]> git.saurik.com Git - wxWidgets.git/blame_incremental - src/regex/regc_nfa.c
byte length for interim UniChar String corrected
[wxWidgets.git] / src / regex / regc_nfa.c
... / ...
CommitLineData
1/*
2 * NFA utilities.
3 * This file is #included by regcomp.c.
4 *
5 * Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
6 *
7 * Development of this software was funded, in part, by Cray Research Inc.,
8 * UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
9 * Corporation, none of whom are responsible for the results. The author
10 * thanks all of them.
11 *
12 * Redistribution and use in source and binary forms -- with or without
13 * modification -- are permitted for any purpose, provided that
14 * redistributions in source form retain this entire copyright notice and
15 * indicate the origin and nature of any modifications.
16 *
17 * I'd appreciate being given credit for this package in the documentation
18 * of software which uses it, but that is not a requirement.
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
21 * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
22 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
23 * HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
28 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
29 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 *
32 *
33 * One or two things that technically ought to be in here
34 * are actually in color.c, thanks to some incestuous relationships in
35 * the color chains.
36 */
37
38#define NISERR() VISERR(nfa->v)
39#define NERR(e) VERR(nfa->v, (e))
40
41
42/*
43 - newnfa - set up an NFA
44 ^ static struct nfa *newnfa(struct vars *, struct colormap *, struct nfa *);
45 */
46static struct nfa * /* the NFA, or NULL */
47newnfa(v, cm, parent)
48struct vars *v;
49struct colormap *cm;
50struct nfa *parent; /* NULL if primary NFA */
51{
52 struct nfa *nfa;
53
54 nfa = (struct nfa *)MALLOC(sizeof(struct nfa));
55 if (nfa == NULL)
56 return NULL;
57
58 nfa->states = NULL;
59 nfa->slast = NULL;
60 nfa->free = NULL;
61 nfa->nstates = 0;
62 nfa->cm = cm;
63 nfa->v = v;
64 nfa->bos[0] = nfa->bos[1] = COLORLESS;
65 nfa->eos[0] = nfa->eos[1] = COLORLESS;
66 nfa->post = newfstate(nfa, '@'); /* number 0 */
67 nfa->pre = newfstate(nfa, '>'); /* number 1 */
68 nfa->parent = parent;
69
70 nfa->init = newstate(nfa); /* may become invalid later */
71 nfa->final = newstate(nfa);
72 if (ISERR()) {
73 freenfa(nfa);
74 return NULL;
75 }
76 rainbow(nfa, nfa->cm, PLAIN, COLORLESS, nfa->pre, nfa->init);
77 newarc(nfa, '^', 1, nfa->pre, nfa->init);
78 newarc(nfa, '^', 0, nfa->pre, nfa->init);
79 rainbow(nfa, nfa->cm, PLAIN, COLORLESS, nfa->final, nfa->post);
80 newarc(nfa, '$', 1, nfa->final, nfa->post);
81 newarc(nfa, '$', 0, nfa->final, nfa->post);
82
83 if (ISERR()) {
84 freenfa(nfa);
85 return NULL;
86 }
87 return nfa;
88}
89
90/*
91 - freenfa - free an entire NFA
92 ^ static VOID freenfa(struct nfa *);
93 */
94static VOID
95freenfa(nfa)
96struct nfa *nfa;
97{
98 struct state *s;
99
100 while ((s = nfa->states) != NULL) {
101 s->nins = s->nouts = 0; /* don't worry about arcs */
102 freestate(nfa, s);
103 }
104 while ((s = nfa->free) != NULL) {
105 nfa->free = s->next;
106 destroystate(nfa, s);
107 }
108
109 nfa->slast = NULL;
110 nfa->nstates = -1;
111 nfa->pre = NULL;
112 nfa->post = NULL;
113 FREE(nfa);
114}
115
116/*
117 - newstate - allocate an NFA state, with zero flag value
118 ^ static struct state *newstate(struct nfa *);
119 */
120static struct state * /* NULL on error */
121newstate(nfa)
122struct nfa *nfa;
123{
124 struct state *s;
125
126 if (nfa->free != NULL) {
127 s = nfa->free;
128 nfa->free = s->next;
129 } else {
130 s = (struct state *)MALLOC(sizeof(struct state));
131 if (s == NULL) {
132 NERR(REG_ESPACE);
133 return NULL;
134 }
135 s->oas.next = NULL;
136 s->free = NULL;
137 s->noas = 0;
138 }
139
140 assert(nfa->nstates >= 0);
141 s->no = nfa->nstates++;
142 s->flag = 0;
143 if (nfa->states == NULL)
144 nfa->states = s;
145 s->nins = 0;
146 s->ins = NULL;
147 s->nouts = 0;
148 s->outs = NULL;
149 s->tmp = NULL;
150 s->next = NULL;
151 if (nfa->slast != NULL) {
152 assert(nfa->slast->next == NULL);
153 nfa->slast->next = s;
154 }
155 s->prev = nfa->slast;
156 nfa->slast = s;
157 return s;
158}
159
160/*
161 - newfstate - allocate an NFA state with a specified flag value
162 ^ static struct state *newfstate(struct nfa *, int flag);
163 */
164static struct state * /* NULL on error */
165newfstate(nfa, flag)
166struct nfa *nfa;
167int flag;
168{
169 struct state *s;
170
171 s = newstate(nfa);
172 if (s != NULL)
173 s->flag = (char)flag;
174 return s;
175}
176
177/*
178 - dropstate - delete a state's inarcs and outarcs and free it
179 ^ static VOID dropstate(struct nfa *, struct state *);
180 */
181static VOID
182dropstate(nfa, s)
183struct nfa *nfa;
184struct state *s;
185{
186 struct arc *a;
187
188 while ((a = s->ins) != NULL)
189 freearc(nfa, a);
190 while ((a = s->outs) != NULL)
191 freearc(nfa, a);
192 freestate(nfa, s);
193}
194
195/*
196 - freestate - free a state, which has no in-arcs or out-arcs
197 ^ static VOID freestate(struct nfa *, struct state *);
198 */
199static VOID
200freestate(nfa, s)
201struct nfa *nfa;
202struct state *s;
203{
204 assert(s != NULL);
205 assert(s->nins == 0 && s->nouts == 0);
206
207 s->no = FREESTATE;
208 s->flag = 0;
209 if (s->next != NULL)
210 s->next->prev = s->prev;
211 else {
212 assert(s == nfa->slast);
213 nfa->slast = s->prev;
214 }
215 if (s->prev != NULL)
216 s->prev->next = s->next;
217 else {
218 assert(s == nfa->states);
219 nfa->states = s->next;
220 }
221 s->prev = NULL;
222 s->next = nfa->free; /* don't delete it, put it on the free list */
223 nfa->free = s;
224}
225
226/*
227 - destroystate - really get rid of an already-freed state
228 ^ static VOID destroystate(struct nfa *, struct state *);
229 */
230static VOID
231destroystate(nfa, s)
232struct nfa *nfa;
233struct state *s;
234{
235 struct arcbatch *ab;
236 struct arcbatch *abnext;
237
238 assert(s->no == FREESTATE);
239 for (ab = s->oas.next; ab != NULL; ab = abnext) {
240 abnext = ab->next;
241 FREE(ab);
242 }
243 s->ins = NULL;
244 s->outs = NULL;
245 s->next = NULL;
246 FREE(s);
247}
248
249/*
250 - newarc - set up a new arc within an NFA
251 ^ static VOID newarc(struct nfa *, int, pcolor, struct state *,
252 ^ struct state *);
253 */
254static VOID
255newarc(nfa, t, co, from, to)
256struct nfa *nfa;
257int t;
258pcolor co;
259struct state *from;
260struct state *to;
261{
262 struct arc *a;
263
264 assert(from != NULL && to != NULL);
265
266 /* check for duplicates */
267 for (a = from->outs; a != NULL; a = a->outchain)
268 if (a->to == to && a->co == co && a->type == t)
269 return;
270
271 a = allocarc(nfa, from);
272 if (NISERR())
273 return;
274 assert(a != NULL);
275
276 a->type = t;
277 a->co = (color)co;
278 a->to = to;
279 a->from = from;
280
281 /*
282 * Put the new arc on the beginning, not the end, of the chains.
283 * Not only is this easier, it has the very useful side effect that
284 * deleting the most-recently-added arc is the cheapest case rather
285 * than the most expensive one.
286 */
287 a->inchain = to->ins;
288 to->ins = a;
289 a->outchain = from->outs;
290 from->outs = a;
291
292 from->nouts++;
293 to->nins++;
294
295 if (COLORED(a) && nfa->parent == NULL)
296 colorchain(nfa->cm, a);
297
298 return;
299}
300
301/*
302 - allocarc - allocate a new out-arc within a state
303 ^ static struct arc *allocarc(struct nfa *, struct state *);
304 */
305static struct arc * /* NULL for failure */
306allocarc(nfa, s)
307struct nfa *nfa;
308struct state *s;
309{
310 struct arc *a;
311 struct arcbatch *new;
312 int i;
313
314 /* shortcut */
315 if (s->free == NULL && s->noas < ABSIZE) {
316 a = &s->oas.a[s->noas];
317 s->noas++;
318 return a;
319 }
320
321 /* if none at hand, get more */
322 if (s->free == NULL) {
323 new = (struct arcbatch *)MALLOC(sizeof(struct arcbatch));
324 if (new == NULL) {
325 NERR(REG_ESPACE);
326 return NULL;
327 }
328 new->next = s->oas.next;
329 s->oas.next = new;
330
331 for (i = 0; i < ABSIZE; i++) {
332 new->a[i].type = 0;
333 new->a[i].freechain = &new->a[i+1];
334 }
335 new->a[ABSIZE-1].freechain = NULL;
336 s->free = &new->a[0];
337 }
338 assert(s->free != NULL);
339
340 a = s->free;
341 s->free = a->freechain;
342 return a;
343}
344
345/*
346 - freearc - free an arc
347 ^ static VOID freearc(struct nfa *, struct arc *);
348 */
349static VOID
350freearc(nfa, victim)
351struct nfa *nfa;
352struct arc *victim;
353{
354 struct state *from = victim->from;
355 struct state *to = victim->to;
356 struct arc *a;
357
358 assert(victim->type != 0);
359
360 /* take it off color chain if necessary */
361 if (COLORED(victim) && nfa->parent == NULL)
362 uncolorchain(nfa->cm, victim);
363
364 /* take it off source's out-chain */
365 assert(from != NULL);
366 assert(from->outs != NULL);
367 a = from->outs;
368 if (a == victim) /* simple case: first in chain */
369 from->outs = victim->outchain;
370 else {
371 for (; a != NULL && a->outchain != victim; a = a->outchain)
372 continue;
373 assert(a != NULL);
374 a->outchain = victim->outchain;
375 }
376 from->nouts--;
377
378 /* take it off target's in-chain */
379 assert(to != NULL);
380 assert(to->ins != NULL);
381 a = to->ins;
382 if (a == victim) /* simple case: first in chain */
383 to->ins = victim->inchain;
384 else {
385 for (; a != NULL && a->inchain != victim; a = a->inchain)
386 continue;
387 assert(a != NULL);
388 a->inchain = victim->inchain;
389 }
390 to->nins--;
391
392 /* clean up and place on free list */
393 victim->type = 0;
394 victim->from = NULL; /* precautions... */
395 victim->to = NULL;
396 victim->inchain = NULL;
397 victim->outchain = NULL;
398 victim->freechain = from->free;
399 from->free = victim;
400}
401
402/*
403 - findarc - find arc, if any, from given source with given type and color
404 * If there is more than one such arc, the result is random.
405 ^ static struct arc *findarc(struct state *, int, pcolor);
406 */
407static struct arc *
408findarc(s, type, co)
409struct state *s;
410int type;
411pcolor co;
412{
413 struct arc *a;
414
415 for (a = s->outs; a != NULL; a = a->outchain)
416 if (a->type == type && a->co == co)
417 return a;
418 return NULL;
419}
420
421/*
422 - cparc - allocate a new arc within an NFA, copying details from old one
423 ^ static VOID cparc(struct nfa *, struct arc *, struct state *,
424 ^ struct state *);
425 */
426static VOID
427cparc(nfa, oa, from, to)
428struct nfa *nfa;
429struct arc *oa;
430struct state *from;
431struct state *to;
432{
433 newarc(nfa, oa->type, oa->co, from, to);
434}
435
436/*
437 - moveins - move all in arcs of a state to another state
438 * You might think this could be done better by just updating the
439 * existing arcs, and you would be right if it weren't for the desire
440 * for duplicate suppression, which makes it easier to just make new
441 * ones to exploit the suppression built into newarc.
442 ^ static VOID moveins(struct nfa *, struct state *, struct state *);
443 */
444static VOID
445moveins(nfa, old, new)
446struct nfa *nfa;
447struct state *old;
448struct state *new;
449{
450 struct arc *a;
451
452 assert(old != new);
453
454 while ((a = old->ins) != NULL) {
455 cparc(nfa, a, a->from, new);
456 freearc(nfa, a);
457 }
458 assert(old->nins == 0);
459 assert(old->ins == NULL);
460}
461
462/*
463 - copyins - copy all in arcs of a state to another state
464 ^ static VOID copyins(struct nfa *, struct state *, struct state *);
465 */
466static VOID
467copyins(nfa, old, new)
468struct nfa *nfa;
469struct state *old;
470struct state *new;
471{
472 struct arc *a;
473
474 assert(old != new);
475
476 for (a = old->ins; a != NULL; a = a->inchain)
477 cparc(nfa, a, a->from, new);
478}
479
480/*
481 - moveouts - move all out arcs of a state to another state
482 ^ static VOID moveouts(struct nfa *, struct state *, struct state *);
483 */
484static VOID
485moveouts(nfa, old, new)
486struct nfa *nfa;
487struct state *old;
488struct state *new;
489{
490 struct arc *a;
491
492 assert(old != new);
493
494 while ((a = old->outs) != NULL) {
495 cparc(nfa, a, new, a->to);
496 freearc(nfa, a);
497 }
498}
499
500/*
501 - copyouts - copy all out arcs of a state to another state
502 ^ static VOID copyouts(struct nfa *, struct state *, struct state *);
503 */
504static VOID
505copyouts(nfa, old, new)
506struct nfa *nfa;
507struct state *old;
508struct state *new;
509{
510 struct arc *a;
511
512 assert(old != new);
513
514 for (a = old->outs; a != NULL; a = a->outchain)
515 cparc(nfa, a, new, a->to);
516}
517
518/*
519 - cloneouts - copy out arcs of a state to another state pair, modifying type
520 ^ static VOID cloneouts(struct nfa *, struct state *, struct state *,
521 ^ struct state *, int);
522 */
523static VOID
524cloneouts(nfa, old, from, to, type)
525struct nfa *nfa;
526struct state *old;
527struct state *from;
528struct state *to;
529int type;
530{
531 struct arc *a;
532
533 assert(old != from);
534
535 for (a = old->outs; a != NULL; a = a->outchain)
536 newarc(nfa, type, a->co, from, to);
537}
538
539/*
540 - delsub - delete a sub-NFA, updating subre pointers if necessary
541 * This uses a recursive traversal of the sub-NFA, marking already-seen
542 * states using their tmp pointer.
543 ^ static VOID delsub(struct nfa *, struct state *, struct state *);
544 */
545static VOID
546delsub(nfa, lp, rp)
547struct nfa *nfa;
548struct state *lp; /* the sub-NFA goes from here... */
549struct state *rp; /* ...to here, *not* inclusive */
550{
551 assert(lp != rp);
552
553 rp->tmp = rp; /* mark end */
554
555 deltraverse(nfa, lp, lp);
556 assert(lp->nouts == 0 && rp->nins == 0); /* did the job */
557 assert(lp->no != FREESTATE && rp->no != FREESTATE); /* no more */
558
559 rp->tmp = NULL; /* unmark end */
560 lp->tmp = NULL; /* and begin, marked by deltraverse */
561}
562
563/*
564 - deltraverse - the recursive heart of delsub
565 * This routine's basic job is to destroy all out-arcs of the state.
566 ^ static VOID deltraverse(struct nfa *, struct state *, struct state *);
567 */
568static VOID
569deltraverse(nfa, leftend, s)
570struct nfa *nfa;
571struct state *leftend;
572struct state *s;
573{
574 struct arc *a;
575 struct state *to;
576
577 if (s->nouts == 0)
578 return; /* nothing to do */
579 if (s->tmp != NULL)
580 return; /* already in progress */
581
582 s->tmp = s; /* mark as in progress */
583
584 while ((a = s->outs) != NULL) {
585 to = a->to;
586 deltraverse(nfa, leftend, to);
587 assert(to->nouts == 0 || to->tmp != NULL);
588 freearc(nfa, a);
589 if (to->nins == 0 && to->tmp == NULL) {
590 assert(to->nouts == 0);
591 freestate(nfa, to);
592 }
593 }
594
595 assert(s->no != FREESTATE); /* we're still here */
596 assert(s == leftend || s->nins != 0); /* and still reachable */
597 assert(s->nouts == 0); /* but have no outarcs */
598
599 s->tmp = NULL; /* we're done here */
600}
601
602/*
603 - dupnfa - duplicate sub-NFA
604 * Another recursive traversal, this time using tmp to point to duplicates
605 * as well as mark already-seen states. (You knew there was a reason why
606 * it's a state pointer, didn't you? :-))
607 ^ static VOID dupnfa(struct nfa *, struct state *, struct state *,
608 ^ struct state *, struct state *);
609 */
610static VOID
611dupnfa(nfa, start, stop, from, to)
612struct nfa *nfa;
613struct state *start; /* duplicate of subNFA starting here */
614struct state *stop; /* and stopping here */
615struct state *from; /* stringing duplicate from here */
616struct state *to; /* to here */
617{
618 if (start == stop) {
619 newarc(nfa, EMPTY, 0, from, to);
620 return;
621 }
622
623 stop->tmp = to;
624 duptraverse(nfa, start, from);
625 /* done, except for clearing out the tmp pointers */
626
627 stop->tmp = NULL;
628 cleartraverse(nfa, start);
629}
630
631/*
632 - duptraverse - recursive heart of dupnfa
633 ^ static VOID duptraverse(struct nfa *, struct state *, struct state *);
634 */
635static VOID
636duptraverse(nfa, s, stmp)
637struct nfa *nfa;
638struct state *s;
639struct state *stmp; /* s's duplicate, or NULL */
640{
641 struct arc *a;
642
643 if (s->tmp != NULL)
644 return; /* already done */
645
646 s->tmp = (stmp == NULL) ? newstate(nfa) : stmp;
647 if (s->tmp == NULL) {
648 assert(NISERR());
649 return;
650 }
651
652 for (a = s->outs; a != NULL && !NISERR(); a = a->outchain) {
653 duptraverse(nfa, a->to, (struct state *)NULL);
654 assert(a->to->tmp != NULL);
655 cparc(nfa, a, s->tmp, a->to->tmp);
656 }
657}
658
659/*
660 - cleartraverse - recursive cleanup for algorithms that leave tmp ptrs set
661 ^ static VOID cleartraverse(struct nfa *, struct state *);
662 */
663static VOID
664cleartraverse(nfa, s)
665struct nfa *nfa;
666struct state *s;
667{
668 struct arc *a;
669
670 if (s->tmp == NULL)
671 return;
672 s->tmp = NULL;
673
674 for (a = s->outs; a != NULL; a = a->outchain)
675 cleartraverse(nfa, a->to);
676}
677
678/*
679 - specialcolors - fill in special colors for an NFA
680 ^ static VOID specialcolors(struct nfa *);
681 */
682static VOID
683specialcolors(nfa)
684struct nfa *nfa;
685{
686 /* false colors for BOS, BOL, EOS, EOL */
687 if (nfa->parent == NULL) {
688 nfa->bos[0] = pseudocolor(nfa->cm);
689 nfa->bos[1] = pseudocolor(nfa->cm);
690 nfa->eos[0] = pseudocolor(nfa->cm);
691 nfa->eos[1] = pseudocolor(nfa->cm);
692 } else {
693 assert(nfa->parent->bos[0] != COLORLESS);
694 nfa->bos[0] = nfa->parent->bos[0];
695 assert(nfa->parent->bos[1] != COLORLESS);
696 nfa->bos[1] = nfa->parent->bos[1];
697 assert(nfa->parent->eos[0] != COLORLESS);
698 nfa->eos[0] = nfa->parent->eos[0];
699 assert(nfa->parent->eos[1] != COLORLESS);
700 nfa->eos[1] = nfa->parent->eos[1];
701 }
702}
703
704/*
705 - optimize - optimize an NFA
706 ^ static long optimize(struct nfa *, FILE *);
707 */
708static long /* re_info bits */
709optimize(nfa, f)
710struct nfa *nfa;
711FILE *f; /* for debug output; NULL none */
712{
713 int verbose = (f != NULL) ? 1 : 0;
714
715 if (verbose)
716 fprintf(f, "\ninitial cleanup:\n");
717 cleanup(nfa); /* may simplify situation */
718 if (verbose)
719 dumpnfa(nfa, f);
720 if (verbose)
721 fprintf(f, "\nempties:\n");
722 fixempties(nfa, f); /* get rid of EMPTY arcs */
723 if (verbose)
724 fprintf(f, "\nconstraints:\n");
725 pullback(nfa, f); /* pull back constraints backward */
726 pushfwd(nfa, f); /* push fwd constraints forward */
727 if (verbose)
728 fprintf(f, "\nfinal cleanup:\n");
729 cleanup(nfa); /* final tidying */
730 return analyze(nfa); /* and analysis */
731}
732
733/*
734 - pullback - pull back constraints backward to (with luck) eliminate them
735 ^ static VOID pullback(struct nfa *, FILE *);
736 */
737static VOID
738pullback(nfa, f)
739struct nfa *nfa;
740FILE *f; /* for debug output; NULL none */
741{
742 struct state *s;
743 struct state *nexts;
744 struct arc *a;
745 struct arc *nexta;
746 int progress;
747
748 /* find and pull until there are no more */
749 do {
750 progress = 0;
751 for (s = nfa->states; s != NULL && !NISERR(); s = nexts) {
752 nexts = s->next;
753 for (a = s->outs; a != NULL && !NISERR(); a = nexta) {
754 nexta = a->outchain;
755 if (a->type == '^' || a->type == BEHIND)
756 if (pull(nfa, a))
757 progress = 1;
758 assert(nexta == NULL || s->no != FREESTATE);
759 }
760 }
761 if (progress && f != NULL)
762 dumpnfa(nfa, f);
763 } while (progress && !NISERR());
764 if (NISERR())
765 return;
766
767 for (a = nfa->pre->outs; a != NULL; a = nexta) {
768 nexta = a->outchain;
769 if (a->type == '^') {
770 assert(a->co == 0 || a->co == 1);
771 newarc(nfa, PLAIN, nfa->bos[a->co], a->from, a->to);
772 freearc(nfa, a);
773 }
774 }
775}
776
777/*
778 - pull - pull a back constraint backward past its source state
779 * A significant property of this function is that it deletes at most
780 * one state -- the constraint's from state -- and only if the constraint
781 * was that state's last outarc.
782 ^ static int pull(struct nfa *, struct arc *);
783 */
784static int /* 0 couldn't, 1 could */
785pull(nfa, con)
786struct nfa *nfa;
787struct arc *con;
788{
789 struct state *from = con->from;
790 struct state *to = con->to;
791 struct arc *a;
792 struct arc *nexta;
793 struct state *s;
794
795 if (from == to) { /* circular constraint is pointless */
796 freearc(nfa, con);
797 return 1;
798 }
799 if (from->flag) /* can't pull back beyond start */
800 return 0;
801 if (from->nins == 0) { /* unreachable */
802 freearc(nfa, con);
803 return 1;
804 }
805
806 /* first, clone from state if necessary to avoid other outarcs */
807 if (from->nouts > 1) {
808 s = newstate(nfa);
809 if (NISERR())
810 return 0;
811 assert(to != from); /* con is not an inarc */
812 copyins(nfa, from, s); /* duplicate inarcs */
813 cparc(nfa, con, s, to); /* move constraint arc */
814 freearc(nfa, con);
815 from = s;
816 con = from->outs;
817 }
818 assert(from->nouts == 1);
819
820 /* propagate the constraint into the from state's inarcs */
821 for (a = from->ins; a != NULL; a = nexta) {
822 nexta = a->inchain;
823 switch (combine(con, a)) {
824 case INCOMPATIBLE: /* destroy the arc */
825 freearc(nfa, a);
826 break;
827 case SATISFIED: /* no action needed */
828 break;
829 case COMPATIBLE: /* swap the two arcs, more or less */
830 s = newstate(nfa);
831 if (NISERR())
832 return 0;
833 cparc(nfa, a, s, to); /* anticipate move */
834 cparc(nfa, con, a->from, s);
835 if (NISERR())
836 return 0;
837 freearc(nfa, a);
838 break;
839 default:
840 assert(NOTREACHED);
841 break;
842 }
843 }
844
845 /* remaining inarcs, if any, incorporate the constraint */
846 moveins(nfa, from, to);
847 dropstate(nfa, from); /* will free the constraint */
848 return 1;
849}
850
851/*
852 - pushfwd - push forward constraints forward to (with luck) eliminate them
853 ^ static VOID pushfwd(struct nfa *, FILE *);
854 */
855static VOID
856pushfwd(nfa, f)
857struct nfa *nfa;
858FILE *f; /* for debug output; NULL none */
859{
860 struct state *s;
861 struct state *nexts;
862 struct arc *a;
863 struct arc *nexta;
864 int progress;
865
866 /* find and push until there are no more */
867 do {
868 progress = 0;
869 for (s = nfa->states; s != NULL && !NISERR(); s = nexts) {
870 nexts = s->next;
871 for (a = s->ins; a != NULL && !NISERR(); a = nexta) {
872 nexta = a->inchain;
873 if (a->type == '$' || a->type == AHEAD)
874 if (push(nfa, a))
875 progress = 1;
876 assert(nexta == NULL || s->no != FREESTATE);
877 }
878 }
879 if (progress && f != NULL)
880 dumpnfa(nfa, f);
881 } while (progress && !NISERR());
882 if (NISERR())
883 return;
884
885 for (a = nfa->post->ins; a != NULL; a = nexta) {
886 nexta = a->inchain;
887 if (a->type == '$') {
888 assert(a->co == 0 || a->co == 1);
889 newarc(nfa, PLAIN, nfa->eos[a->co], a->from, a->to);
890 freearc(nfa, a);
891 }
892 }
893}
894
895/*
896 - push - push a forward constraint forward past its destination state
897 * A significant property of this function is that it deletes at most
898 * one state -- the constraint's to state -- and only if the constraint
899 * was that state's last inarc.
900 ^ static int push(struct nfa *, struct arc *);
901 */
902static int /* 0 couldn't, 1 could */
903push(nfa, con)
904struct nfa *nfa;
905struct arc *con;
906{
907 struct state *from = con->from;
908 struct state *to = con->to;
909 struct arc *a;
910 struct arc *nexta;
911 struct state *s;
912
913 if (to == from) { /* circular constraint is pointless */
914 freearc(nfa, con);
915 return 1;
916 }
917 if (to->flag) /* can't push forward beyond end */
918 return 0;
919 if (to->nouts == 0) { /* dead end */
920 freearc(nfa, con);
921 return 1;
922 }
923
924 /* first, clone to state if necessary to avoid other inarcs */
925 if (to->nins > 1) {
926 s = newstate(nfa);
927 if (NISERR())
928 return 0;
929 copyouts(nfa, to, s); /* duplicate outarcs */
930 cparc(nfa, con, from, s); /* move constraint */
931 freearc(nfa, con);
932 to = s;
933 con = to->ins;
934 }
935 assert(to->nins == 1);
936
937 /* propagate the constraint into the to state's outarcs */
938 for (a = to->outs; a != NULL; a = nexta) {
939 nexta = a->outchain;
940 switch (combine(con, a)) {
941 case INCOMPATIBLE: /* destroy the arc */
942 freearc(nfa, a);
943 break;
944 case SATISFIED: /* no action needed */
945 break;
946 case COMPATIBLE: /* swap the two arcs, more or less */
947 s = newstate(nfa);
948 if (NISERR())
949 return 0;
950 cparc(nfa, con, s, a->to); /* anticipate move */
951 cparc(nfa, a, from, s);
952 if (NISERR())
953 return 0;
954 freearc(nfa, a);
955 break;
956 default:
957 assert(NOTREACHED);
958 break;
959 }
960 }
961
962 /* remaining outarcs, if any, incorporate the constraint */
963 moveouts(nfa, to, from);
964 dropstate(nfa, to); /* will free the constraint */
965 return 1;
966}
967
968/*
969 - combine - constraint lands on an arc, what happens?
970 ^ #def INCOMPATIBLE 1 // destroys arc
971 ^ #def SATISFIED 2 // constraint satisfied
972 ^ #def COMPATIBLE 3 // compatible but not satisfied yet
973 ^ static int combine(struct arc *, struct arc *);
974 */
975static int
976combine(con, a)
977struct arc *con;
978struct arc *a;
979{
980# define CA(ct,at) (((ct)<<CHAR_BIT) | (at))
981
982 switch (CA(con->type, a->type)) {
983 case CA('^', PLAIN): /* newlines are handled separately */
984 case CA('$', PLAIN):
985 return INCOMPATIBLE;
986 break;
987 case CA(AHEAD, PLAIN): /* color constraints meet colors */
988 case CA(BEHIND, PLAIN):
989 if (con->co == a->co)
990 return SATISFIED;
991 return INCOMPATIBLE;
992 break;
993 case CA('^', '^'): /* collision, similar constraints */
994 case CA('$', '$'):
995 case CA(AHEAD, AHEAD):
996 case CA(BEHIND, BEHIND):
997 if (con->co == a->co) /* true duplication */
998 return SATISFIED;
999 return INCOMPATIBLE;
1000 break;
1001 case CA('^', BEHIND): /* collision, dissimilar constraints */
1002 case CA(BEHIND, '^'):
1003 case CA('$', AHEAD):
1004 case CA(AHEAD, '$'):
1005 return INCOMPATIBLE;
1006 break;
1007 case CA('^', '$'): /* constraints passing each other */
1008 case CA('^', AHEAD):
1009 case CA(BEHIND, '$'):
1010 case CA(BEHIND, AHEAD):
1011 case CA('$', '^'):
1012 case CA('$', BEHIND):
1013 case CA(AHEAD, '^'):
1014 case CA(AHEAD, BEHIND):
1015 case CA('^', LACON):
1016 case CA(BEHIND, LACON):
1017 case CA('$', LACON):
1018 case CA(AHEAD, LACON):
1019 return COMPATIBLE;
1020 break;
1021 }
1022 assert(NOTREACHED);
1023 return INCOMPATIBLE; /* for benefit of blind compilers */
1024}
1025
1026/*
1027 - fixempties - get rid of EMPTY arcs
1028 ^ static VOID fixempties(struct nfa *, FILE *);
1029 */
1030static VOID
1031fixempties(nfa, f)
1032struct nfa *nfa;
1033FILE *f; /* for debug output; NULL none */
1034{
1035 struct state *s;
1036 struct state *nexts;
1037 struct arc *a;
1038 struct arc *nexta;
1039 int progress;
1040
1041 /* find and eliminate empties until there are no more */
1042 do {
1043 progress = 0;
1044 for (s = nfa->states; s != NULL && !NISERR(); s = nexts) {
1045 nexts = s->next;
1046 for (a = s->outs; a != NULL && !NISERR(); a = nexta) {
1047 nexta = a->outchain;
1048 if (a->type == EMPTY && unempty(nfa, a))
1049 progress = 1;
1050 assert(nexta == NULL || s->no != FREESTATE);
1051 }
1052 }
1053 if (progress && f != NULL)
1054 dumpnfa(nfa, f);
1055 } while (progress && !NISERR());
1056}
1057
1058/*
1059 - unempty - optimize out an EMPTY arc, if possible
1060 * Actually, as it stands this function always succeeds, but the return
1061 * value is kept with an eye on possible future changes.
1062 ^ static int unempty(struct nfa *, struct arc *);
1063 */
1064static int /* 0 couldn't, 1 could */
1065unempty(nfa, a)
1066struct nfa *nfa;
1067struct arc *a;
1068{
1069 struct state *from = a->from;
1070 struct state *to = a->to;
1071 int usefrom; /* work on from, as opposed to to? */
1072
1073 assert(a->type == EMPTY);
1074 assert(from != nfa->pre && to != nfa->post);
1075
1076 if (from == to) { /* vacuous loop */
1077 freearc(nfa, a);
1078 return 1;
1079 }
1080
1081 /* decide which end to work on */
1082 usefrom = 1; /* default: attack from */
1083 if (from->nouts > to->nins)
1084 usefrom = 0;
1085 else if (from->nouts == to->nins) {
1086 /* decide on secondary issue: move/copy fewest arcs */
1087 if (from->nins > to->nouts)
1088 usefrom = 0;
1089 }
1090
1091 freearc(nfa, a);
1092 if (usefrom) {
1093 if (from->nouts == 0) {
1094 /* was the state's only outarc */
1095 moveins(nfa, from, to);
1096 freestate(nfa, from);
1097 } else
1098 copyins(nfa, from, to);
1099 } else {
1100 if (to->nins == 0) {
1101 /* was the state's only inarc */
1102 moveouts(nfa, to, from);
1103 freestate(nfa, to);
1104 } else
1105 copyouts(nfa, to, from);
1106 }
1107
1108 return 1;
1109}
1110
1111/*
1112 - cleanup - clean up NFA after optimizations
1113 ^ static VOID cleanup(struct nfa *);
1114 */
1115static VOID
1116cleanup(nfa)
1117struct nfa *nfa;
1118{
1119 struct state *s;
1120 struct state *nexts;
1121 int n;
1122
1123 /* clear out unreachable or dead-end states */
1124 /* use pre to mark reachable, then post to mark can-reach-post */
1125 markreachable(nfa, nfa->pre, (struct state *)NULL, nfa->pre);
1126 markcanreach(nfa, nfa->post, nfa->pre, nfa->post);
1127 for (s = nfa->states; s != NULL; s = nexts) {
1128 nexts = s->next;
1129 if (s->tmp != nfa->post && !s->flag)
1130 dropstate(nfa, s);
1131 }
1132 assert(nfa->post->nins == 0 || nfa->post->tmp == nfa->post);
1133 cleartraverse(nfa, nfa->pre);
1134 assert(nfa->post->nins == 0 || nfa->post->tmp == NULL);
1135 /* the nins==0 (final unreachable) case will be caught later */
1136
1137 /* renumber surviving states */
1138 n = 0;
1139 for (s = nfa->states; s != NULL; s = s->next)
1140 s->no = n++;
1141 nfa->nstates = n;
1142}
1143
1144/*
1145 - markreachable - recursive marking of reachable states
1146 ^ static VOID markreachable(struct nfa *, struct state *, struct state *,
1147 ^ struct state *);
1148 */
1149static VOID
1150markreachable(nfa, s, okay, mark)
1151struct nfa *nfa;
1152struct state *s;
1153struct state *okay; /* consider only states with this mark */
1154struct state *mark; /* the value to mark with */
1155{
1156 struct arc *a;
1157
1158 if (s->tmp != okay)
1159 return;
1160 s->tmp = mark;
1161
1162 for (a = s->outs; a != NULL; a = a->outchain)
1163 markreachable(nfa, a->to, okay, mark);
1164}
1165
1166/*
1167 - markcanreach - recursive marking of states which can reach here
1168 ^ static VOID markcanreach(struct nfa *, struct state *, struct state *,
1169 ^ struct state *);
1170 */
1171static VOID
1172markcanreach(nfa, s, okay, mark)
1173struct nfa *nfa;
1174struct state *s;
1175struct state *okay; /* consider only states with this mark */
1176struct state *mark; /* the value to mark with */
1177{
1178 struct arc *a;
1179
1180 if (s->tmp != okay)
1181 return;
1182 s->tmp = mark;
1183
1184 for (a = s->ins; a != NULL; a = a->inchain)
1185 markcanreach(nfa, a->from, okay, mark);
1186}
1187
1188/*
1189 - analyze - ascertain potentially-useful facts about an optimized NFA
1190 ^ static long analyze(struct nfa *);
1191 */
1192static long /* re_info bits to be ORed in */
1193analyze(nfa)
1194struct nfa *nfa;
1195{
1196 struct arc *a;
1197 struct arc *aa;
1198
1199 if (nfa->pre->outs == NULL)
1200 return REG_UIMPOSSIBLE;
1201 for (a = nfa->pre->outs; a != NULL; a = a->outchain)
1202 for (aa = a->to->outs; aa != NULL; aa = aa->outchain)
1203 if (aa->to == nfa->post)
1204 return REG_UEMPTYMATCH;
1205 return 0;
1206}
1207
1208/*
1209 - compact - compact an NFA
1210 ^ static VOID compact(struct nfa *, struct cnfa *);
1211 */
1212static VOID
1213compact(nfa, cnfa)
1214struct nfa *nfa;
1215struct cnfa *cnfa;
1216{
1217 struct state *s;
1218 struct arc *a;
1219 size_t nstates;
1220 size_t narcs;
1221 struct carc *ca;
1222 struct carc *first;
1223
1224 assert (!NISERR());
1225
1226 nstates = 0;
1227 narcs = 0;
1228 for (s = nfa->states; s != NULL; s = s->next) {
1229 nstates++;
1230 narcs += 1 + s->nouts + 1;
1231 /* 1 as a fake for flags, nouts for arcs, 1 as endmarker */
1232 }
1233
1234 cnfa->states = (struct carc **)MALLOC(nstates * sizeof(struct carc *));
1235 cnfa->arcs = (struct carc *)MALLOC(narcs * sizeof(struct carc));
1236 if (cnfa->states == NULL || cnfa->arcs == NULL) {
1237 if (cnfa->states != NULL)
1238 FREE(cnfa->states);
1239 if (cnfa->arcs != NULL)
1240 FREE(cnfa->arcs);
1241 NERR(REG_ESPACE);
1242 return;
1243 }
1244 cnfa->nstates = nstates;
1245 cnfa->pre = nfa->pre->no;
1246 cnfa->post = nfa->post->no;
1247 cnfa->bos[0] = nfa->bos[0];
1248 cnfa->bos[1] = nfa->bos[1];
1249 cnfa->eos[0] = nfa->eos[0];
1250 cnfa->eos[1] = nfa->eos[1];
1251 cnfa->ncolors = maxcolor(nfa->cm) + 1;
1252 cnfa->flags = 0;
1253
1254 ca = cnfa->arcs;
1255 for (s = nfa->states; s != NULL; s = s->next) {
1256 assert((size_t)s->no < nstates);
1257 cnfa->states[s->no] = ca;
1258 ca->co = 0; /* clear and skip flags "arc" */
1259 ca++;
1260 first = ca;
1261 for (a = s->outs; a != NULL; a = a->outchain)
1262 switch (a->type) {
1263 case PLAIN:
1264 ca->co = a->co;
1265 ca->to = a->to->no;
1266 ca++;
1267 break;
1268 case LACON:
1269 assert(s->no != cnfa->pre);
1270 ca->co = (color)(cnfa->ncolors + a->co);
1271 ca->to = a->to->no;
1272 ca++;
1273 cnfa->flags |= HASLACONS;
1274 break;
1275 default:
1276 assert(NOTREACHED);
1277 break;
1278 }
1279 carcsort(first, ca-1);
1280 ca->co = COLORLESS;
1281 ca->to = 0;
1282 ca++;
1283 }
1284 assert(ca == &cnfa->arcs[narcs]);
1285 assert(cnfa->nstates != 0);
1286
1287 /* mark no-progress states */
1288 for (a = nfa->pre->outs; a != NULL; a = a->outchain)
1289 cnfa->states[a->to->no]->co = 1;
1290 cnfa->states[nfa->pre->no]->co = 1;
1291}
1292
1293/*
1294 - carcsort - sort compacted-NFA arcs by color
1295 * Really dumb algorithm, but if the list is long enough for that to matter,
1296 * you're in real trouble anyway.
1297 ^ static VOID carcsort(struct carc *, struct carc *);
1298 */
1299static VOID
1300carcsort(first, last)
1301struct carc *first;
1302struct carc *last;
1303{
1304 struct carc *p;
1305 struct carc *q;
1306 struct carc tmp;
1307
1308 if (last - first <= 1)
1309 return;
1310
1311 for (p = first; p <= last; p++)
1312 for (q = p; q <= last; q++)
1313 if (p->co > q->co ||
1314 (p->co == q->co && p->to > q->to)) {
1315 assert(p != q);
1316 tmp = *p;
1317 *p = *q;
1318 *q = tmp;
1319 }
1320}
1321
1322/*
1323 - freecnfa - free a compacted NFA
1324 ^ static VOID freecnfa(struct cnfa *);
1325 */
1326static VOID
1327freecnfa(cnfa)
1328struct cnfa *cnfa;
1329{
1330 assert(cnfa->nstates != 0); /* not empty already */
1331 cnfa->nstates = 0;
1332 FREE(cnfa->states);
1333 FREE(cnfa->arcs);
1334}
1335
1336/*
1337 - dumpnfa - dump an NFA in human-readable form
1338 ^ static VOID dumpnfa(struct nfa *, FILE *);
1339 */
1340static VOID
1341dumpnfa(nfa, f)
1342struct nfa *nfa;
1343FILE *f;
1344{
1345#ifdef REG_DEBUG
1346 struct state *s;
1347
1348 fprintf(f, "pre %d, post %d", nfa->pre->no, nfa->post->no);
1349 if (nfa->bos[0] != COLORLESS)
1350 fprintf(f, ", bos [%ld]", (long)nfa->bos[0]);
1351 if (nfa->bos[1] != COLORLESS)
1352 fprintf(f, ", bol [%ld]", (long)nfa->bos[1]);
1353 if (nfa->eos[0] != COLORLESS)
1354 fprintf(f, ", eos [%ld]", (long)nfa->eos[0]);
1355 if (nfa->eos[1] != COLORLESS)
1356 fprintf(f, ", eol [%ld]", (long)nfa->eos[1]);
1357 fprintf(f, "\n");
1358 for (s = nfa->states; s != NULL; s = s->next)
1359 dumpstate(s, f);
1360 if (nfa->parent == NULL)
1361 dumpcolors(nfa->cm, f);
1362 fflush(f);
1363#endif
1364}
1365
1366#ifdef REG_DEBUG /* subordinates of dumpnfa */
1367/*
1368 ^ #ifdef REG_DEBUG
1369 */
1370
1371/*
1372 - dumpstate - dump an NFA state in human-readable form
1373 ^ static VOID dumpstate(struct state *, FILE *);
1374 */
1375static VOID
1376dumpstate(s, f)
1377struct state *s;
1378FILE *f;
1379{
1380 struct arc *a;
1381
1382 fprintf(f, "%d%s%c", s->no, (s->tmp != NULL) ? "T" : "",
1383 (s->flag) ? s->flag : '.');
1384 if (s->prev != NULL && s->prev->next != s)
1385 fprintf(f, "\tstate chain bad\n");
1386 if (s->nouts == 0)
1387 fprintf(f, "\tno out arcs\n");
1388 else
1389 dumparcs(s, f);
1390 fflush(f);
1391 for (a = s->ins; a != NULL; a = a->inchain) {
1392 if (a->to != s)
1393 fprintf(f, "\tlink from %d to %d on %d's in-chain\n",
1394 a->from->no, a->to->no, s->no);
1395 }
1396}
1397
1398/*
1399 - dumparcs - dump out-arcs in human-readable form
1400 ^ static VOID dumparcs(struct state *, FILE *);
1401 */
1402static VOID
1403dumparcs(s, f)
1404struct state *s;
1405FILE *f;
1406{
1407 int pos;
1408
1409 assert(s->nouts > 0);
1410 /* printing arcs in reverse order is usually clearer */
1411 pos = dumprarcs(s->outs, s, f, 1);
1412 if (pos != 1)
1413 fprintf(f, "\n");
1414}
1415
1416/*
1417 - dumprarcs - dump remaining outarcs, recursively, in reverse order
1418 ^ static int dumprarcs(struct arc *, struct state *, FILE *, int);
1419 */
1420static int /* resulting print position */
1421dumprarcs(a, s, f, pos)
1422struct arc *a;
1423struct state *s;
1424FILE *f;
1425int pos; /* initial print position */
1426{
1427 if (a->outchain != NULL)
1428 pos = dumprarcs(a->outchain, s, f, pos);
1429 dumparc(a, s, f);
1430 if (pos == 5) {
1431 fprintf(f, "\n");
1432 pos = 1;
1433 } else
1434 pos++;
1435 return pos;
1436}
1437
1438/*
1439 - dumparc - dump one outarc in readable form, including prefixing tab
1440 ^ static VOID dumparc(struct arc *, struct state *, FILE *);
1441 */
1442static VOID
1443dumparc(a, s, f)
1444struct arc *a;
1445struct state *s;
1446FILE *f;
1447{
1448 struct arc *aa;
1449 struct arcbatch *ab;
1450
1451 fprintf(f, "\t");
1452 switch (a->type) {
1453 case PLAIN:
1454 fprintf(f, "[%ld]", (long)a->co);
1455 break;
1456 case AHEAD:
1457 fprintf(f, ">%ld>", (long)a->co);
1458 break;
1459 case BEHIND:
1460 fprintf(f, "<%ld<", (long)a->co);
1461 break;
1462 case LACON:
1463 fprintf(f, ":%ld:", (long)a->co);
1464 break;
1465 case '^':
1466 case '$':
1467 fprintf(f, "%c%d", a->type, (int)a->co);
1468 break;
1469 case EMPTY:
1470 break;
1471 default:
1472 fprintf(f, "0x%x/0%lo", a->type, (long)a->co);
1473 break;
1474 }
1475 if (a->from != s)
1476 fprintf(f, "?%d?", a->from->no);
1477 for (ab = &a->from->oas; ab != NULL; ab = ab->next) {
1478 for (aa = &ab->a[0]; aa < &ab->a[ABSIZE]; aa++)
1479 if (aa == a)
1480 break; /* NOTE BREAK OUT */
1481 if (aa < &ab->a[ABSIZE]) /* propagate break */
1482 break; /* NOTE BREAK OUT */
1483 }
1484 if (ab == NULL)
1485 fprintf(f, "?!?"); /* not in allocated space */
1486 fprintf(f, "->");
1487 if (a->to == NULL) {
1488 fprintf(f, "NULL");
1489 return;
1490 }
1491 fprintf(f, "%d", a->to->no);
1492 for (aa = a->to->ins; aa != NULL; aa = aa->inchain)
1493 if (aa == a)
1494 break; /* NOTE BREAK OUT */
1495 if (aa == NULL)
1496 fprintf(f, "?!?"); /* missing from in-chain */
1497}
1498
1499/*
1500 ^ #endif
1501 */
1502#endif /* ifdef REG_DEBUG */
1503
1504/*
1505 - dumpcnfa - dump a compacted NFA in human-readable form
1506 ^ static VOID dumpcnfa(struct cnfa *, FILE *);
1507 */
1508static VOID
1509dumpcnfa(cnfa, f)
1510struct cnfa *cnfa;
1511FILE *f;
1512{
1513#ifdef REG_DEBUG
1514 int st;
1515
1516 fprintf(f, "pre %d, post %d", cnfa->pre, cnfa->post);
1517 if (cnfa->bos[0] != COLORLESS)
1518 fprintf(f, ", bos [%ld]", (long)cnfa->bos[0]);
1519 if (cnfa->bos[1] != COLORLESS)
1520 fprintf(f, ", bol [%ld]", (long)cnfa->bos[1]);
1521 if (cnfa->eos[0] != COLORLESS)
1522 fprintf(f, ", eos [%ld]", (long)cnfa->eos[0]);
1523 if (cnfa->eos[1] != COLORLESS)
1524 fprintf(f, ", eol [%ld]", (long)cnfa->eos[1]);
1525 if (cnfa->flags&HASLACONS)
1526 fprintf(f, ", haslacons");
1527 fprintf(f, "\n");
1528 for (st = 0; st < cnfa->nstates; st++)
1529 dumpcstate(st, cnfa->states[st], cnfa, f);
1530 fflush(f);
1531#endif
1532}
1533
1534#ifdef REG_DEBUG /* subordinates of dumpcnfa */
1535/*
1536 ^ #ifdef REG_DEBUG
1537 */
1538
1539/*
1540 - dumpcstate - dump a compacted-NFA state in human-readable form
1541 ^ static VOID dumpcstate(int, struct carc *, struct cnfa *, FILE *);
1542 */
1543static VOID
1544dumpcstate(st, ca, cnfa, f)
1545int st;
1546struct carc *ca;
1547struct cnfa *cnfa;
1548FILE *f;
1549{
1550 int i;
1551 int pos;
1552
1553 fprintf(f, "%d%s", st, (ca[0].co) ? ":" : ".");
1554 pos = 1;
1555 for (i = 1; ca[i].co != COLORLESS; i++) {
1556 if (ca[i].co < cnfa->ncolors)
1557 fprintf(f, "\t[%ld]->%d", (long)ca[i].co, ca[i].to);
1558 else
1559 fprintf(f, "\t:%ld:->%d", (long)ca[i].co-cnfa->ncolors,
1560 ca[i].to);
1561 if (pos == 5) {
1562 fprintf(f, "\n");
1563 pos = 1;
1564 } else
1565 pos++;
1566 }
1567 if (i == 1 || pos != 1)
1568 fprintf(f, "\n");
1569 fflush(f);
1570}
1571
1572/*
1573 ^ #endif
1574 */
1575#endif /* ifdef REG_DEBUG */