | while (upper - lower > 1) { | |
846 | vi = (lower + upper) >> 1; | |
847 | ui = c - uv_row[vi].ncum; | |
848 | if (ui > 0) | |
849 | lower = vi; | |
850 | else if (ui < 0) | |
851 | upper = vi; | |
852 | else { | |
853 | lower = vi; | |
854 | break; | |
855 | } | |
856 | } | |
857 | vi = lower; | |
858 | ui = c - uv_row[vi].ncum; | |
859 | *up = uv_row[vi].ustart + (ui+.5)*UV_SQSIZ; | |
860 | *vp = UV_VSTART + (vi+.5)*UV_SQSIZ; | |
861 | return (0); | |
862 | } | |
863 | ||
864 | #if !LOGLUV_PUBLIC | |
865 | static | |
866 | #endif | |
867 | void | |
868 | LogLuv24toXYZ(uint32 p, float XYZ[3]) | |
869 | { | |
870 | int Ce; | |
871 | double L, u, v, s, x, y; | |
872 | /* decode luminance */ | |
873 | L = LogL10toY(p>>14 & 0x3ff); | |
874 | if (L <= 0.) { | |
875 | XYZ[0] = XYZ[1] = XYZ[2] = 0.; | |
876 | return; | |
877 | } | |
878 | /* decode color */ | |
879 | Ce = p & 0x3fff; | |
880 | if (uv_decode(&u, &v, Ce) < 0) { | |
881 | u = U_NEU; v = V_NEU; | |
882 | } | |
883 | s = 1./(6.*u - 16.*v + 12.); | |
884 | x = 9.*u * s; | |
885 | y = 4.*v * s; | |
886 | /* convert to XYZ */ | |
887 | XYZ[0] = (float)(x/y * L); | |
888 | XYZ[1] = (float)L; | |
889 | XYZ[2] = (float)((1.-x-y)/y * L); | |
890 | } | |
891 | ||
892 | #if !LOGLUV_PUBLIC | |
893 | static | |
894 | #endif | |
895 | uint32 | |
896 | LogLuv24fromXYZ(float XYZ[3], int em) | |
897 | { | |
898 | int Le, Ce; | |
899 | double u, v, s; | |
900 | /* encode luminance */ | |
901 | Le = LogL10fromY(XYZ[1], em); | |
902 | /* encode color */ | |
903 | s = XYZ[0] + 15.*XYZ[1] + 3.*XYZ[2]; | |
904 | if (!Le || s <= 0.) { | |
905 | u = U_NEU; | |
906 | v = V_NEU; | |
907 | } else { | |
908 | u = 4.*XYZ[0] / s; | |
909 | v = 9.*XYZ[1] / s; | |
910 | } | |
911 | Ce = uv_encode(u, v, em); | |
912 | if (Ce < 0) /* never happens */ | |
913 | Ce = uv_encode(U_NEU, V_NEU, SGILOGENCODE_NODITHER); | |
914 | /* combine encodings */ | |
915 | return (Le << 14 | Ce); | |
916 | } | |
917 | ||
918 | static void | |
919 | Luv24toXYZ(LogLuvState* sp, tidata_t op, int n) | |
920 | { | |
921 | uint32* luv = (uint32*) sp->tbuf; | |
922 | float* xyz = (float*) op; | |
923 | ||
924 | while (n-- > 0) { | |
925 | LogLuv24toXYZ(*luv, xyz); | |
926 | xyz += 3; | |
927 | luv++; | |
928 | } | |
929 | } | |
930 | ||
931 | static void | |
932 | Luv24toLuv48(LogLuvState* sp, tidata_t op, int n) | |
933 | { | |
934 | uint32* luv = (uint32*) sp->tbuf; | |
935 | int16* luv3 = (int16*) op; | |
936 | ||
937 | while (n-- > 0) { | |
938 | double u, v; | |
939 | ||
940 | *luv3++ = (int16)((*luv >> 12 & 0xffd) + 13314); | |
941 | if (uv_decode(&u, &v, *luv&0x3fff) < 0) { | |
942 | u = U_NEU; | |
943 | v = V_NEU; | |
944 | } | |
945 | *luv3++ = (int16)(u * (1L<<15)); | |
946 | *luv3++ = (int16)(v * (1L<<15)); | |
947 | luv++; | |
948 | } | |
949 | } | |
950 | ||
951 | static void | |
952 | Luv24toRGB(LogLuvState* sp, tidata_t op, int n) | |
953 | { | |
954 | uint32* luv = (uint32*) sp->tbuf; | |
955 | uint8* rgb = (uint8*) op; | |
956 | ||
957 | while (n-- > 0) { | |
958 | float xyz[3]; | |
959 | ||
960 | LogLuv24toXYZ(*luv++, xyz); | |
961 | XYZtoRGB24(xyz, rgb); | |
962 | rgb += 3; | |
963 | } | |
964 | } | |
965 | ||
966 | static void | |
967 | Luv24fromXYZ(LogLuvState* sp, tidata_t op, int n) | |
968 | { | |
969 | uint32* luv = (uint32*) sp->tbuf; | |
970 | float* xyz = (float*) op; | |
971 | ||
972 | while (n-- > 0) { | |
973 | *luv++ = LogLuv24fromXYZ(xyz, sp->encode_meth); | |
974 | xyz += 3; | |
975 | } | |
976 | } | |
977 | ||
978 | static void | |
979 | Luv24fromLuv48(LogLuvState* sp, tidata_t op, int n) | |
980 | { | |
981 | uint32* luv = (uint32*) sp->tbuf; | |
982 | int16* luv3 = (int16*) op; | |
983 | ||
984 | while (n-- > 0) { | |
985 | int Le, Ce; | |
986 | ||
987 | if (luv3[0] <= 0) | |
988 | Le = 0; | |
989 | else if (luv3[0] >= (1<<12)+3314) | |
990 | Le = (1<<10) - 1; | |
991 | else if (sp->encode_meth == SGILOGENCODE_NODITHER) | |
992 | Le = (luv3[0]-3314) >> 2; | |
993 | else | |
994 | Le = itrunc(.25*(luv3[0]-3314.), sp->encode_meth); | |
995 | ||
996 | Ce = uv_encode((luv3[1]+.5)/(1<<15), (luv3[2]+.5)/(1<<15), | |
997 | sp->encode_meth); | |
998 | if (Ce < 0) /* never happens */ | |
999 | Ce = uv_encode(U_NEU, V_NEU, SGILOGENCODE_NODITHER); | |
1000 | *luv++ = (uint32)Le << 14 | Ce; | |
1001 | luv3 += 3; | |
1002 | } | |
1003 | } | |
1004 | ||
1005 | #if !LOGLUV_PUBLIC | |
1006 | static | |
1007 | #endif | |
1008 | void | |
1009 | LogLuv32toXYZ(uint32 p, float XYZ[3]) | |
1010 | { | |
1011 | double L, u, v, s, x, y; | |
1012 | /* decode luminance */ | |
1013 | L = LogL16toY((int)p >> 16); | |
1014 | if (L <= 0.) { | |
1015 | XYZ[0] = XYZ[1] = XYZ[2] = 0.; | |
1016 | return; | |
1017 | } | |
1018 | /* decode color */ | |
1019 | u = 1./UVSCALE * ((p>>8 & 0xff) + .5); | |
1020 | v = 1./UVSCALE * ((p & 0xff) + .5); | |
1021 | s = 1./(6.*u - 16.*v + 12.); | |
1022 | x = 9.*u * s; | |
1023 | y = 4.*v * s; | |
1024 | /* convert to XYZ */ | |
1025 | XYZ[0] = (float)(x/y * L); | |
1026 | XYZ[1] = (float)L; | |
1027 | XYZ[2] = (float)((1.-x-y)/y * L); | |
1028 | } | |
1029 | ||
1030 | #if !LOGLUV_PUBLIC | |
1031 | static | |
1032 | #endif | |
1033 | uint32 | |
1034 | LogLuv32fromXYZ(float XYZ[3], int em) | |
1035 | { | |
1036 | unsigned int Le, ue, ve; | |
1037 | double u, v, s; | |
1038 | /* encode luminance */ | |
1039 | Le = (unsigned int)LogL16fromY(XYZ[1], em); | |
1040 | /* encode color */ | |
1041 | s = XYZ[0] + 15.*XYZ[1] + 3.*XYZ[2]; | |
1042 | if (!Le || s <= 0.) { | |
1043 | u = U_NEU; | |
1044 | v = V_NEU; | |
1045 | } else { | |
1046 | u = 4.*XYZ[0] / s; | |
1047 | v = 9.*XYZ[1] / s; | |
1048 | } | |
1049 | if (u <= 0.) ue = 0; | |
1050 | else ue = itrunc(UVSCALE*u, em); | |
1051 | if (ue > 255) ue = 255; | |
1052 | if (v <= 0.) ve = 0; | |
1053 | else ve = itrunc(UVSCALE*v, em); | |
1054 | if (ve > 255) ve = 255; | |
1055 | /* combine encodings */ | |
1056 | return (Le << 16 | ue << 8 | ve); | |
1057 | } | |
1058 | ||
1059 | static void | |
1060 | Luv32toXYZ(LogLuvState* sp, tidata_t op, int n) | |
1061 | { | |
1062 | uint32* luv = (uint32*) sp->tbuf; | |
1063 | float* xyz = (float*) op; | |
1064 | ||
1065 | while (n-- > 0) { | |
1066 | LogLuv32toXYZ(*luv++, xyz); | |
1067 | xyz += 3; | |
1068 | } | |
1069 | } | |
1070 | ||
1071 | static void | |
1072 | Luv32toLuv48(LogLuvState* sp, tidata_t op, int n) | |
1073 | { | |
1074 | uint32* luv = (uint32*) sp->tbuf; | |
1075 | int16* luv3 = (int16*) op; | |
1076 | ||
1077 | while (n-- > 0) { | |
1078 | double u, v; | |
1079 | ||
1080 | *luv3++ = (int16)(*luv >> 16); | |
1081 | u = 1./UVSCALE * ((*luv>>8 & 0xff) + .5); | |
1082 | v = 1./UVSCALE * ((*luv & 0xff) + .5); | |
1083 | *luv3++ = (int16)(u * (1L<<15)); | |
1084 | *luv3++ = (int16)(v * (1L<<15)); | |
1085 | luv++; | |
1086 | } | |
1087 | } | |
1088 | ||
1089 | static void | |
1090 | Luv32toRGB(LogLuvState* sp, tidata_t op, int n) | |
1091 | { | |
1092 | uint32* luv = (uint32*) sp->tbuf; | |
1093 | uint8* rgb = (uint8*) op; | |
1094 | ||
1095 | while (n-- > 0) { | |
1096 | float xyz[3]; | |
1097 | ||
1098 | LogLuv32toXYZ(*luv++, xyz); | |
1099 | XYZtoRGB24(xyz, rgb); | |
1100 | rgb += 3; | |
1101 | } | |
1102 | } | |
1103 | ||
1104 | static void | |
1105 | Luv32fromXYZ(LogLuvState* sp, tidata_t op, int n) | |
1106 | { | |
1107 | uint32* luv = (uint32*) sp->tbuf; | |
1108 | float* xyz = (float*) op; | |
1109 | ||
1110 | while (n-- > 0) { | |
1111 | *luv++ = LogLuv32fromXYZ(xyz, sp->encode_meth); | |
1112 | xyz += 3; | |
1113 | } | |
1114 | } | |
1115 | ||
1116 | static void | |
1117 | Luv32fromLuv48(LogLuvState* sp, tidata_t op, int n) | |
1118 | { | |
1119 | uint32* luv = (uint32*) sp->tbuf; | |
1120 | int16* luv3 = (int16*) op; | |
1121 | ||
1122 | if (sp->encode_meth == SGILOGENCODE_NODITHER) { | |
1123 | while (n-- > 0) { | |
1124 | *luv++ = (uint32)luv3[0] << 16 | | |
1125 | (luv3[1]*(uint32)(UVSCALE+.5) >> 7 & 0xff00) | | |
1126 | (luv3[2]*(uint32)(UVSCALE+.5) >> 15 & 0xff); | |
1127 | luv3 += 3; | |
1128 | } | |
1129 | return; | |
1130 | } | |
1131 | while (n-- > 0) { | |
1132 | *luv++ = (uint32)luv3[0] << 16 | | |
1133 | (itrunc(luv3[1]*(UVSCALE/(1<<15)), sp->encode_meth) << 8 & 0xff00) | | |
1134 | (itrunc(luv3[2]*(UVSCALE/(1<<15)), sp->encode_meth) & 0xff); | |
1135 | luv3 += 3; | |
1136 | } | |
1137 | } | |
1138 | ||
1139 | static void | |
1140 | _logLuvNop(LogLuvState* sp, tidata_t op, int n) | |
1141 | { | |
1142 | (void) sp; (void) op; (void) n; | |
1143 | } | |
1144 | ||
1145 | static int | |
1146 | LogL16GuessDataFmt(TIFFDirectory *td) | |
1147 | { | |
1148 | #define PACK(s,b,f) (((b)<<6)|((s)<<3)|(f)) | |
1149 | switch (PACK(td->td_samplesperpixel, td->td_bitspersample, td->td_sampleformat)) { | |
1150 | case PACK(1, 32, SAMPLEFORMAT_IEEEFP): | |
1151 | return (SGILOGDATAFMT_FLOAT); | |
1152 | case PACK(1, 16, SAMPLEFORMAT_VOID): | |
1153 | case PACK(1, 16, SAMPLEFORMAT_INT): | |
1154 | case PACK(1, 16, SAMPLEFORMAT_UINT): | |
1155 | return (SGILOGDATAFMT_16BIT); | |
1156 | case PACK(1, 8, SAMPLEFORMAT_VOID): | |
1157 | case PACK(1, 8, SAMPLEFORMAT_UINT): | |
1158 | return (SGILOGDATAFMT_8BIT); | |
1159 | } | |
1160 | #undef PACK | |
1161 | return (SGILOGDATAFMT_UNKNOWN); | |
1162 | } | |
1163 | ||
1164 | static uint32 | |
1165 | multiply(size_t m1, size_t m2) | |
1166 | { | |
1167 | uint32 bytes = m1 * m2; | |
1168 | ||
1169 | if (m1 && bytes / m1 != m2) | |
1170 | bytes = 0; | |
1171 | ||
1172 | return bytes; | |
1173 | } | |
1174 | ||
1175 | static int | |
1176 | LogL16InitState(TIFF* tif) | |
1177 | { | |
1178 | TIFFDirectory *td = &tif->tif_dir; | |
1179 | LogLuvState* sp = DecoderState(tif); | |
1180 | static const char module[] = "LogL16InitState"; | |
1181 | ||
1182 | assert(sp != NULL); | |
1183 | assert(td->td_photometric == PHOTOMETRIC_LOGL); | |
1184 | ||
1185 | /* for some reason, we can't do this in TIFFInitLogL16 */ | |
1186 | if (sp->user_datafmt == SGILOGDATAFMT_UNKNOWN) | |
1187 | sp->user_datafmt = LogL16GuessDataFmt(td); | |
1188 | switch (sp->user_datafmt) { | |
1189 | case SGILOGDATAFMT_FLOAT: | |
1190 | sp->pixel_size = sizeof (float); | |
1191 | break; | |
1192 | case SGILOGDATAFMT_16BIT: | |
1193 | sp->pixel_size = sizeof (int16); | |
1194 | break; | |
1195 | case SGILOGDATAFMT_8BIT: | |
1196 | sp->pixel_size = sizeof (uint8); | |
1197 | break; | |
1198 | default: | |
1199 | TIFFError(tif->tif_name, | |
1200 | "No support for converting user data format to LogL"); | |
1201 | return (0); | |
1202 | } | |
1203 | sp->tbuflen = multiply(td->td_imagewidth, td->td_rowsperstrip); | |
1204 | if (multiply(sp->tbuflen, sizeof (int16)) == 0 || | |
1205 | (sp->tbuf = (tidata_t*) _TIFFmalloc(sp->tbuflen * sizeof (int16))) == NULL) { | |
1206 | TIFFError(module, "%s: No space for SGILog translation buffer", | |
1207 | tif->tif_name); | |
1208 | return (0); | |
1209 | } | |
1210 | return (1); | |
1211 | } | |
1212 | ||
1213 | static int | |
1214 | LogLuvGuessDataFmt(TIFFDirectory *td) | |
1215 | { | |
1216 | int guess; | |
1217 | ||
1218 | /* | |
1219 | * If the user didn't tell us their datafmt, | |
1220 | * take our best guess from the bitspersample. | |
1221 | */ | |
1222 | #define PACK(a,b) (((a)<<3)|(b)) | |
1223 | switch (PACK(td->td_bitspersample, td->td_sampleformat)) { | |
1224 | case PACK(32, SAMPLEFORMAT_IEEEFP): | |
1225 | guess = SGILOGDATAFMT_FLOAT; | |
1226 | break; | |
1227 | case PACK(32, SAMPLEFORMAT_VOID): | |
1228 | case PACK(32, SAMPLEFORMAT_UINT): | |
1229 | case PACK(32, SAMPLEFORMAT_INT): | |
1230 | guess = SGILOGDATAFMT_RAW; | |
1231 | break; | |
1232 | case PACK(16, SAMPLEFORMAT_VOID): | |
1233 | case PACK(16, SAMPLEFORMAT_INT): | |
1234 | case PACK(16, SAMPLEFORMAT_UINT): | |
1235 | guess = SGILOGDATAFMT_16BIT; | |
1236 | break; | |
1237 | case PACK( 8, SAMPLEFORMAT_VOID): | |
1238 | case PACK( 8, SAMPLEFORMAT_UINT): | |
1239 | guess = SGILOGDATAFMT_8BIT; | |
1240 | break; | |
1241 | default: | |
1242 | guess = SGILOGDATAFMT_UNKNOWN; | |
1243 | break; | |
1244 | #undef PACK | |
1245 | } | |
1246 | /* | |
1247 | * Double-check samples per pixel. | |
1248 | */ | |
1249 | switch (td->td_samplesperpixel) { | |
1250 | case 1: | |
1251 | if (guess != SGILOGDATAFMT_RAW) | |
1252 | guess = SGILOGDATAFMT_UNKNOWN; | |
1253 | break; | |
1254 | case 3: | |
1255 | if (guess == SGILOGDATAFMT_RAW) | |
1256 | guess = SGILOGDATAFMT_UNKNOWN; | |
1257 | break; | |
1258 | default: | |
1259 | guess = SGILOGDATAFMT_UNKNOWN; | |
1260 | break; | |
1261 | } | |
1262 | return (guess); | |
1263 | } | |
1264 | ||
1265 | static int | |
1266 | LogLuvInitState(TIFF* tif) | |
1267 | { | |
1268 | TIFFDirectory* td = &tif->tif_dir; | |
1269 | LogLuvState* sp = DecoderState(tif); | |
1270 | static const char module[] = "LogLuvInitState"; | |
1271 | ||
1272 | assert(sp != NULL); | |
1273 | assert(td->td_photometric == PHOTOMETRIC_LOGLUV); | |
1274 | ||
1275 | /* for some reason, we can't do this in TIFFInitLogLuv */ | |
1276 | if (td->td_planarconfig != PLANARCONFIG_CONTIG) { | |
1277 | TIFFError(module, | |
1278 | "SGILog compression cannot handle non-contiguous data"); | |
1279 | return (0); | |
1280 | } | |
1281 | if (sp->user_datafmt == SGILOGDATAFMT_UNKNOWN) | |
1282 | sp->user_datafmt = LogLuvGuessDataFmt(td); | |
1283 | switch (sp->user_datafmt) { | |
1284 | case SGILOGDATAFMT_FLOAT: | |
1285 | sp->pixel_size = 3*sizeof (float); | |
1286 | break; | |
1287 | case SGILOGDATAFMT_16BIT: | |
1288 | sp->pixel_size = 3*sizeof (int16); | |
1289 | break; | |
1290 | case SGILOGDATAFMT_RAW: | |
1291 | sp->pixel_size = sizeof (uint32); | |
1292 | break; | |
1293 | case SGILOGDATAFMT_8BIT: | |
1294 | sp->pixel_size = 3*sizeof (uint8); | |
1295 | break; | |
1296 | default: | |
1297 | TIFFError(tif->tif_name, | |
1298 | "No support for converting user data format to LogLuv"); | |
1299 | return (0); | |
1300 | } | |
1301 | sp->tbuflen = multiply(td->td_imagewidth, td->td_rowsperstrip); | |
1302 | if (multiply(sp->tbuflen, sizeof (uint32)) == 0 || | |
1303 | (sp->tbuf = (tidata_t*) _TIFFmalloc(sp->tbuflen * sizeof (uint32))) == NULL) { | |
1304 | TIFFError(module, "%s: No space for SGILog translation buffer", | |
1305 | tif->tif_name); | |
1306 | return (0); | |
1307 | } | |
1308 | return (1); | |
1309 | } | |
1310 | ||
1311 | static int | |
1312 | LogLuvSetupDecode(TIFF* tif) | |
1313 | { | |
1314 | LogLuvState* sp = DecoderState(tif); | |
1315 | TIFFDirectory* td = &tif->tif_dir; | |
1316 | ||
1317 | tif->tif_postdecode = _TIFFNoPostDecode; | |
1318 | switch (td->td_photometric) { | |
1319 | case PHOTOMETRIC_LOGLUV: | |
1320 | if (!LogLuvInitState(tif)) | |
1321 | break; | |
1322 | if (td->td_compression == COMPRESSION_SGILOG24) { | |
1323 | tif->tif_decoderow = LogLuvDecode24; | |
1324 | switch (sp->user_datafmt) { | |
1325 | case SGILOGDATAFMT_FLOAT: | |
1326 | sp->tfunc = Luv24toXYZ; | |
1327 | break; | |
1328 | case SGILOGDATAFMT_16BIT: | |
1329 | sp->tfunc = Luv24toLuv48; | |
1330 | break; | |
1331 | case SGILOGDATAFMT_8BIT: | |
1332 | sp->tfunc = Luv24toRGB; | |
1333 | break; | |
1334 | } | |
1335 | } else { | |
1336 | tif->tif_decoderow = LogLuvDecode32; | |
1337 | switch (sp->user_datafmt) { | |
1338 | case SGILOGDATAFMT_FLOAT: | |
1339 | sp->tfunc = Luv32toXYZ; | |
1340 | break; | |
1341 | case SGILOGDATAFMT_16BIT: | |
1342 | sp->tfunc = Luv32toLuv48; | |
1343 | break; | |
1344 | case SGILOGDATAFMT_8BIT: | |
1345 | sp->tfunc = Luv32toRGB; | |
1346 | break; | |
1347 | } | |
1348 | } | |
1349 | return (1); | |
1350 | case PHOTOMETRIC_LOGL: | |
1351 | if (!LogL16InitState(tif)) | |
1352 | break; | |
1353 | tif->tif_decoderow = LogL16Decode; | |
1354 | switch (sp->user_datafmt) { | |
1355 | case SGILOGDATAFMT_FLOAT: | |
1356 | sp->tfunc = L16toY; | |
1357 | break; | |
1358 | case SGILOGDATAFMT_8BIT: | |
1359 | sp->tfunc = L16toGry; | |
1360 | break; | |
1361 | } | |
1362 | return (1); | |
1363 | default: | |
1364 | TIFFError(tif->tif_name, | |
1365 | "Inappropriate photometric interpretation %d for SGILog compression; %s", | |
1366 | td->td_photometric, "must be either LogLUV or LogL"); | |
1367 | break; | |
1368 | } | |
1369 | return (0); | |
1370 | } | |
1371 | ||
1372 | static int | |
1373 | LogLuvSetupEncode(TIFF* tif) | |
1374 | { | |
1375 | LogLuvState* sp = EncoderState(tif); | |
1376 | TIFFDirectory* td = &tif->tif_dir; | |
1377 | ||
1378 | switch (td->td_photometric) { | |
1379 | case PHOTOMETRIC_LOGLUV: | |
1380 | if (!LogLuvInitState(tif)) | |
1381 | break; | |
1382 | if (td->td_compression == COMPRESSION_SGILOG24) { | |
1383 | tif->tif_encoderow = LogLuvEncode24; | |
1384 | switch (sp->user_datafmt) { | |
1385 | case SGILOGDATAFMT_FLOAT: | |
1386 | sp->tfunc = Luv24fromXYZ; | |
1387 | break; | |
1388 | case SGILOGDATAFMT_16BIT: | |
1389 | sp->tfunc = Luv24fromLuv48; | |
1390 | break; | |
1391 | case SGILOGDATAFMT_RAW: | |
1392 | break; | |
1393 | default: | |
1394 | goto notsupported; | |
1395 | } | |
1396 | } else { | |
1397 | tif->tif_encoderow = LogLuvEncode32; | |
1398 | switch (sp->user_datafmt) { | |
1399 | case SGILOGDATAFMT_FLOAT: | |
1400 | sp->tfunc = Luv32fromXYZ; | |
1401 | break; | |
1402 | case SGILOGDATAFMT_16BIT: | |
1403 | sp->tfunc = Luv32fromLuv48; | |
1404 | break; | |
1405 | case SGILOGDATAFMT_RAW: | |
1406 | break; | |
1407 | default: | |
1408 | goto notsupported; | |
1409 | } | |
1410 | } | |
1411 | break; | |
1412 | case PHOTOMETRIC_LOGL: | |
1413 | if (!LogL16InitState(tif)) | |
1414 | break; | |
1415 | tif->tif_encoderow = LogL16Encode; | |
1416 | switch (sp->user_datafmt) { | |
1417 | case SGILOGDATAFMT_FLOAT: | |
1418 | sp->tfunc = L16fromY; | |
1419 | break; | |
1420 | case SGILOGDATAFMT_16BIT: | |
1421 | break; | |
1422 | default: | |
1423 | goto notsupported; | |
1424 | } | |
1425 | break; | |
1426 | default: | |
1427 | TIFFError(tif->tif_name, | |
1428 | "Inappropriate photometric interpretation %d for SGILog compression; %s", | |
1429 | td->td_photometric, "must be either LogLUV or LogL"); | |
1430 | break; | |
1431 | } | |
1432 | return (1); | |
1433 | notsupported: | |
1434 | TIFFError(tif->tif_name, | |
1435 | "SGILog compression supported only for %s, or raw data", | |
1436 | td->td_photometric == PHOTOMETRIC_LOGL ? "Y, L" : "XYZ, Luv"); | |
1437 | return (0); | |
1438 | } | |
1439 | ||
1440 | static void | |
1441 | LogLuvClose(TIFF* tif) | |
1442 | { | |
1443 | TIFFDirectory *td = &tif->tif_dir; | |
1444 | ||
1445 | /* | |
1446 | * For consistency, we always want to write out the same | |
1447 | * bitspersample and sampleformat for our TIFF file, | |
1448 | * regardless of the data format being used by the application. | |
1449 | * Since this routine is called after tags have been set but | |
1450 | * before they have been recorded in the file, we reset them here. | |
1451 | */ | |
1452 | td->td_samplesperpixel = | |
1453 | (td->td_photometric == PHOTOMETRIC_LOGL) ? 1 : 3; | |
1454 | td->td_bitspersample = 16; | |
1455 | td->td_sampleformat = SAMPLEFORMAT_INT; | |
1456 | } | |
1457 | ||
1458 | static void | |
1459 | LogLuvCleanup(TIFF* tif) | |
1460 | { | |
1461 | LogLuvState* sp = (LogLuvState *)tif->tif_data; | |
1462 | ||
1463 | if (sp) { | |
1464 | if (sp->tbuf) | |
1465 | _TIFFfree(sp->tbuf); | |
1466 | _TIFFfree(sp); | |
1467 | tif->tif_data = NULL; | |
1468 | } | |
1469 | } | |
1470 | ||
1471 | static int | |
1472 | LogLuvVSetField(TIFF* tif, ttag_t tag, va_list ap) | |
1473 | { | |
1474 | LogLuvState* sp = DecoderState(tif); | |
1475 | int bps, fmt; | |
1476 | ||
1477 | switch (tag) { | |
1478 | case TIFFTAG_SGILOGDATAFMT: | |
1479 | sp->user_datafmt = va_arg(ap, int); | |
1480 | /* | |
1481 | * Tweak the TIFF header so that the rest of libtiff knows what | |
1482 | * size of data will be passed between app and library, and | |
1483 | * assume that the app knows what it is doing and is not | |
1484 | * confused by these header manipulations... | |
1485 | */ | |
1486 | switch (sp->user_datafmt) { | |
1487 | case SGILOGDATAFMT_FLOAT: | |
1488 | bps = 32, fmt = SAMPLEFORMAT_IEEEFP; | |
1489 | break; | |
1490 | case SGILOGDATAFMT_16BIT: | |
1491 | bps = 16, fmt = SAMPLEFORMAT_INT; | |
1492 | break; | |
1493 | case SGILOGDATAFMT_RAW: | |
1494 | bps = 32, fmt = SAMPLEFORMAT_UINT; | |
1495 | TIFFSetField(tif, TIFFTAG_SAMPLESPERPIXEL, 1); | |
1496 | break; | |
1497 | case SGILOGDATAFMT_8BIT: | |
1498 | bps = 8, fmt = SAMPLEFORMAT_UINT; | |
1499 | break; | |
1500 | default: | |
1501 | TIFFError(tif->tif_name, | |
1502 | "Unknown data format %d for LogLuv compression", | |
1503 | sp->user_datafmt); | |
1504 | return (0); | |
1505 | } | |
1506 | TIFFSetField(tif, TIFFTAG_BITSPERSAMPLE, bps); | |
1507 | TIFFSetField(tif, TIFFTAG_SAMPLEFORMAT, fmt); | |
1508 | /* | |
1509 | * Must recalculate sizes should bits/sample change. | |
1510 | */ | |
1511 | tif->tif_tilesize = TIFFTileSize(tif); | |
1512 | tif->tif_scanlinesize = TIFFScanlineSize(tif); | |
1513 | return (1); | |
1514 | case TIFFTAG_SGILOGENCODE: | |
1515 | sp->encode_meth = va_arg(ap, int); | |
1516 | if (sp->encode_meth != SGILOGENCODE_NODITHER && | |
1517 | sp->encode_meth != SGILOGENCODE_RANDITHER) { | |
1518 | TIFFError(tif->tif_name, | |
1519 | "Unknown encoding %d for LogLuv compression", | |
1520 | sp->encode_meth); | |
1521 | return (0); | |
1522 | } | |
1523 | return (1); | |
1524 | default: | |
1525 | return (*sp->vsetparent)(tif, tag, ap); | |
1526 | } | |
1527 | } | |
1528 | ||
1529 | static int | |
1530 | LogLuvVGetField(TIFF* tif, ttag_t tag, va_list ap) | |
1531 | { | |
1532 | LogLuvState *sp = (LogLuvState *)tif->tif_data; | |
1533 | ||
1534 | switch (tag) { | |
1535 | case TIFFTAG_SGILOGDATAFMT: | |
1536 | *va_arg(ap, int*) = sp->user_datafmt; | |
1537 | return (1); | |
1538 | default: | |
1539 | return (*sp->vgetparent)(tif, tag, ap); | |
1540 | } | |
1541 | } | |
1542 | ||
1543 | static const TIFFFieldInfo LogLuvFieldInfo[] = { | |
1544 | { TIFFTAG_SGILOGDATAFMT, 0, 0, TIFF_SHORT, FIELD_PSEUDO, | |
1545 | TRUE, FALSE, "SGILogDataFmt"}, | |
1546 | { TIFFTAG_SGILOGENCODE, 0, 0, TIFF_SHORT, FIELD_PSEUDO, | |
1547 | TRUE, FALSE, "SGILogEncode"} | |
1548 | }; | |
1549 | ||
1550 | int | |
1551 | TIFFInitSGILog(TIFF* tif, int scheme) | |
1552 | { | |
1553 | static const char module[] = "TIFFInitSGILog"; | |
1554 | LogLuvState* sp; | |
1555 | ||
1556 | assert(scheme == COMPRESSION_SGILOG24 || scheme == COMPRESSION_SGILOG); | |
1557 | ||
1558 | /* | |
1559 | * Allocate state block so tag methods have storage to record values. | |
1560 | */ | |
1561 | tif->tif_data = (tidata_t) _TIFFmalloc(sizeof (LogLuvState)); | |
1562 | if (tif->tif_data == NULL) | |
1563 | goto bad; | |
1564 | sp = (LogLuvState*) tif->tif_data; | |
1565 | _TIFFmemset((tdata_t)sp, 0, sizeof (*sp)); | |
1566 | sp->user_datafmt = SGILOGDATAFMT_UNKNOWN; | |
1567 | sp->encode_meth = (scheme == COMPRESSION_SGILOG24) ? | |
1568 | SGILOGENCODE_RANDITHER : SGILOGENCODE_NODITHER; | |
1569 | sp->tfunc = _logLuvNop; | |
1570 | ||
1571 | /* | |
1572 | * Install codec methods. | |
1573 | * NB: tif_decoderow & tif_encoderow are filled | |
1574 | * in at setup time. | |
1575 | */ | |
1576 | tif->tif_setupdecode = LogLuvSetupDecode; | |
1577 | tif->tif_decodestrip = LogLuvDecodeStrip; | |
1578 | tif->tif_decodetile = LogLuvDecodeTile; | |
1579 | tif->tif_setupencode = LogLuvSetupEncode; | |
1580 | tif->tif_encodestrip = LogLuvEncodeStrip; | |
1581 | tif->tif_encodetile = LogLuvEncodeTile; | |
1582 | tif->tif_close = LogLuvClose; | |
1583 | tif->tif_cleanup = LogLuvCleanup; | |
1584 | ||
1585 | /* override SetField so we can handle our private pseudo-tag */ | |
1586 | _TIFFMergeFieldInfo(tif, LogLuvFieldInfo, N(LogLuvFieldInfo)); | |
1587 | sp->vgetparent = tif->tif_tagmethods.vgetfield; | |
1588 | tif->tif_tagmethods.vgetfield = LogLuvVGetField; /* hook for codec tags */ | |
1589 | sp->vsetparent = tif->tif_tagmethods.vsetfield; | |
1590 | tif->tif_tagmethods.vsetfield = LogLuvVSetField; /* hook for codec tags */ | |
1591 | ||
1592 | return (1); | |
1593 | bad: | |
1594 | TIFFError(module, "%s: No space for LogLuv state block", tif->tif_name); | |
1595 | return (0); | |
1596 | } | |
1597 | #endif /* LOGLUV_SUPPORT */ |