]>
Commit | Line | Data |
---|---|---|
1 | // Name: matrix.cpp | |
2 | // Purpose: wxTransformMatrix class | |
3 | // Author: Chris Breeze, Julian Smart | |
4 | // Modified by: Klaas Holwerda | |
5 | // Created: 01/02/97 | |
6 | // RCS-ID: $Id$ | |
7 | // Copyright: (c) Julian Smart and Markus Holzem | |
8 | // Licence: wxWindows licence | |
9 | ///////////////////////////////////////////////////////////////////////////// | |
10 | ||
11 | #ifdef __GNUG__ | |
12 | #pragma implementation "matrix.h" | |
13 | #endif | |
14 | ||
15 | // Note: this is intended to be used in wxDC at some point to replace | |
16 | // the current system of scaling/translation. It is not yet used. | |
17 | ||
18 | // For compilers that support precompilation, includes "wx.h". | |
19 | #include "wx/wxprec.h" | |
20 | ||
21 | #ifdef __BORLANDC__ | |
22 | #pragma hdrstop | |
23 | #endif | |
24 | ||
25 | #ifndef WX_PRECOMP | |
26 | #include "wx/defs.h" | |
27 | #endif | |
28 | ||
29 | #include "wx/matrix.h" | |
30 | #include <math.h> | |
31 | ||
32 | static const double pi = 3.1415926535; | |
33 | ||
34 | wxTransformMatrix::wxTransformMatrix(void) | |
35 | { | |
36 | m_isIdentity = FALSE; | |
37 | ||
38 | Identity(); | |
39 | } | |
40 | ||
41 | wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat) | |
42 | { | |
43 | (*this) = mat; | |
44 | } | |
45 | ||
46 | double wxTransformMatrix::GetValue(int col, int row) const | |
47 | { | |
48 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
49 | return 0.0; | |
50 | ||
51 | return m_matrix[col][row]; | |
52 | } | |
53 | ||
54 | void wxTransformMatrix::SetValue(int col, int row, double value) | |
55 | { | |
56 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
57 | return; | |
58 | ||
59 | m_matrix[col][row] = value; | |
60 | m_isIdentity = IsIdentity1(); | |
61 | } | |
62 | ||
63 | void wxTransformMatrix::operator = (const wxTransformMatrix& mat) | |
64 | { | |
65 | int i, j; | |
66 | for (i = 0; i < 3; i++) | |
67 | { | |
68 | for (j = 0; j < 3; j++) | |
69 | { | |
70 | m_matrix[i][j] = mat.m_matrix[i][j]; | |
71 | } | |
72 | } | |
73 | m_isIdentity = mat.m_isIdentity; | |
74 | } | |
75 | ||
76 | bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) | |
77 | { | |
78 | if (m_isIdentity==TRUE && mat.m_isIdentity==TRUE) | |
79 | return TRUE; | |
80 | ||
81 | int i, j; | |
82 | for (i = 0; i < 3; i++) | |
83 | { | |
84 | for (j = 0; j < 3; j++) | |
85 | { | |
86 | if (m_matrix[i][j] != mat.m_matrix[i][j]) | |
87 | return FALSE; | |
88 | } | |
89 | } | |
90 | return TRUE; | |
91 | } | |
92 | ||
93 | bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) | |
94 | { | |
95 | return (! ((*this) == mat)); | |
96 | } | |
97 | ||
98 | double& wxTransformMatrix::operator()(int col, int row) | |
99 | { | |
100 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
101 | return m_matrix[0][0]; | |
102 | ||
103 | return m_matrix[col][row]; | |
104 | } | |
105 | ||
106 | double wxTransformMatrix::operator()(int col, int row) const | |
107 | { | |
108 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
109 | return 0.0; | |
110 | ||
111 | return m_matrix[col][row]; | |
112 | } | |
113 | ||
114 | // Invert matrix | |
115 | bool wxTransformMatrix::Invert(void) | |
116 | { | |
117 | double inverseMatrix[3][3]; | |
118 | ||
119 | // calculate the adjoint | |
120 | inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]); | |
121 | inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]); | |
122 | inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]); | |
123 | ||
124 | inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]); | |
125 | inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]); | |
126 | inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]); | |
127 | ||
128 | inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]); | |
129 | inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]); | |
130 | inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]); | |
131 | ||
132 | // now divide by the determinant | |
133 | double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0]; | |
134 | if (det != 0.0) | |
135 | { | |
136 | inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det; | |
137 | inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det; | |
138 | inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det; | |
139 | ||
140 | int i, j; | |
141 | for (i = 0; i < 3; i++) | |
142 | { | |
143 | for (j = 0; j < 3; j++) | |
144 | { | |
145 | m_matrix[i][j] = inverseMatrix[i][j]; | |
146 | } | |
147 | } | |
148 | m_isIdentity = IsIdentity1(); | |
149 | return TRUE; | |
150 | } | |
151 | else | |
152 | { | |
153 | return FALSE; | |
154 | } | |
155 | } | |
156 | ||
157 | // Make into identity matrix | |
158 | bool wxTransformMatrix::Identity(void) | |
159 | { | |
160 | m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0; | |
161 | m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0; | |
162 | m_isIdentity = TRUE; | |
163 | ||
164 | return TRUE; | |
165 | } | |
166 | ||
167 | // Scale by scale (isotropic scaling i.e. the same in x and y): | |
168 | // | scale 0 0 | | |
169 | // matrix' = | 0 scale 0 | x matrix | |
170 | // | 0 0 scale | | |
171 | // | |
172 | bool wxTransformMatrix::Scale(double scale) | |
173 | { | |
174 | int i, j; | |
175 | for (i = 0; i < 3; i++) | |
176 | { | |
177 | for (j = 0; j < 3; j++) | |
178 | { | |
179 | m_matrix[i][j] *= scale; | |
180 | } | |
181 | } | |
182 | m_isIdentity = IsIdentity1(); | |
183 | ||
184 | return TRUE; | |
185 | } | |
186 | ||
187 | ||
188 | // scale a matrix in 2D | |
189 | // | |
190 | // xs 0 xc(1-xs) | |
191 | // 0 ys yc(1-ys) | |
192 | // 0 0 1 | |
193 | // | |
194 | wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc) | |
195 | { | |
196 | double r00,r10,r20,r01,r11,r21; | |
197 | ||
198 | if (m_isIdentity) | |
199 | { | |
200 | double tx =xc*(1-xs); | |
201 | double ty =yc*(1-ys); | |
202 | r00 = xs; | |
203 | r10 = 0; | |
204 | r20 = tx; | |
205 | r01 = 0; | |
206 | r11 = ys; | |
207 | r21 = ty; | |
208 | } | |
209 | else if (xc!=0 || yc!=0) | |
210 | { | |
211 | double tx =xc*(1-xs); | |
212 | double ty =yc*(1-ys); | |
213 | r00 = xs * m_matrix[0][0]; | |
214 | r10 = xs * m_matrix[1][0]; | |
215 | r20 = xs * m_matrix[2][0] + tx; | |
216 | r01 = ys * m_matrix[0][1]; | |
217 | r11 = ys * m_matrix[1][1]; | |
218 | r21 = ys * m_matrix[2][1] + ty; | |
219 | } | |
220 | else | |
221 | { | |
222 | r00 = xs * m_matrix[0][0]; | |
223 | r10 = xs * m_matrix[1][0]; | |
224 | r20 = xs * m_matrix[2][0]; | |
225 | r01 = ys * m_matrix[0][1]; | |
226 | r11 = ys * m_matrix[1][1]; | |
227 | r21 = ys * m_matrix[2][1]; | |
228 | } | |
229 | ||
230 | m_matrix[0][0] = r00; | |
231 | m_matrix[1][0] = r10; | |
232 | m_matrix[2][0] = r20; | |
233 | m_matrix[0][1] = r01; | |
234 | m_matrix[1][1] = r11; | |
235 | m_matrix[2][1] = r21; | |
236 | ||
237 | /* or like this | |
238 | // first translate to origin O | |
239 | (*this).Translate(-x_cen, -y_cen); | |
240 | ||
241 | // now do the scaling | |
242 | wxTransformMatrix scale; | |
243 | scale.m_matrix[0][0] = x_fac; | |
244 | scale.m_matrix[1][1] = y_fac; | |
245 | scale.m_isIdentity = IsIdentity1(); | |
246 | ||
247 | *this = scale * (*this); | |
248 | ||
249 | // translate back from origin to x_cen, y_cen | |
250 | (*this).Translate(x_cen, y_cen); | |
251 | */ | |
252 | ||
253 | m_isIdentity = IsIdentity1(); | |
254 | ||
255 | return *this; | |
256 | } | |
257 | ||
258 | ||
259 | // mirror a matrix in x, y | |
260 | // | |
261 | // -1 0 0 Y-mirror | |
262 | // 0 -1 0 X-mirror | |
263 | // 0 0 -1 Z-mirror | |
264 | wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y) | |
265 | { | |
266 | wxTransformMatrix temp; | |
267 | if (x) | |
268 | { | |
269 | temp.m_matrix[1][1] = -1; | |
270 | temp.m_isIdentity=FALSE; | |
271 | } | |
272 | if (y) | |
273 | { | |
274 | temp.m_matrix[0][0] = -1; | |
275 | temp.m_isIdentity=FALSE; | |
276 | } | |
277 | ||
278 | *this = temp * (*this); | |
279 | m_isIdentity = IsIdentity1(); | |
280 | return *this; | |
281 | } | |
282 | ||
283 | // Translate by dx, dy: | |
284 | // | 1 0 dx | | |
285 | // matrix' = | 0 1 dy | x matrix | |
286 | // | 0 0 1 | | |
287 | // | |
288 | bool wxTransformMatrix::Translate(double dx, double dy) | |
289 | { | |
290 | int i; | |
291 | for (i = 0; i < 3; i++) | |
292 | m_matrix[i][0] += dx * m_matrix[i][2]; | |
293 | for (i = 0; i < 3; i++) | |
294 | m_matrix[i][1] += dy * m_matrix[i][2]; | |
295 | ||
296 | m_isIdentity = IsIdentity1(); | |
297 | ||
298 | return TRUE; | |
299 | } | |
300 | ||
301 | // Rotate clockwise by the given number of degrees: | |
302 | // | cos sin 0 | | |
303 | // matrix' = | -sin cos 0 | x matrix | |
304 | // | 0 0 1 | | |
305 | bool wxTransformMatrix::Rotate(double degrees) | |
306 | { | |
307 | Rotate(-degrees,0,0); | |
308 | return TRUE; | |
309 | } | |
310 | ||
311 | // counter clockwise rotate around a point | |
312 | // | |
313 | // cos(r) -sin(r) x(1-cos(r))+y(sin(r) | |
314 | // sin(r) cos(r) y(1-cos(r))-x(sin(r) | |
315 | // 0 0 1 | |
316 | wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y) | |
317 | { | |
318 | double angle = degrees * pi / 180.0; | |
319 | double c = cos(angle); | |
320 | double s = sin(angle); | |
321 | double r00,r10,r20,r01,r11,r21; | |
322 | ||
323 | if (m_isIdentity) | |
324 | { | |
325 | double tx = x*(1-c)+y*s; | |
326 | double ty = y*(1-c)-x*s; | |
327 | r00 = c ; | |
328 | r10 = -s; | |
329 | r20 = tx; | |
330 | r01 = s; | |
331 | r11 = c; | |
332 | r21 = ty; | |
333 | } | |
334 | else if (x!=0 || y!=0) | |
335 | { | |
336 | double tx = x*(1-c)+y*s; | |
337 | double ty = y*(1-c)-x*s; | |
338 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2]; | |
339 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2]; | |
340 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2]; | |
341 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2]; | |
342 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2]; | |
343 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2]; | |
344 | } | |
345 | else | |
346 | { | |
347 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1]; | |
348 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1]; | |
349 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1]; | |
350 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0]; | |
351 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0]; | |
352 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0]; | |
353 | } | |
354 | ||
355 | m_matrix[0][0] = r00; | |
356 | m_matrix[1][0] = r10; | |
357 | m_matrix[2][0] = r20; | |
358 | m_matrix[0][1] = r01; | |
359 | m_matrix[1][1] = r11; | |
360 | m_matrix[2][1] = r21; | |
361 | ||
362 | /* or like this | |
363 | wxTransformMatrix rotate; | |
364 | rotate.m_matrix[2][0] = tx; | |
365 | rotate.m_matrix[2][1] = ty; | |
366 | ||
367 | rotate.m_matrix[0][0] = c; | |
368 | rotate.m_matrix[0][1] = s; | |
369 | ||
370 | rotate.m_matrix[1][0] = -s; | |
371 | rotate.m_matrix[1][1] = c; | |
372 | ||
373 | rotate.m_isIdentity=false; | |
374 | *this = rotate * (*this); | |
375 | */ | |
376 | m_isIdentity = IsIdentity1(); | |
377 | ||
378 | return *this; | |
379 | } | |
380 | ||
381 | // Transform a point from logical to device coordinates | |
382 | bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const | |
383 | { | |
384 | if (IsIdentity()) | |
385 | { | |
386 | tx = x; ty = y; return TRUE; | |
387 | } | |
388 | ||
389 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]; | |
390 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]; | |
391 | ||
392 | return TRUE; | |
393 | } | |
394 | ||
395 | // Transform a point from device to logical coordinates. | |
396 | ||
397 | // Example of use: | |
398 | // wxTransformMatrix mat = dc.GetTransformation(); | |
399 | // mat.Invert(); | |
400 | // mat.InverseTransformPoint(x, y, x1, y1); | |
401 | // OR (shorthand:) | |
402 | // dc.LogicalToDevice(x, y, x1, y1); | |
403 | // The latter is slightly less efficient if we're doing several | |
404 | // conversions, since the matrix is inverted several times. | |
405 | bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const | |
406 | { | |
407 | if (IsIdentity()) | |
408 | { | |
409 | tx = x; ty = y; return TRUE; | |
410 | } | |
411 | ||
412 | double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2]; | |
413 | if (z == 0.0) | |
414 | { | |
415 | // z = 0.0000001; | |
416 | return FALSE; | |
417 | } | |
418 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; | |
419 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; | |
420 | return TRUE; | |
421 | } | |
422 | ||
423 | wxTransformMatrix& wxTransformMatrix::operator*=(const double& t) | |
424 | { | |
425 | for (int i = 0; i < 3; i++) | |
426 | for (int j = 0; j < 3; j++) | |
427 | m_matrix[i][j]*= t; | |
428 | m_isIdentity = IsIdentity1(); | |
429 | return *this; | |
430 | } | |
431 | ||
432 | wxTransformMatrix& wxTransformMatrix::operator/=(const double& t) | |
433 | { | |
434 | for (int i = 0; i < 3; i++) | |
435 | for (int j = 0; j < 3; j++) | |
436 | m_matrix[i][j]/= t; | |
437 | m_isIdentity = IsIdentity1(); | |
438 | return *this; | |
439 | } | |
440 | ||
441 | wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat) | |
442 | { | |
443 | for (int i = 0; i < 3; i++) | |
444 | for (int j = 0; j < 3; j++) | |
445 | m_matrix[i][j] += mat.m_matrix[i][j]; | |
446 | m_isIdentity = IsIdentity1(); | |
447 | return *this; | |
448 | } | |
449 | ||
450 | wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat) | |
451 | { | |
452 | for (int i = 0; i < 3; i++) | |
453 | for (int j = 0; j < 3; j++) | |
454 | m_matrix[i][j] -= mat.m_matrix[i][j]; | |
455 | m_isIdentity = IsIdentity1(); | |
456 | return *this; | |
457 | } | |
458 | ||
459 | wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat) | |
460 | { | |
461 | ||
462 | if (mat.m_isIdentity) | |
463 | return *this; | |
464 | if (m_isIdentity) | |
465 | { | |
466 | *this = mat; | |
467 | return *this; | |
468 | } | |
469 | else | |
470 | { | |
471 | wxTransformMatrix result; | |
472 | for (int i = 0; i < 3; i++) | |
473 | { | |
474 | for (int j = 0; j < 3; j++) | |
475 | { | |
476 | double sum = 0; | |
477 | for (int k = 0; k < 3; k++) | |
478 | sum += m_matrix[k][i] * mat.m_matrix[j][k]; | |
479 | result.m_matrix[j][i] = sum; | |
480 | } | |
481 | } | |
482 | *this = result; | |
483 | } | |
484 | ||
485 | m_isIdentity = IsIdentity1(); | |
486 | return *this; | |
487 | } | |
488 | ||
489 | ||
490 | // constant operators | |
491 | wxTransformMatrix wxTransformMatrix::operator*(const double& t) const | |
492 | { | |
493 | wxTransformMatrix result = *this; | |
494 | result *= t; | |
495 | result.m_isIdentity = result.IsIdentity1(); | |
496 | return result; | |
497 | } | |
498 | ||
499 | wxTransformMatrix wxTransformMatrix::operator/(const double& t) const | |
500 | { | |
501 | wxTransformMatrix result = *this; | |
502 | // wxASSERT(t!=0); | |
503 | result /= t; | |
504 | result.m_isIdentity = result.IsIdentity1(); | |
505 | return result; | |
506 | } | |
507 | ||
508 | wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const | |
509 | { | |
510 | wxTransformMatrix result = *this; | |
511 | result += m; | |
512 | result.m_isIdentity = result.IsIdentity1(); | |
513 | return result; | |
514 | } | |
515 | ||
516 | wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const | |
517 | { | |
518 | wxTransformMatrix result = *this; | |
519 | result -= m; | |
520 | result.m_isIdentity = result.IsIdentity1(); | |
521 | return result; | |
522 | } | |
523 | ||
524 | ||
525 | wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const | |
526 | { | |
527 | wxTransformMatrix result = *this; | |
528 | result *= m; | |
529 | result.m_isIdentity = result.IsIdentity1(); | |
530 | return result; | |
531 | } | |
532 | ||
533 | ||
534 | wxTransformMatrix wxTransformMatrix::operator-() const | |
535 | { | |
536 | wxTransformMatrix result = *this; | |
537 | for (int i = 0; i < 3; i++) | |
538 | for (int j = 0; j < 3; j++) | |
539 | result.m_matrix[i][j] = -(this->m_matrix[i][j]); | |
540 | result.m_isIdentity = result.IsIdentity1(); | |
541 | return result; | |
542 | } | |
543 | ||
544 | static double CheckInt(double getal) | |
545 | { | |
546 | // check if the number is very close to an integer | |
547 | if ( (ceil(getal) - getal) < 0.0001) | |
548 | return ceil(getal); | |
549 | ||
550 | else if ( (getal - floor(getal)) < 0.0001) | |
551 | return floor(getal); | |
552 | ||
553 | return getal; | |
554 | ||
555 | } | |
556 | ||
557 | double wxTransformMatrix::Get_scaleX() | |
558 | { | |
559 | double scale_factor; | |
560 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
561 | if (rot_angle != 90 && rot_angle != -90) | |
562 | scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi); | |
563 | else | |
564 | scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
565 | ||
566 | scale_factor = CheckInt(scale_factor); | |
567 | if (scale_factor < 0) | |
568 | scale_factor = -scale_factor; | |
569 | ||
570 | return scale_factor; | |
571 | } | |
572 | ||
573 | double wxTransformMatrix::Get_scaleY() | |
574 | { | |
575 | double scale_factor; | |
576 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
577 | if (rot_angle != 90 && rot_angle != -90) | |
578 | scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi); | |
579 | else | |
580 | scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
581 | ||
582 | scale_factor = CheckInt(scale_factor); | |
583 | if (scale_factor < 0) | |
584 | ||
585 | scale_factor = -scale_factor; | |
586 | ||
587 | return scale_factor; | |
588 | ||
589 | } | |
590 | ||
591 | double wxTransformMatrix::GetRotation() | |
592 | { | |
593 | double temp1 = GetValue(0,0); // for angle calculation | |
594 | double temp2 = GetValue(0,1); // | |
595 | ||
596 | // Rotation | |
597 | double rot_angle = atan2(temp2,temp1)*180/pi; | |
598 | ||
599 | rot_angle = CheckInt(rot_angle); | |
600 | return rot_angle; | |
601 | } | |
602 | ||
603 | void wxTransformMatrix::SetRotation(double rotation) | |
604 | { | |
605 | double x=GetValue(2,0); | |
606 | double y=GetValue(2,1); | |
607 | Rotate(-GetRotation(), x, y); | |
608 | Rotate(rotation, x, y); | |
609 | } | |
610 |