]>
Commit | Line | Data |
---|---|---|
1 | /////////////////////////////////////////////////////////////////////////////// | |
2 | // Name: src/common/matrix.cpp | |
3 | // Purpose: wxTransformMatrix class | |
4 | // Author: Chris Breeze, Julian Smart | |
5 | // Modified by: Klaas Holwerda | |
6 | // Created: 01/02/97 | |
7 | // RCS-ID: $Id$ | |
8 | // Copyright: (c) Julian Smart | |
9 | // Licence: wxWindows licence | |
10 | /////////////////////////////////////////////////////////////////////////////// | |
11 | ||
12 | // Note: this is intended to be used in wxDC at some point to replace | |
13 | // the current system of scaling/translation. It is not yet used. | |
14 | ||
15 | // For compilers that support precompilation, includes "wx.h". | |
16 | #include "wx/wxprec.h" | |
17 | ||
18 | #ifdef __BORLANDC__ | |
19 | #pragma hdrstop | |
20 | #endif | |
21 | ||
22 | #include "wx/matrix.h" | |
23 | ||
24 | #ifndef WX_PRECOMP | |
25 | #include "wx/math.h" | |
26 | #endif | |
27 | ||
28 | static const double pi = M_PI; | |
29 | ||
30 | wxTransformMatrix::wxTransformMatrix(void) | |
31 | { | |
32 | m_isIdentity = false; | |
33 | ||
34 | Identity(); | |
35 | } | |
36 | ||
37 | wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat) | |
38 | : wxObject() | |
39 | { | |
40 | (*this) = mat; | |
41 | } | |
42 | ||
43 | double wxTransformMatrix::GetValue(int col, int row) const | |
44 | { | |
45 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
46 | return 0.0; | |
47 | ||
48 | return m_matrix[col][row]; | |
49 | } | |
50 | ||
51 | void wxTransformMatrix::SetValue(int col, int row, double value) | |
52 | { | |
53 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
54 | return; | |
55 | ||
56 | m_matrix[col][row] = value; | |
57 | m_isIdentity = IsIdentity1(); | |
58 | } | |
59 | ||
60 | void wxTransformMatrix::operator = (const wxTransformMatrix& mat) | |
61 | { | |
62 | int i, j; | |
63 | for (i = 0; i < 3; i++) | |
64 | { | |
65 | for (j = 0; j < 3; j++) | |
66 | { | |
67 | m_matrix[i][j] = mat.m_matrix[i][j]; | |
68 | } | |
69 | } | |
70 | m_isIdentity = mat.m_isIdentity; | |
71 | } | |
72 | ||
73 | bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) const | |
74 | { | |
75 | if (m_isIdentity && mat.m_isIdentity) | |
76 | return true; | |
77 | ||
78 | int i, j; | |
79 | for (i = 0; i < 3; i++) | |
80 | { | |
81 | for (j = 0; j < 3; j++) | |
82 | { | |
83 | if ( !wxIsSameDouble(m_matrix[i][j], mat.m_matrix[i][j]) ) | |
84 | return false; | |
85 | } | |
86 | } | |
87 | return true; | |
88 | } | |
89 | ||
90 | bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) const | |
91 | { | |
92 | return (! ((*this) == mat)); | |
93 | } | |
94 | ||
95 | double& wxTransformMatrix::operator()(int col, int row) | |
96 | { | |
97 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
98 | return m_matrix[0][0]; | |
99 | ||
100 | return m_matrix[col][row]; | |
101 | } | |
102 | ||
103 | double wxTransformMatrix::operator()(int col, int row) const | |
104 | { | |
105 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
106 | return 0.0; | |
107 | ||
108 | return m_matrix[col][row]; | |
109 | } | |
110 | ||
111 | // Invert matrix | |
112 | bool wxTransformMatrix::Invert(void) | |
113 | { | |
114 | double inverseMatrix[3][3]; | |
115 | ||
116 | // calculate the adjoint | |
117 | inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]); | |
118 | inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]); | |
119 | inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]); | |
120 | ||
121 | inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]); | |
122 | inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]); | |
123 | inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]); | |
124 | ||
125 | inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]); | |
126 | inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]); | |
127 | inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]); | |
128 | ||
129 | // now divide by the determinant | |
130 | double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0]; | |
131 | if ( wxIsNullDouble(det) ) | |
132 | return false; | |
133 | ||
134 | inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det; | |
135 | inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det; | |
136 | inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det; | |
137 | ||
138 | for (int i = 0; i < 3; i++) | |
139 | { | |
140 | for (int j = 0; j < 3; j++) | |
141 | { | |
142 | m_matrix[i][j] = inverseMatrix[i][j]; | |
143 | } | |
144 | } | |
145 | m_isIdentity = IsIdentity1(); | |
146 | return true; | |
147 | } | |
148 | ||
149 | // Make into identity matrix | |
150 | bool wxTransformMatrix::Identity(void) | |
151 | { | |
152 | m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0; | |
153 | m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0; | |
154 | m_isIdentity = true; | |
155 | ||
156 | return true; | |
157 | } | |
158 | ||
159 | // Scale by scale (isotropic scaling i.e. the same in x and y): | |
160 | // | scale 0 0 | | |
161 | // matrix' = | 0 scale 0 | x matrix | |
162 | // | 0 0 scale | | |
163 | // | |
164 | bool wxTransformMatrix::Scale(double scale) | |
165 | { | |
166 | int i, j; | |
167 | for (i = 0; i < 3; i++) | |
168 | { | |
169 | for (j = 0; j < 3; j++) | |
170 | { | |
171 | m_matrix[i][j] *= scale; | |
172 | } | |
173 | } | |
174 | m_isIdentity = IsIdentity1(); | |
175 | ||
176 | return true; | |
177 | } | |
178 | ||
179 | ||
180 | // scale a matrix in 2D | |
181 | // | |
182 | // xs 0 xc(1-xs) | |
183 | // 0 ys yc(1-ys) | |
184 | // 0 0 1 | |
185 | // | |
186 | wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc) | |
187 | { | |
188 | double r00,r10,r20,r01,r11,r21; | |
189 | ||
190 | if (m_isIdentity) | |
191 | { | |
192 | double tx = xc*(1-xs); | |
193 | double ty = yc*(1-ys); | |
194 | r00 = xs; | |
195 | r10 = 0; | |
196 | r20 = tx; | |
197 | r01 = 0; | |
198 | r11 = ys; | |
199 | r21 = ty; | |
200 | } | |
201 | else if ( !wxIsNullDouble(xc) || !wxIsNullDouble(yc) ) | |
202 | { | |
203 | double tx = xc*(1-xs); | |
204 | double ty = yc*(1-ys); | |
205 | r00 = xs * m_matrix[0][0]; | |
206 | r10 = xs * m_matrix[1][0]; | |
207 | r20 = xs * m_matrix[2][0] + tx; | |
208 | r01 = ys * m_matrix[0][1]; | |
209 | r11 = ys * m_matrix[1][1]; | |
210 | r21 = ys * m_matrix[2][1] + ty; | |
211 | } | |
212 | else | |
213 | { | |
214 | r00 = xs * m_matrix[0][0]; | |
215 | r10 = xs * m_matrix[1][0]; | |
216 | r20 = xs * m_matrix[2][0]; | |
217 | r01 = ys * m_matrix[0][1]; | |
218 | r11 = ys * m_matrix[1][1]; | |
219 | r21 = ys * m_matrix[2][1]; | |
220 | } | |
221 | ||
222 | m_matrix[0][0] = r00; | |
223 | m_matrix[1][0] = r10; | |
224 | m_matrix[2][0] = r20; | |
225 | m_matrix[0][1] = r01; | |
226 | m_matrix[1][1] = r11; | |
227 | m_matrix[2][1] = r21; | |
228 | ||
229 | /* or like this | |
230 | // first translate to origin O | |
231 | (*this).Translate(-x_cen, -y_cen); | |
232 | ||
233 | // now do the scaling | |
234 | wxTransformMatrix scale; | |
235 | scale.m_matrix[0][0] = x_fac; | |
236 | scale.m_matrix[1][1] = y_fac; | |
237 | scale.m_isIdentity = IsIdentity1(); | |
238 | ||
239 | *this = scale * (*this); | |
240 | ||
241 | // translate back from origin to x_cen, y_cen | |
242 | (*this).Translate(x_cen, y_cen); | |
243 | */ | |
244 | ||
245 | m_isIdentity = IsIdentity1(); | |
246 | ||
247 | return *this; | |
248 | } | |
249 | ||
250 | ||
251 | // mirror a matrix in x, y | |
252 | // | |
253 | // -1 0 0 Y-mirror | |
254 | // 0 -1 0 X-mirror | |
255 | // 0 0 -1 Z-mirror | |
256 | wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y) | |
257 | { | |
258 | wxTransformMatrix temp; | |
259 | if (x) | |
260 | { | |
261 | temp.m_matrix[1][1] = -1; | |
262 | temp.m_isIdentity=false; | |
263 | } | |
264 | if (y) | |
265 | { | |
266 | temp.m_matrix[0][0] = -1; | |
267 | temp.m_isIdentity=false; | |
268 | } | |
269 | ||
270 | *this = temp * (*this); | |
271 | m_isIdentity = IsIdentity1(); | |
272 | return *this; | |
273 | } | |
274 | ||
275 | // Translate by dx, dy: | |
276 | // | 1 0 dx | | |
277 | // matrix' = | 0 1 dy | x matrix | |
278 | // | 0 0 1 | | |
279 | // | |
280 | bool wxTransformMatrix::Translate(double dx, double dy) | |
281 | { | |
282 | int i; | |
283 | for (i = 0; i < 3; i++) | |
284 | m_matrix[i][0] += dx * m_matrix[i][2]; | |
285 | for (i = 0; i < 3; i++) | |
286 | m_matrix[i][1] += dy * m_matrix[i][2]; | |
287 | ||
288 | m_isIdentity = IsIdentity1(); | |
289 | ||
290 | return true; | |
291 | } | |
292 | ||
293 | // Rotate clockwise by the given number of degrees: | |
294 | // | cos sin 0 | | |
295 | // matrix' = | -sin cos 0 | x matrix | |
296 | // | 0 0 1 | | |
297 | bool wxTransformMatrix::Rotate(double degrees) | |
298 | { | |
299 | Rotate(-degrees,0,0); | |
300 | return true; | |
301 | } | |
302 | ||
303 | // counter clockwise rotate around a point | |
304 | // | |
305 | // cos(r) -sin(r) x(1-cos(r))+y(sin(r) | |
306 | // sin(r) cos(r) y(1-cos(r))-x(sin(r) | |
307 | // 0 0 1 | |
308 | wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y) | |
309 | { | |
310 | double angle = degrees * pi / 180.0; | |
311 | double c = cos(angle); | |
312 | double s = sin(angle); | |
313 | double r00,r10,r20,r01,r11,r21; | |
314 | ||
315 | if (m_isIdentity) | |
316 | { | |
317 | double tx = x*(1-c)+y*s; | |
318 | double ty = y*(1-c)-x*s; | |
319 | r00 = c ; | |
320 | r10 = -s; | |
321 | r20 = tx; | |
322 | r01 = s; | |
323 | r11 = c; | |
324 | r21 = ty; | |
325 | } | |
326 | else if ( !wxIsNullDouble(x) || !wxIsNullDouble(y) ) | |
327 | { | |
328 | double tx = x*(1-c)+y*s; | |
329 | double ty = y*(1-c)-x*s; | |
330 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2]; | |
331 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2]; | |
332 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2]; | |
333 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2]; | |
334 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2]; | |
335 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2]; | |
336 | } | |
337 | else | |
338 | { | |
339 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1]; | |
340 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1]; | |
341 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1]; | |
342 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0]; | |
343 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0]; | |
344 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0]; | |
345 | } | |
346 | ||
347 | m_matrix[0][0] = r00; | |
348 | m_matrix[1][0] = r10; | |
349 | m_matrix[2][0] = r20; | |
350 | m_matrix[0][1] = r01; | |
351 | m_matrix[1][1] = r11; | |
352 | m_matrix[2][1] = r21; | |
353 | ||
354 | /* or like this | |
355 | wxTransformMatrix rotate; | |
356 | rotate.m_matrix[2][0] = tx; | |
357 | rotate.m_matrix[2][1] = ty; | |
358 | ||
359 | rotate.m_matrix[0][0] = c; | |
360 | rotate.m_matrix[0][1] = s; | |
361 | ||
362 | rotate.m_matrix[1][0] = -s; | |
363 | rotate.m_matrix[1][1] = c; | |
364 | ||
365 | rotate.m_isIdentity=false; | |
366 | *this = rotate * (*this); | |
367 | */ | |
368 | m_isIdentity = IsIdentity1(); | |
369 | ||
370 | return *this; | |
371 | } | |
372 | ||
373 | // Transform a point from logical to device coordinates | |
374 | bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const | |
375 | { | |
376 | if (IsIdentity()) | |
377 | { | |
378 | tx = x; ty = y; return true; | |
379 | } | |
380 | ||
381 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]; | |
382 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]; | |
383 | ||
384 | return true; | |
385 | } | |
386 | ||
387 | // Transform a point from device to logical coordinates. | |
388 | ||
389 | // Example of use: | |
390 | // wxTransformMatrix mat = dc.GetTransformation(); | |
391 | // mat.Invert(); | |
392 | // mat.InverseTransformPoint(x, y, x1, y1); | |
393 | // OR (shorthand:) | |
394 | // dc.LogicalToDevice(x, y, x1, y1); | |
395 | // The latter is slightly less efficient if we're doing several | |
396 | // conversions, since the matrix is inverted several times. | |
397 | bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const | |
398 | { | |
399 | if (IsIdentity()) | |
400 | { | |
401 | tx = x; | |
402 | ty = y; | |
403 | return true; | |
404 | } | |
405 | ||
406 | const double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2]; | |
407 | if ( wxIsNullDouble(z) ) | |
408 | return false; | |
409 | ||
410 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; | |
411 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; | |
412 | return true; | |
413 | } | |
414 | ||
415 | wxTransformMatrix& wxTransformMatrix::operator*=(const double& t) | |
416 | { | |
417 | for (int i = 0; i < 3; i++) | |
418 | for (int j = 0; j < 3; j++) | |
419 | m_matrix[i][j]*= t; | |
420 | m_isIdentity = IsIdentity1(); | |
421 | return *this; | |
422 | } | |
423 | ||
424 | wxTransformMatrix& wxTransformMatrix::operator/=(const double& t) | |
425 | { | |
426 | for (int i = 0; i < 3; i++) | |
427 | for (int j = 0; j < 3; j++) | |
428 | m_matrix[i][j]/= t; | |
429 | m_isIdentity = IsIdentity1(); | |
430 | return *this; | |
431 | } | |
432 | ||
433 | wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat) | |
434 | { | |
435 | for (int i = 0; i < 3; i++) | |
436 | for (int j = 0; j < 3; j++) | |
437 | m_matrix[i][j] += mat.m_matrix[i][j]; | |
438 | m_isIdentity = IsIdentity1(); | |
439 | return *this; | |
440 | } | |
441 | ||
442 | wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat) | |
443 | { | |
444 | for (int i = 0; i < 3; i++) | |
445 | for (int j = 0; j < 3; j++) | |
446 | m_matrix[i][j] -= mat.m_matrix[i][j]; | |
447 | m_isIdentity = IsIdentity1(); | |
448 | return *this; | |
449 | } | |
450 | ||
451 | wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat) | |
452 | { | |
453 | ||
454 | if (mat.m_isIdentity) | |
455 | return *this; | |
456 | if (m_isIdentity) | |
457 | { | |
458 | *this = mat; | |
459 | return *this; | |
460 | } | |
461 | else | |
462 | { | |
463 | wxTransformMatrix result; | |
464 | for (int i = 0; i < 3; i++) | |
465 | { | |
466 | for (int j = 0; j < 3; j++) | |
467 | { | |
468 | double sum = 0; | |
469 | for (int k = 0; k < 3; k++) | |
470 | sum += m_matrix[k][i] * mat.m_matrix[j][k]; | |
471 | result.m_matrix[j][i] = sum; | |
472 | } | |
473 | } | |
474 | *this = result; | |
475 | } | |
476 | ||
477 | m_isIdentity = IsIdentity1(); | |
478 | return *this; | |
479 | } | |
480 | ||
481 | ||
482 | // constant operators | |
483 | wxTransformMatrix wxTransformMatrix::operator*(const double& t) const | |
484 | { | |
485 | wxTransformMatrix result = *this; | |
486 | result *= t; | |
487 | result.m_isIdentity = result.IsIdentity1(); | |
488 | return result; | |
489 | } | |
490 | ||
491 | wxTransformMatrix wxTransformMatrix::operator/(const double& t) const | |
492 | { | |
493 | wxTransformMatrix result = *this; | |
494 | // wxASSERT(t!=0); | |
495 | result /= t; | |
496 | result.m_isIdentity = result.IsIdentity1(); | |
497 | return result; | |
498 | } | |
499 | ||
500 | wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const | |
501 | { | |
502 | wxTransformMatrix result = *this; | |
503 | result += m; | |
504 | result.m_isIdentity = result.IsIdentity1(); | |
505 | return result; | |
506 | } | |
507 | ||
508 | wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const | |
509 | { | |
510 | wxTransformMatrix result = *this; | |
511 | result -= m; | |
512 | result.m_isIdentity = result.IsIdentity1(); | |
513 | return result; | |
514 | } | |
515 | ||
516 | ||
517 | wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const | |
518 | { | |
519 | wxTransformMatrix result = *this; | |
520 | result *= m; | |
521 | result.m_isIdentity = result.IsIdentity1(); | |
522 | return result; | |
523 | } | |
524 | ||
525 | ||
526 | wxTransformMatrix wxTransformMatrix::operator-() const | |
527 | { | |
528 | wxTransformMatrix result = *this; | |
529 | for (int i = 0; i < 3; i++) | |
530 | for (int j = 0; j < 3; j++) | |
531 | result.m_matrix[i][j] = -(this->m_matrix[i][j]); | |
532 | result.m_isIdentity = result.IsIdentity1(); | |
533 | return result; | |
534 | } | |
535 | ||
536 | static double CheckInt(double getal) | |
537 | { | |
538 | // check if the number is very close to an integer | |
539 | if ( (ceil(getal) - getal) < 0.0001) | |
540 | return ceil(getal); | |
541 | ||
542 | else if ( (getal - floor(getal)) < 0.0001) | |
543 | return floor(getal); | |
544 | ||
545 | return getal; | |
546 | ||
547 | } | |
548 | ||
549 | double wxTransformMatrix::Get_scaleX() | |
550 | { | |
551 | double scale_factor; | |
552 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
553 | if ( !wxIsSameDouble(rot_angle, 90) && !wxIsSameDouble(rot_angle, -90) ) | |
554 | scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi); | |
555 | else | |
556 | scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
557 | ||
558 | scale_factor = CheckInt(scale_factor); | |
559 | if (scale_factor < 0) | |
560 | scale_factor = -scale_factor; | |
561 | ||
562 | return scale_factor; | |
563 | } | |
564 | ||
565 | double wxTransformMatrix::Get_scaleY() | |
566 | { | |
567 | double scale_factor; | |
568 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
569 | if ( !wxIsSameDouble(rot_angle, 90) && !wxIsSameDouble(rot_angle, -90) ) | |
570 | scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi); | |
571 | else | |
572 | scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
573 | ||
574 | scale_factor = CheckInt(scale_factor); | |
575 | if (scale_factor < 0) | |
576 | ||
577 | scale_factor = -scale_factor; | |
578 | ||
579 | return scale_factor; | |
580 | ||
581 | } | |
582 | ||
583 | double wxTransformMatrix::GetRotation() | |
584 | { | |
585 | double temp1 = GetValue(0,0); // for angle calculation | |
586 | double temp2 = GetValue(0,1); // | |
587 | ||
588 | // Rotation | |
589 | double rot_angle = atan2(temp2,temp1)*180/pi; | |
590 | ||
591 | rot_angle = CheckInt(rot_angle); | |
592 | return rot_angle; | |
593 | } | |
594 | ||
595 | void wxTransformMatrix::SetRotation(double rotation) | |
596 | { | |
597 | double x=GetValue(2,0); | |
598 | double y=GetValue(2,1); | |
599 | Rotate(-GetRotation(), x, y); | |
600 | Rotate(rotation, x, y); | |
601 | } |