]>
Commit | Line | Data |
---|---|---|
1 | /////////////////////////////////////////////////////////////////////////////// | |
2 | // Name: matrix.cpp | |
3 | // Purpose: wxTransformMatrix class | |
4 | // Author: Chris Breeze, Julian Smart | |
5 | // Modified by: Klaas Holwerda | |
6 | // Created: 01/02/97 | |
7 | // RCS-ID: $Id$ | |
8 | // Copyright: (c) Julian Smart | |
9 | // Licence: wxWindows licence | |
10 | /////////////////////////////////////////////////////////////////////////////// | |
11 | ||
12 | #if defined(__GNUG__) && !defined(NO_GCC_PRAGMA) | |
13 | #pragma implementation "matrix.h" | |
14 | #endif | |
15 | ||
16 | // Note: this is intended to be used in wxDC at some point to replace | |
17 | // the current system of scaling/translation. It is not yet used. | |
18 | ||
19 | // For compilers that support precompilation, includes "wx.h". | |
20 | #include "wx/wxprec.h" | |
21 | ||
22 | #ifdef __BORLANDC__ | |
23 | #pragma hdrstop | |
24 | #endif | |
25 | ||
26 | #ifndef WX_PRECOMP | |
27 | #include "wx/defs.h" | |
28 | #include "wx/math.h" | |
29 | #endif | |
30 | ||
31 | #include "wx/matrix.h" | |
32 | ||
33 | static const double pi = M_PI; | |
34 | ||
35 | wxTransformMatrix::wxTransformMatrix(void) | |
36 | { | |
37 | m_isIdentity = false; | |
38 | ||
39 | Identity(); | |
40 | } | |
41 | ||
42 | wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat) | |
43 | : wxObject() | |
44 | { | |
45 | (*this) = mat; | |
46 | } | |
47 | ||
48 | double wxTransformMatrix::GetValue(int col, int row) const | |
49 | { | |
50 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
51 | return 0.0; | |
52 | ||
53 | return m_matrix[col][row]; | |
54 | } | |
55 | ||
56 | void wxTransformMatrix::SetValue(int col, int row, double value) | |
57 | { | |
58 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
59 | return; | |
60 | ||
61 | m_matrix[col][row] = value; | |
62 | m_isIdentity = IsIdentity1(); | |
63 | } | |
64 | ||
65 | void wxTransformMatrix::operator = (const wxTransformMatrix& mat) | |
66 | { | |
67 | int i, j; | |
68 | for (i = 0; i < 3; i++) | |
69 | { | |
70 | for (j = 0; j < 3; j++) | |
71 | { | |
72 | m_matrix[i][j] = mat.m_matrix[i][j]; | |
73 | } | |
74 | } | |
75 | m_isIdentity = mat.m_isIdentity; | |
76 | } | |
77 | ||
78 | bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) | |
79 | { | |
80 | if (m_isIdentity==true && mat.m_isIdentity==true) | |
81 | return true; | |
82 | ||
83 | int i, j; | |
84 | for (i = 0; i < 3; i++) | |
85 | { | |
86 | for (j = 0; j < 3; j++) | |
87 | { | |
88 | if (m_matrix[i][j] != mat.m_matrix[i][j]) | |
89 | return false; | |
90 | } | |
91 | } | |
92 | return true; | |
93 | } | |
94 | ||
95 | bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) | |
96 | { | |
97 | return (! ((*this) == mat)); | |
98 | } | |
99 | ||
100 | double& wxTransformMatrix::operator()(int col, int row) | |
101 | { | |
102 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
103 | return m_matrix[0][0]; | |
104 | ||
105 | return m_matrix[col][row]; | |
106 | } | |
107 | ||
108 | double wxTransformMatrix::operator()(int col, int row) const | |
109 | { | |
110 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
111 | return 0.0; | |
112 | ||
113 | return m_matrix[col][row]; | |
114 | } | |
115 | ||
116 | // Invert matrix | |
117 | bool wxTransformMatrix::Invert(void) | |
118 | { | |
119 | double inverseMatrix[3][3]; | |
120 | ||
121 | // calculate the adjoint | |
122 | inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]); | |
123 | inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]); | |
124 | inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]); | |
125 | ||
126 | inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]); | |
127 | inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]); | |
128 | inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]); | |
129 | ||
130 | inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]); | |
131 | inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]); | |
132 | inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]); | |
133 | ||
134 | // now divide by the determinant | |
135 | double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0]; | |
136 | if (det != 0.0) | |
137 | { | |
138 | inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det; | |
139 | inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det; | |
140 | inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det; | |
141 | ||
142 | int i, j; | |
143 | for (i = 0; i < 3; i++) | |
144 | { | |
145 | for (j = 0; j < 3; j++) | |
146 | { | |
147 | m_matrix[i][j] = inverseMatrix[i][j]; | |
148 | } | |
149 | } | |
150 | m_isIdentity = IsIdentity1(); | |
151 | return true; | |
152 | } | |
153 | else | |
154 | { | |
155 | return false; | |
156 | } | |
157 | } | |
158 | ||
159 | // Make into identity matrix | |
160 | bool wxTransformMatrix::Identity(void) | |
161 | { | |
162 | m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0; | |
163 | m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0; | |
164 | m_isIdentity = true; | |
165 | ||
166 | return true; | |
167 | } | |
168 | ||
169 | // Scale by scale (isotropic scaling i.e. the same in x and y): | |
170 | // | scale 0 0 | | |
171 | // matrix' = | 0 scale 0 | x matrix | |
172 | // | 0 0 scale | | |
173 | // | |
174 | bool wxTransformMatrix::Scale(double scale) | |
175 | { | |
176 | int i, j; | |
177 | for (i = 0; i < 3; i++) | |
178 | { | |
179 | for (j = 0; j < 3; j++) | |
180 | { | |
181 | m_matrix[i][j] *= scale; | |
182 | } | |
183 | } | |
184 | m_isIdentity = IsIdentity1(); | |
185 | ||
186 | return true; | |
187 | } | |
188 | ||
189 | ||
190 | // scale a matrix in 2D | |
191 | // | |
192 | // xs 0 xc(1-xs) | |
193 | // 0 ys yc(1-ys) | |
194 | // 0 0 1 | |
195 | // | |
196 | wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc) | |
197 | { | |
198 | double r00,r10,r20,r01,r11,r21; | |
199 | ||
200 | if (m_isIdentity) | |
201 | { | |
202 | double tx =xc*(1-xs); | |
203 | double ty =yc*(1-ys); | |
204 | r00 = xs; | |
205 | r10 = 0; | |
206 | r20 = tx; | |
207 | r01 = 0; | |
208 | r11 = ys; | |
209 | r21 = ty; | |
210 | } | |
211 | else if (xc!=0 || yc!=0) | |
212 | { | |
213 | double tx =xc*(1-xs); | |
214 | double ty =yc*(1-ys); | |
215 | r00 = xs * m_matrix[0][0]; | |
216 | r10 = xs * m_matrix[1][0]; | |
217 | r20 = xs * m_matrix[2][0] + tx; | |
218 | r01 = ys * m_matrix[0][1]; | |
219 | r11 = ys * m_matrix[1][1]; | |
220 | r21 = ys * m_matrix[2][1] + ty; | |
221 | } | |
222 | else | |
223 | { | |
224 | r00 = xs * m_matrix[0][0]; | |
225 | r10 = xs * m_matrix[1][0]; | |
226 | r20 = xs * m_matrix[2][0]; | |
227 | r01 = ys * m_matrix[0][1]; | |
228 | r11 = ys * m_matrix[1][1]; | |
229 | r21 = ys * m_matrix[2][1]; | |
230 | } | |
231 | ||
232 | m_matrix[0][0] = r00; | |
233 | m_matrix[1][0] = r10; | |
234 | m_matrix[2][0] = r20; | |
235 | m_matrix[0][1] = r01; | |
236 | m_matrix[1][1] = r11; | |
237 | m_matrix[2][1] = r21; | |
238 | ||
239 | /* or like this | |
240 | // first translate to origin O | |
241 | (*this).Translate(-x_cen, -y_cen); | |
242 | ||
243 | // now do the scaling | |
244 | wxTransformMatrix scale; | |
245 | scale.m_matrix[0][0] = x_fac; | |
246 | scale.m_matrix[1][1] = y_fac; | |
247 | scale.m_isIdentity = IsIdentity1(); | |
248 | ||
249 | *this = scale * (*this); | |
250 | ||
251 | // translate back from origin to x_cen, y_cen | |
252 | (*this).Translate(x_cen, y_cen); | |
253 | */ | |
254 | ||
255 | m_isIdentity = IsIdentity1(); | |
256 | ||
257 | return *this; | |
258 | } | |
259 | ||
260 | ||
261 | // mirror a matrix in x, y | |
262 | // | |
263 | // -1 0 0 Y-mirror | |
264 | // 0 -1 0 X-mirror | |
265 | // 0 0 -1 Z-mirror | |
266 | wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y) | |
267 | { | |
268 | wxTransformMatrix temp; | |
269 | if (x) | |
270 | { | |
271 | temp.m_matrix[1][1] = -1; | |
272 | temp.m_isIdentity=false; | |
273 | } | |
274 | if (y) | |
275 | { | |
276 | temp.m_matrix[0][0] = -1; | |
277 | temp.m_isIdentity=false; | |
278 | } | |
279 | ||
280 | *this = temp * (*this); | |
281 | m_isIdentity = IsIdentity1(); | |
282 | return *this; | |
283 | } | |
284 | ||
285 | // Translate by dx, dy: | |
286 | // | 1 0 dx | | |
287 | // matrix' = | 0 1 dy | x matrix | |
288 | // | 0 0 1 | | |
289 | // | |
290 | bool wxTransformMatrix::Translate(double dx, double dy) | |
291 | { | |
292 | int i; | |
293 | for (i = 0; i < 3; i++) | |
294 | m_matrix[i][0] += dx * m_matrix[i][2]; | |
295 | for (i = 0; i < 3; i++) | |
296 | m_matrix[i][1] += dy * m_matrix[i][2]; | |
297 | ||
298 | m_isIdentity = IsIdentity1(); | |
299 | ||
300 | return true; | |
301 | } | |
302 | ||
303 | // Rotate clockwise by the given number of degrees: | |
304 | // | cos sin 0 | | |
305 | // matrix' = | -sin cos 0 | x matrix | |
306 | // | 0 0 1 | | |
307 | bool wxTransformMatrix::Rotate(double degrees) | |
308 | { | |
309 | Rotate(-degrees,0,0); | |
310 | return true; | |
311 | } | |
312 | ||
313 | // counter clockwise rotate around a point | |
314 | // | |
315 | // cos(r) -sin(r) x(1-cos(r))+y(sin(r) | |
316 | // sin(r) cos(r) y(1-cos(r))-x(sin(r) | |
317 | // 0 0 1 | |
318 | wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y) | |
319 | { | |
320 | double angle = degrees * pi / 180.0; | |
321 | double c = cos(angle); | |
322 | double s = sin(angle); | |
323 | double r00,r10,r20,r01,r11,r21; | |
324 | ||
325 | if (m_isIdentity) | |
326 | { | |
327 | double tx = x*(1-c)+y*s; | |
328 | double ty = y*(1-c)-x*s; | |
329 | r00 = c ; | |
330 | r10 = -s; | |
331 | r20 = tx; | |
332 | r01 = s; | |
333 | r11 = c; | |
334 | r21 = ty; | |
335 | } | |
336 | else if (x!=0 || y!=0) | |
337 | { | |
338 | double tx = x*(1-c)+y*s; | |
339 | double ty = y*(1-c)-x*s; | |
340 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2]; | |
341 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2]; | |
342 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2]; | |
343 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2]; | |
344 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2]; | |
345 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2]; | |
346 | } | |
347 | else | |
348 | { | |
349 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1]; | |
350 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1]; | |
351 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1]; | |
352 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0]; | |
353 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0]; | |
354 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0]; | |
355 | } | |
356 | ||
357 | m_matrix[0][0] = r00; | |
358 | m_matrix[1][0] = r10; | |
359 | m_matrix[2][0] = r20; | |
360 | m_matrix[0][1] = r01; | |
361 | m_matrix[1][1] = r11; | |
362 | m_matrix[2][1] = r21; | |
363 | ||
364 | /* or like this | |
365 | wxTransformMatrix rotate; | |
366 | rotate.m_matrix[2][0] = tx; | |
367 | rotate.m_matrix[2][1] = ty; | |
368 | ||
369 | rotate.m_matrix[0][0] = c; | |
370 | rotate.m_matrix[0][1] = s; | |
371 | ||
372 | rotate.m_matrix[1][0] = -s; | |
373 | rotate.m_matrix[1][1] = c; | |
374 | ||
375 | rotate.m_isIdentity=false; | |
376 | *this = rotate * (*this); | |
377 | */ | |
378 | m_isIdentity = IsIdentity1(); | |
379 | ||
380 | return *this; | |
381 | } | |
382 | ||
383 | // Transform a point from logical to device coordinates | |
384 | bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const | |
385 | { | |
386 | if (IsIdentity()) | |
387 | { | |
388 | tx = x; ty = y; return true; | |
389 | } | |
390 | ||
391 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]; | |
392 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]; | |
393 | ||
394 | return true; | |
395 | } | |
396 | ||
397 | // Transform a point from device to logical coordinates. | |
398 | ||
399 | // Example of use: | |
400 | // wxTransformMatrix mat = dc.GetTransformation(); | |
401 | // mat.Invert(); | |
402 | // mat.InverseTransformPoint(x, y, x1, y1); | |
403 | // OR (shorthand:) | |
404 | // dc.LogicalToDevice(x, y, x1, y1); | |
405 | // The latter is slightly less efficient if we're doing several | |
406 | // conversions, since the matrix is inverted several times. | |
407 | bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const | |
408 | { | |
409 | if (IsIdentity()) | |
410 | { | |
411 | tx = x; ty = y; return true; | |
412 | } | |
413 | ||
414 | double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2]; | |
415 | if (z == 0.0) | |
416 | { | |
417 | // z = 0.0000001; | |
418 | return false; | |
419 | } | |
420 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; | |
421 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; | |
422 | return true; | |
423 | } | |
424 | ||
425 | wxTransformMatrix& wxTransformMatrix::operator*=(const double& t) | |
426 | { | |
427 | for (int i = 0; i < 3; i++) | |
428 | for (int j = 0; j < 3; j++) | |
429 | m_matrix[i][j]*= t; | |
430 | m_isIdentity = IsIdentity1(); | |
431 | return *this; | |
432 | } | |
433 | ||
434 | wxTransformMatrix& wxTransformMatrix::operator/=(const double& t) | |
435 | { | |
436 | for (int i = 0; i < 3; i++) | |
437 | for (int j = 0; j < 3; j++) | |
438 | m_matrix[i][j]/= t; | |
439 | m_isIdentity = IsIdentity1(); | |
440 | return *this; | |
441 | } | |
442 | ||
443 | wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat) | |
444 | { | |
445 | for (int i = 0; i < 3; i++) | |
446 | for (int j = 0; j < 3; j++) | |
447 | m_matrix[i][j] += mat.m_matrix[i][j]; | |
448 | m_isIdentity = IsIdentity1(); | |
449 | return *this; | |
450 | } | |
451 | ||
452 | wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat) | |
453 | { | |
454 | for (int i = 0; i < 3; i++) | |
455 | for (int j = 0; j < 3; j++) | |
456 | m_matrix[i][j] -= mat.m_matrix[i][j]; | |
457 | m_isIdentity = IsIdentity1(); | |
458 | return *this; | |
459 | } | |
460 | ||
461 | wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat) | |
462 | { | |
463 | ||
464 | if (mat.m_isIdentity) | |
465 | return *this; | |
466 | if (m_isIdentity) | |
467 | { | |
468 | *this = mat; | |
469 | return *this; | |
470 | } | |
471 | else | |
472 | { | |
473 | wxTransformMatrix result; | |
474 | for (int i = 0; i < 3; i++) | |
475 | { | |
476 | for (int j = 0; j < 3; j++) | |
477 | { | |
478 | double sum = 0; | |
479 | for (int k = 0; k < 3; k++) | |
480 | sum += m_matrix[k][i] * mat.m_matrix[j][k]; | |
481 | result.m_matrix[j][i] = sum; | |
482 | } | |
483 | } | |
484 | *this = result; | |
485 | } | |
486 | ||
487 | m_isIdentity = IsIdentity1(); | |
488 | return *this; | |
489 | } | |
490 | ||
491 | ||
492 | // constant operators | |
493 | wxTransformMatrix wxTransformMatrix::operator*(const double& t) const | |
494 | { | |
495 | wxTransformMatrix result = *this; | |
496 | result *= t; | |
497 | result.m_isIdentity = result.IsIdentity1(); | |
498 | return result; | |
499 | } | |
500 | ||
501 | wxTransformMatrix wxTransformMatrix::operator/(const double& t) const | |
502 | { | |
503 | wxTransformMatrix result = *this; | |
504 | // wxASSERT(t!=0); | |
505 | result /= t; | |
506 | result.m_isIdentity = result.IsIdentity1(); | |
507 | return result; | |
508 | } | |
509 | ||
510 | wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const | |
511 | { | |
512 | wxTransformMatrix result = *this; | |
513 | result += m; | |
514 | result.m_isIdentity = result.IsIdentity1(); | |
515 | return result; | |
516 | } | |
517 | ||
518 | wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const | |
519 | { | |
520 | wxTransformMatrix result = *this; | |
521 | result -= m; | |
522 | result.m_isIdentity = result.IsIdentity1(); | |
523 | return result; | |
524 | } | |
525 | ||
526 | ||
527 | wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const | |
528 | { | |
529 | wxTransformMatrix result = *this; | |
530 | result *= m; | |
531 | result.m_isIdentity = result.IsIdentity1(); | |
532 | return result; | |
533 | } | |
534 | ||
535 | ||
536 | wxTransformMatrix wxTransformMatrix::operator-() const | |
537 | { | |
538 | wxTransformMatrix result = *this; | |
539 | for (int i = 0; i < 3; i++) | |
540 | for (int j = 0; j < 3; j++) | |
541 | result.m_matrix[i][j] = -(this->m_matrix[i][j]); | |
542 | result.m_isIdentity = result.IsIdentity1(); | |
543 | return result; | |
544 | } | |
545 | ||
546 | static double CheckInt(double getal) | |
547 | { | |
548 | // check if the number is very close to an integer | |
549 | if ( (ceil(getal) - getal) < 0.0001) | |
550 | return ceil(getal); | |
551 | ||
552 | else if ( (getal - floor(getal)) < 0.0001) | |
553 | return floor(getal); | |
554 | ||
555 | return getal; | |
556 | ||
557 | } | |
558 | ||
559 | double wxTransformMatrix::Get_scaleX() | |
560 | { | |
561 | double scale_factor; | |
562 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
563 | if (rot_angle != 90 && rot_angle != -90) | |
564 | scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi); | |
565 | else | |
566 | scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
567 | ||
568 | scale_factor = CheckInt(scale_factor); | |
569 | if (scale_factor < 0) | |
570 | scale_factor = -scale_factor; | |
571 | ||
572 | return scale_factor; | |
573 | } | |
574 | ||
575 | double wxTransformMatrix::Get_scaleY() | |
576 | { | |
577 | double scale_factor; | |
578 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
579 | if (rot_angle != 90 && rot_angle != -90) | |
580 | scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi); | |
581 | else | |
582 | scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
583 | ||
584 | scale_factor = CheckInt(scale_factor); | |
585 | if (scale_factor < 0) | |
586 | ||
587 | scale_factor = -scale_factor; | |
588 | ||
589 | return scale_factor; | |
590 | ||
591 | } | |
592 | ||
593 | double wxTransformMatrix::GetRotation() | |
594 | { | |
595 | double temp1 = GetValue(0,0); // for angle calculation | |
596 | double temp2 = GetValue(0,1); // | |
597 | ||
598 | // Rotation | |
599 | double rot_angle = atan2(temp2,temp1)*180/pi; | |
600 | ||
601 | rot_angle = CheckInt(rot_angle); | |
602 | return rot_angle; | |
603 | } | |
604 | ||
605 | void wxTransformMatrix::SetRotation(double rotation) | |
606 | { | |
607 | double x=GetValue(2,0); | |
608 | double y=GetValue(2,1); | |
609 | Rotate(-GetRotation(), x, y); | |
610 | Rotate(rotation, x, y); | |
611 | } | |
612 |