]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | Program wxLine.CPP | |
3 | Purpose Mainly used for calculating crossings | |
4 | Last Update 05-12-1995 | |
5 | */ | |
6 | ||
7 | #ifdef __GNUG__ | |
8 | #pragma implementation "liner.cpp" | |
9 | #endif | |
10 | ||
11 | // For compilers that support precompilation, includes "wx/wx.h". | |
12 | #include "wx/wxprec.h" | |
13 | ||
14 | #ifdef __BORLANDC__ | |
15 | #pragma hdrstop | |
16 | #endif | |
17 | ||
18 | #include <math.h> | |
19 | ||
20 | #include <stdlib.h> | |
21 | ||
22 | #include "wx/canvas/liner.h" | |
23 | ||
24 | wxLine::wxLine( double x1, double y1, double x2, double y2 ) | |
25 | { | |
26 | m_AA = 0.0; | |
27 | m_BB = 0.0; | |
28 | m_CC = 0.0; | |
29 | ||
30 | m_a=wxPoint2DDouble(x1,y1); | |
31 | m_b=wxPoint2DDouble(x2,y2); | |
32 | if (m_a==m_b) | |
33 | assert(0); | |
34 | ||
35 | m_valid_parameters = FALSE; | |
36 | } | |
37 | ||
38 | wxLine::~wxLine() | |
39 | { | |
40 | } | |
41 | ||
42 | wxLine::wxLine(const wxPoint2DDouble& a,const wxPoint2DDouble& b) | |
43 | { | |
44 | if (a==b) | |
45 | assert(0); | |
46 | ||
47 | m_a=a; | |
48 | m_b=b; | |
49 | m_valid_parameters = FALSE; | |
50 | } | |
51 | ||
52 | ||
53 | ||
54 | // ActionOnTable1 | |
55 | // This function decide which action must be taken, after PointInLine | |
56 | // has given the results of two points in relation to a wxLine. See table 1 in the report | |
57 | // | |
58 | // input Result_beginPoint: | |
59 | // Result_endPoint : | |
60 | // The results can be R_R_LEFT_SIDE, R_R_RIGHT_SIDE, R_R_ON_AREA, R_R_IN_AREA | |
61 | // | |
62 | // return -1: Illegal combination | |
63 | // 0: No action, no crosspoints | |
64 | // 1: Investigate results points in relation to the other wxLine | |
65 | // 2: endPoint is a crosspoint, no further investigation | |
66 | // 3: beginPoint is a crosspoint, no further investigation | |
67 | // 4: beginPoint and endPoint are crosspoints, no further investigation | |
68 | // 5: beginPoint is a crosspoint, need further investigation | |
69 | // 6: endPoint is a crosspoint, need further investigation | |
70 | int wxLine::ActionOnTable1(R_PointStatus Result_beginPoint, R_PointStatus Result_endPoint) | |
71 | { | |
72 | // beginPoint and endPoint are crosspoints | |
73 | if ( | |
74 | (Result_beginPoint == R_IN_AREA) | |
75 | && | |
76 | (Result_endPoint == R_IN_AREA) | |
77 | ) | |
78 | return 4; | |
79 | // there are no crosspoints, no action | |
80 | if ( | |
81 | ( | |
82 | (Result_beginPoint == R_LEFT_SIDE) | |
83 | && | |
84 | (Result_endPoint == R_LEFT_SIDE) | |
85 | ) | |
86 | || | |
87 | ( | |
88 | (Result_beginPoint == R_RIGHT_SIDE) | |
89 | && | |
90 | (Result_endPoint == R_RIGHT_SIDE) | |
91 | ) | |
92 | ) | |
93 | return 0; | |
94 | // maybe there is a crosspoint, further investigation needed | |
95 | if ( | |
96 | ( | |
97 | (Result_beginPoint == R_LEFT_SIDE) | |
98 | && | |
99 | ( | |
100 | (Result_endPoint == R_RIGHT_SIDE) | |
101 | || | |
102 | (Result_endPoint == R_ON_AREA) | |
103 | ) | |
104 | ) | |
105 | || | |
106 | ( | |
107 | (Result_beginPoint == R_RIGHT_SIDE) | |
108 | && | |
109 | ( | |
110 | (Result_endPoint == R_LEFT_SIDE) | |
111 | || | |
112 | (Result_endPoint == R_ON_AREA) | |
113 | ) | |
114 | ) | |
115 | || | |
116 | ( | |
117 | (Result_beginPoint == R_ON_AREA) | |
118 | && | |
119 | ( | |
120 | (Result_endPoint == R_LEFT_SIDE) | |
121 | || | |
122 | (Result_endPoint == R_RIGHT_SIDE) | |
123 | || | |
124 | (Result_endPoint == R_ON_AREA) | |
125 | ) | |
126 | ) | |
127 | ) | |
128 | return 1; | |
129 | //there is a crosspoint | |
130 | if ( | |
131 | ( | |
132 | (Result_beginPoint == R_LEFT_SIDE) | |
133 | || | |
134 | (Result_beginPoint == R_RIGHT_SIDE) | |
135 | ) | |
136 | && | |
137 | (Result_endPoint == R_IN_AREA) | |
138 | ) | |
139 | return 2; | |
140 | // there is a crosspoint | |
141 | if ( | |
142 | (Result_beginPoint == R_IN_AREA) | |
143 | && | |
144 | ( | |
145 | (Result_endPoint == R_LEFT_SIDE) | |
146 | || | |
147 | (Result_endPoint == R_RIGHT_SIDE) | |
148 | ) | |
149 | ) | |
150 | return 3; | |
151 | // beginPoint is a crosspoint, further investigation needed | |
152 | if ( | |
153 | (Result_beginPoint == R_IN_AREA) | |
154 | && | |
155 | (Result_endPoint == R_ON_AREA) | |
156 | ) | |
157 | return 5; | |
158 | // endPoint is a crosspoint, further investigation needed | |
159 | if ( | |
160 | (Result_beginPoint == R_ON_AREA) | |
161 | && | |
162 | (Result_endPoint == R_IN_AREA) | |
163 | ) | |
164 | return 6; | |
165 | // All other combinations are illegal | |
166 | return -1; | |
167 | } | |
168 | ||
169 | ||
170 | // ActionOnTable2 | |
171 | // This function decide which action must be taken, after PointInLine | |
172 | // has given the results of two points in relation to a wxLine. It can only give a | |
173 | // correct decision if first the relation of the points from the wxLine | |
174 | // are investigated in relation to the wxLine wich can be constucted from the points. | |
175 | // | |
176 | // input Result_beginPoint: | |
177 | // Result_endPoint : | |
178 | // The results can be R_LEFT_SIDE, R_RIGHT_SIDE, R_ON_AREA, R_IN_AREA | |
179 | // | |
180 | // return -1: Illegal combination | |
181 | // 0: No action, no crosspoints | |
182 | // 1: Calculate crosspoint | |
183 | // 2: endPoint is a crosspoint | |
184 | // 3: beginPoint is a crosspoint | |
185 | // 4: beginPoint and endPoint are crosspoints | |
186 | int wxLine::ActionOnTable2(R_PointStatus Result_beginPoint, R_PointStatus Result_endPoint) | |
187 | { | |
188 | // beginPoint and eindpoint are crosspoints | |
189 | if ( | |
190 | (Result_beginPoint == R_IN_AREA) | |
191 | && | |
192 | (Result_endPoint == R_IN_AREA) | |
193 | ) | |
194 | return 4; | |
195 | // there are no crosspoints | |
196 | if ( | |
197 | ( | |
198 | (Result_beginPoint == R_LEFT_SIDE) | |
199 | && | |
200 | ( | |
201 | (Result_endPoint == R_LEFT_SIDE) | |
202 | || | |
203 | (Result_endPoint == R_ON_AREA) | |
204 | ) | |
205 | ) | |
206 | || | |
207 | ( | |
208 | (Result_beginPoint == R_RIGHT_SIDE) | |
209 | && | |
210 | ( | |
211 | (Result_endPoint == R_RIGHT_SIDE) | |
212 | || | |
213 | (Result_endPoint == R_ON_AREA) | |
214 | ) | |
215 | ) | |
216 | || | |
217 | ( | |
218 | (Result_beginPoint == R_ON_AREA) | |
219 | && | |
220 | ( | |
221 | (Result_endPoint == R_LEFT_SIDE) | |
222 | || | |
223 | (Result_endPoint == R_RIGHT_SIDE) | |
224 | || | |
225 | (Result_endPoint == R_ON_AREA) | |
226 | ) | |
227 | ) | |
228 | ) | |
229 | return 0; | |
230 | // there is a real intersection, which must be calculated | |
231 | if ( | |
232 | ( | |
233 | (Result_beginPoint == R_LEFT_SIDE) | |
234 | && | |
235 | (Result_endPoint == R_RIGHT_SIDE) | |
236 | ) | |
237 | || | |
238 | ( | |
239 | (Result_beginPoint == R_RIGHT_SIDE) | |
240 | && | |
241 | (Result_endPoint == R_LEFT_SIDE) | |
242 | ) | |
243 | ) | |
244 | return 1; | |
245 | // endPoint is a crosspoint | |
246 | if ( | |
247 | ( | |
248 | (Result_beginPoint == R_LEFT_SIDE) | |
249 | || | |
250 | (Result_beginPoint == R_RIGHT_SIDE) | |
251 | || | |
252 | (Result_beginPoint == R_ON_AREA) | |
253 | ) | |
254 | && | |
255 | (Result_endPoint == R_IN_AREA) | |
256 | ) | |
257 | return 2; | |
258 | // beginPoint is a crosspoint | |
259 | if ( | |
260 | (Result_beginPoint == R_IN_AREA) | |
261 | && | |
262 | ( | |
263 | (Result_endPoint == R_LEFT_SIDE) | |
264 | || | |
265 | (Result_endPoint == R_RIGHT_SIDE) | |
266 | || | |
267 | (Result_endPoint == R_ON_AREA) | |
268 | ) | |
269 | ) | |
270 | return 3; | |
271 | // All other combinations are illegal | |
272 | return -1; | |
273 | } | |
274 | ||
275 | // Calculate the Y when the X is given | |
276 | double wxLine::Calculate_Y(double X) | |
277 | { | |
278 | CalculateLineParameters(); | |
279 | if (m_AA != 0) | |
280 | return -(m_AA * X + m_CC) / m_BB; | |
281 | else | |
282 | // horizontal wxLine | |
283 | return m_a.m_y; | |
284 | } | |
285 | ||
286 | void wxLine::Virtual_Point(wxPoint2DDouble& a_point,double distance) const | |
287 | { | |
288 | assert(m_valid_parameters); | |
289 | ||
290 | //calculate the distance using the slope of the wxLine | |
291 | //and rotate 90 degrees | |
292 | ||
293 | a_point.m_y=a_point.m_y + (distance * -m_BB); | |
294 | a_point.m_x=a_point.m_x - (distance * m_AA ); | |
295 | } | |
296 | ||
297 | ||
298 | ||
299 | // | |
300 | // Calculate the lineparameters for the wxLine if nessecary | |
301 | // | |
302 | void wxLine::CalculateLineParameters() | |
303 | { | |
304 | // if not valid_parameters calculate the parameters | |
305 | if (!m_valid_parameters) | |
306 | { | |
307 | double length; | |
308 | ||
309 | // bp AND ep may not be the same | |
310 | if (m_a == m_b) | |
311 | assert (0); | |
312 | ||
313 | m_AA = (m_b.m_y - m_a.m_y); // A = (Y2-Y1) | |
314 | m_BB = (m_a.m_x - m_b.m_x); // B = (X1-X2) | |
315 | ||
316 | // the parameters A end B can now be normalized | |
317 | length = sqrt(m_AA*m_AA + m_BB*m_BB); | |
318 | ||
319 | assert(length !=0); | |
320 | ||
321 | m_AA = (m_AA / length); | |
322 | m_BB = (m_BB / length); | |
323 | ||
324 | m_CC = -((m_AA * m_a.m_x) + (m_a.m_y * m_BB)); | |
325 | ||
326 | m_valid_parameters = TRUE; | |
327 | } | |
328 | } | |
329 | ||
330 | ||
331 | // Checks if a wxLine intersect with another wxLine | |
332 | // inout wxLine : another wxLine | |
333 | // Marge: optional, standard on MARGE (declared in MISC.CPP) | |
334 | // | |
335 | // return true : wxLines are crossing | |
336 | // false: wxLines are not crossing | |
337 | // | |
338 | bool wxLine::CheckIntersect (wxLine& lijn, double Marge) | |
339 | { | |
340 | double distance=0; | |
341 | ||
342 | // bp AND ep may not be the same | |
343 | if (m_a == m_b) | |
344 | assert (0); | |
345 | ||
346 | int Take_Action1, Take_Action2; | |
347 | bool Total_Result=FALSE; | |
348 | R_PointStatus Result_beginPoint,Result_endPoint; | |
349 | ||
350 | Result_beginPoint = PointInLine(lijn.m_a,distance,Marge); | |
351 | Result_endPoint = PointInLine(lijn.m_b,distance,Marge); | |
352 | Take_Action1 = ActionOnTable1(Result_beginPoint,Result_endPoint); | |
353 | switch (Take_Action1) | |
354 | { | |
355 | case 0: Total_Result = FALSE ; break; | |
356 | case 1: { | |
357 | Result_beginPoint = lijn.PointInLine(m_a,distance,Marge); | |
358 | Result_endPoint = lijn.PointInLine(m_b,distance,Marge); | |
359 | Take_Action2 = ActionOnTable2(Result_beginPoint,Result_endPoint); | |
360 | switch (Take_Action2) | |
361 | { | |
362 | case 0: Total_Result = FALSE; break; | |
363 | case 1: case 2: case 3: case 4: Total_Result = TRUE; break; | |
364 | } | |
365 | }; break; // This break belongs to the switch(Take_Action1) | |
366 | case 2: case 3: case 4: case 5: case 6: Total_Result = TRUE; break; | |
367 | } | |
368 | return Total_Result; //This is the final decision | |
369 | } | |
370 | ||
371 | ||
372 | // | |
373 | // Get the beginPoint from the wxLine | |
374 | // usage: Point aPoint = a_line.GetBeginPoint() | |
375 | // | |
376 | wxPoint2DDouble wxLine::GetBeginPoint() | |
377 | { | |
378 | return m_a; | |
379 | } | |
380 | ||
381 | ||
382 | // | |
383 | // Get the endPoint from the wxLine | |
384 | // usage: Point aPoint = a_line.GetEndPoint() | |
385 | // | |
386 | wxPoint2DDouble wxLine::GetEndPoint() | |
387 | { | |
388 | return m_b; | |
389 | } | |
390 | ||
391 | // Intersects two wxLines | |
392 | // input wxLine : another wxLine | |
393 | // Marge: optional, standard on MARGE | |
394 | // | |
395 | // return 0: If there are no crossings | |
396 | // 1: If there is one crossing | |
397 | // 2: If there are two crossings | |
398 | int wxLine::Intersect(wxLine& lijn, wxPoint2DDouble& c1 ,wxPoint2DDouble& c2 , double Marge) | |
399 | { | |
400 | double distance=0; | |
401 | ||
402 | // bp AND ep may not be the same | |
403 | if (m_a == m_b) | |
404 | assert (0); | |
405 | ||
406 | R_PointStatus Result_beginPoint,Result_endPoint; | |
407 | int Take_Action1, Take_Action2, Number_of_Crossings = 0; | |
408 | ||
409 | Result_beginPoint = PointInLine(lijn.m_a,distance,Marge); | |
410 | Result_endPoint = PointInLine(lijn.m_b,distance,Marge); | |
411 | ||
412 | Take_Action1 = ActionOnTable1(Result_beginPoint,Result_endPoint); | |
413 | // 0: No action, no crosspoints | |
414 | // 1: Investigate results points in relation to the other wxLine | |
415 | // 2: endPoint is a crosspoint, no further investigation | |
416 | // 3: beginPoint is a crosspoint, no further investigation | |
417 | // 4: beginPoint and endPoint are crosspoints, no further investigation | |
418 | // 5: beginPoint is a crosspoint, need further investigation | |
419 | // 6: endPoint is a crosspoint, need further investigation | |
420 | ||
421 | // The first switch will insert a crosspoint immediatly | |
422 | switch (Take_Action1) | |
423 | { | |
424 | case 2: case 6: c1=lijn.m_b; | |
425 | Number_of_Crossings = 1; | |
426 | break; | |
427 | case 3: case 5: c1=lijn.m_a; | |
428 | Number_of_Crossings = 1; | |
429 | break; | |
430 | case 4: c1=lijn.m_a; | |
431 | c2=lijn.m_b; | |
432 | Number_of_Crossings = 2; | |
433 | break; | |
434 | default: | |
435 | break; | |
436 | } | |
437 | ||
438 | // This switch wil investigate the points of this wxLine in relation to lijn | |
439 | // 1: Investigate results points in relation to the other wxLine | |
440 | // 5: beginPoint is a crosspoint, need further investigation | |
441 | // 6: endPoint is a crosspoint, need further investigation | |
442 | switch (Take_Action1) | |
443 | { | |
444 | case 1: case 5: case 6: | |
445 | { | |
446 | Result_beginPoint = lijn.PointInLine(m_a,distance,Marge); | |
447 | Result_endPoint = lijn.PointInLine(m_b,distance,Marge); | |
448 | Take_Action2 = ActionOnTable2(Result_beginPoint,Result_endPoint); | |
449 | // return -1: Illegal combination | |
450 | // 0: No action, no crosspoints | |
451 | // 1: Calculate crosspoint | |
452 | // 2: endPoint is a crosspoint | |
453 | // 3: beginPoint is a crosspoint | |
454 | // 4: beginPoint and endPoint are crosspoints | |
455 | switch (Take_Action2) | |
456 | { | |
457 | // for the cases see the returnvalue of ActionTable2 | |
458 | case 1: { // begin of scope to calculate the intersection | |
459 | double X, Y, Denominator; | |
460 | CalculateLineParameters(); | |
461 | Denominator = (m_AA * lijn.m_BB) - (lijn.m_AA * m_BB); | |
462 | // Denominator may not be 0 | |
463 | assert(Denominator != 0.0); | |
464 | // Calculate intersection of both linesegments | |
465 | X = ((m_BB * lijn.m_CC) - (lijn.m_BB * m_CC)) / Denominator; | |
466 | Y = ((lijn.m_AA * m_CC) - (m_AA * lijn.m_CC)) / Denominator; | |
467 | ||
468 | c1.m_x=X; | |
469 | c1.m_y=Y; | |
470 | } | |
471 | Number_of_Crossings++; | |
472 | break; | |
473 | case 2: c2=m_a; | |
474 | Number_of_Crossings++; | |
475 | break; | |
476 | case 3: c2=m_b; | |
477 | Number_of_Crossings++; | |
478 | break; | |
479 | case 4: c1=m_a; | |
480 | c2=m_b; | |
481 | Number_of_Crossings = 2; | |
482 | break; | |
483 | } | |
484 | }; | |
485 | break; | |
486 | default: | |
487 | break; | |
488 | } | |
489 | return Number_of_Crossings; //This is de final number of crossings | |
490 | } | |
491 | ||
492 | // | |
493 | // test if a point lies in the linesegment. If the point isn't on the wxLine | |
494 | // the function returns a value that indicates on which side of the | |
495 | // wxLine the point is (in linedirection from first point to second point | |
496 | // | |
497 | // returns R_LEFT_SIDE, when point lies on the left side of the wxLine | |
498 | // R_RIGHT_SIDE, when point lies on the right side of the wxLine | |
499 | // R_ON_AREA, when point lies on the infinite wxLine within a range | |
500 | // R_IN_AREA, when point lies in the area of the linesegment | |
501 | // the returnvalues are declared in (wxLine.H) | |
502 | R_PointStatus wxLine::PointInLine(const wxPoint2DDouble& a_Point, double& Distance,double Marge) | |
503 | { | |
504 | Distance=0; | |
505 | ||
506 | // Point may not be the same | |
507 | assert(m_a != m_b); | |
508 | ||
509 | int Result_ofm_BBox=FALSE; | |
510 | R_PointStatus Result_of_Online; | |
511 | ||
512 | //quick test if point is begin or endpoint | |
513 | if (a_Point == m_a || a_Point == m_b) | |
514 | return R_IN_AREA; | |
515 | ||
516 | // Checking if point is in bounding-box with marge | |
517 | double xmin=wxMin(m_a.m_x,m_b.m_x); | |
518 | double xmax=wxMax(m_a.m_x,m_b.m_x); | |
519 | double ymin=wxMin(m_a.m_y,m_b.m_y); | |
520 | double ymax=wxMax(m_a.m_y,m_b.m_y); | |
521 | ||
522 | if ( a_Point.m_x >= (xmin - Marge) && a_Point.m_x <= (xmax + Marge) && | |
523 | a_Point.m_y >= (ymin - Marge) && a_Point.m_y <= (ymax + Marge) ) | |
524 | Result_ofm_BBox=TRUE; | |
525 | ||
526 | // Checking if point is on the infinite wxLine | |
527 | Result_of_Online = PointOnLine(a_Point, Distance, Marge); | |
528 | ||
529 | // point in boundingbox of the wxLine and is on the wxLine then the point is R_IN_AREA | |
530 | if ((Result_ofm_BBox) && (Result_of_Online == R_ON_AREA)) | |
531 | return R_IN_AREA; | |
532 | else | |
533 | return Result_of_Online; | |
534 | } | |
535 | ||
536 | ||
537 | // | |
538 | // test if a point lies on the wxLine. If the point isn't on the wxLine | |
539 | // the function returns a value that indicates on which side of the | |
540 | // wxLine the point is (in linedirection from first point to second point | |
541 | // | |
542 | // returns R_LEFT_SIDE, when point lies on the left side of the wxLine | |
543 | // R_ON_AREA, when point lies on the infinite wxLine within a range | |
544 | // R_RIGHT_SIDE, when point lies on the right side of the wxLine | |
545 | // R_LEFT_SIDE , R_RIGHT_SIDE , R_ON_AREA | |
546 | R_PointStatus wxLine::PointOnLine(const wxPoint2DDouble& a_Point, double& Distance, double Marge) | |
547 | { | |
548 | Distance=0; | |
549 | // Point may not be queal | |
550 | assert(m_a!=m_b); | |
551 | ||
552 | //quick test if point is begin or endpoint | |
553 | if (a_Point == m_a || a_Point == m_b) | |
554 | return R_ON_AREA; | |
555 | ||
556 | CalculateLineParameters(); | |
557 | // calculate the distance of a_Point in relation to the wxLine | |
558 | Distance = (m_AA * a_Point.m_x)+(m_BB * a_Point.m_y) + m_CC; | |
559 | ||
560 | if (Distance < -Marge) | |
561 | return R_LEFT_SIDE; | |
562 | else | |
563 | { | |
564 | if (Distance > Marge) | |
565 | return R_RIGHT_SIDE; | |
566 | else | |
567 | return R_ON_AREA; | |
568 | } | |
569 | } | |
570 | ||
571 | // makes a wxLine same as these | |
572 | // usage : wxLine1 = wxLine2; | |
573 | wxLine& wxLine::operator=(const wxLine& a_line) | |
574 | { | |
575 | m_AA = a_line.m_AA; | |
576 | m_BB = a_line.m_BB; | |
577 | m_CC = a_line.m_CC; | |
578 | ||
579 | m_a= a_line.m_a; | |
580 | m_b= a_line.m_b; | |
581 | m_valid_parameters = a_line.m_valid_parameters; | |
582 | return *this; | |
583 | } | |
584 | ||
585 | void wxLine::OffsetContour(const wxLine& nextline,double factor,wxPoint2DDouble& offsetpoint) const | |
586 | { | |
587 | wxPoint2DDouble offs_begin(m_a); | |
588 | wxPoint2DDouble offs_end(m_b); | |
589 | ||
590 | wxPoint2DDouble offs_bgn_next(nextline.m_a); | |
591 | wxPoint2DDouble offs_end_next(nextline.m_b); | |
592 | // make a wxPoint2DDouble from this point | |
593 | ||
594 | Virtual_Point(offs_begin,factor); | |
595 | Virtual_Point(offs_end,factor); | |
596 | wxLine offs_currentline(offs_begin,offs_end); | |
597 | ||
598 | nextline.Virtual_Point(offs_bgn_next,factor); | |
599 | nextline.Virtual_Point(offs_end_next,factor); | |
600 | wxLine offs_nextline(offs_bgn_next, offs_end_next); | |
601 | ||
602 | offs_nextline.CalculateLineParameters(); | |
603 | offs_currentline.CalculateLineParameters(); | |
604 | offs_currentline.Intersect(offs_nextline,offsetpoint); | |
605 | } | |
606 | ||
607 | // Return the position of the second wxLine compared to this wxLine | |
608 | // Result = IS_ON | IS_LEFT | IS_RIGHT | |
609 | // Here Left and Right is defined as being left or right from | |
610 | // the this wxLine towards the center (common) node | |
611 | // direction of vetors taken as begin to endpoint with end of this at | |
612 | // begin of wxLine two | |
613 | OUTPRODUCT wxLine::OutProduct(const wxLine& two,double accur) | |
614 | { | |
615 | R_PointStatus uitp; | |
616 | double distance; | |
617 | if (two.m_a==two.m_b) | |
618 | assert(0); | |
619 | if (m_a==m_b) | |
620 | assert(0); | |
621 | ||
622 | uitp=PointOnLine(two.m_b, distance, accur); | |
623 | ||
624 | ||
625 | /*double uitp= (_x - first._x) * (third._y - _y) - | |
626 | (_y - first._y) * (third._x - _x); | |
627 | if (uitp>0) return IS_LEFT; | |
628 | if (uitp<0) return IS_RIGHT; | |
629 | return IS_ON;*/ | |
630 | ||
631 | //depending on direction of this link (going to or coming from centre) | |
632 | if (uitp==R_LEFT_SIDE) | |
633 | return R_IS_LEFT; | |
634 | if (uitp==R_RIGHT_SIDE) | |
635 | return R_IS_RIGHT; | |
636 | return R_IS_ON; | |
637 | } | |
638 | ||
639 | // Intersects two lines if a crossing return TRUE | |
640 | // else FALSE | |
641 | bool wxLine::Intersect(wxLine& lijn,wxPoint2DDouble& crossing) | |
642 | { | |
643 | // lijn must exist | |
644 | assert(m_valid_parameters); | |
645 | assert(lijn.m_valid_parameters); | |
646 | ||
647 | double X, Y, Denominator; | |
648 | Denominator = (m_AA * lijn.m_BB) - (lijn.m_AA * m_BB); | |
649 | // Denominator may not be 0 | |
650 | if (Denominator == 0.0) | |
651 | return FALSE; | |
652 | // Calculate intersection of both linesegments | |
653 | X = ((m_BB * lijn.m_CC) - (lijn.m_BB * m_CC)) / Denominator; | |
654 | Y = ((lijn.m_AA * m_CC) - (m_AA * lijn.m_CC)) / Denominator; | |
655 | ||
656 | crossing.m_x=X; | |
657 | crossing.m_y=Y; | |
658 | return TRUE; | |
659 | } | |
660 |