]>
Commit | Line | Data |
---|---|---|
1 | /***************************************************************************/ | |
2 | /* */ | |
3 | /* ftraster.c */ | |
4 | /* */ | |
5 | /* The FreeType glyph rasterizer (body). */ | |
6 | /* */ | |
7 | /* Copyright 1996-2000 by */ | |
8 | /* David Turner, Robert Wilhelm, and Werner Lemberg. */ | |
9 | /* */ | |
10 | /* This file is part of the FreeType project, and may only be used, */ | |
11 | /* modified, and distributed under the terms of the FreeType project */ | |
12 | /* license, LICENSE.TXT. By continuing to use, modify, or distribute */ | |
13 | /* this file you indicate that you have read the license and */ | |
14 | /* understand and accept it fully. */ | |
15 | /* */ | |
16 | /***************************************************************************/ | |
17 | ||
18 | /*************************************************************************/ | |
19 | /* */ | |
20 | /* This is a rewrite of the FreeType 1.x scan-line converter */ | |
21 | /* */ | |
22 | /*************************************************************************/ | |
23 | ||
24 | ||
25 | #include "ftraster.h" | |
26 | #include <freetype/internal/ftcalc.h> /* for FT_MulDiv() only */ | |
27 | ||
28 | ||
29 | /*************************************************************************/ | |
30 | /* */ | |
31 | /* A simple technical note on how the raster works */ | |
32 | /* ----------------------------------------------- */ | |
33 | /* */ | |
34 | /* Converting an outline into a bitmap is achieved in several steps: */ | |
35 | /* */ | |
36 | /* 1 - Decomposing the outline into successive `profiles'. Each */ | |
37 | /* profile is simply an array of scanline intersections on a given */ | |
38 | /* dimension. A profile's main attributes are */ | |
39 | /* */ | |
40 | /* o its scanline position boundaries, i.e. `Ymin' and `Ymax'. */ | |
41 | /* */ | |
42 | /* o an array of intersection coordinates for each scanline */ | |
43 | /* between `Ymin' and `Ymax'. */ | |
44 | /* */ | |
45 | /* o a direction, indicating whether it was built going `up' or */ | |
46 | /* `down', as this is very important for filling rules. */ | |
47 | /* */ | |
48 | /* 2 - Sweeping the target map's scanlines in order to compute segment */ | |
49 | /* `spans' which are then filled. Additionally, this pass */ | |
50 | /* performs drop-out control. */ | |
51 | /* */ | |
52 | /* The outline data is parsed during step 1 only. The profiles are */ | |
53 | /* built from the bottom of the render pool, used as a stack. The */ | |
54 | /* following graphics shows the profile list under construction: */ | |
55 | /* */ | |
56 | /* ____________________________________________________________ _ _ */ | |
57 | /* | | | | | */ | |
58 | /* | profile | coordinates for | profile | coordinates for |--> */ | |
59 | /* | 1 | profile 1 | 2 | profile 2 |--> */ | |
60 | /* |_________|___________________|_________|_________________|__ _ _ */ | |
61 | /* */ | |
62 | /* ^ ^ */ | |
63 | /* | | */ | |
64 | /* start of render pool top */ | |
65 | /* */ | |
66 | /* The top of the profile stack is kept in the `top' variable. */ | |
67 | /* */ | |
68 | /* As you can see, a profile record is pushed on top of the render */ | |
69 | /* pool, which is then followed by its coordinates/intersections. If */ | |
70 | /* a change of direction is detected in the outline, a new profile is */ | |
71 | /* generated until the end of the outline. */ | |
72 | /* */ | |
73 | /* Note that when all profiles have been generated, the function */ | |
74 | /* Finalize_Profile_Table() is used to record, for each profile, its */ | |
75 | /* bottom-most scanline as well as the scanline above its upmost */ | |
76 | /* boundary. These positions are called `y-turns' because they (sort */ | |
77 | /* of) correspond to local extrema. They are stored in a sorted list */ | |
78 | /* built from the top of the render pool as a downwards stack: */ | |
79 | /* */ | |
80 | /* _ _ _______________________________________ */ | |
81 | /* | | */ | |
82 | /* <--| sorted list of | */ | |
83 | /* <--| extrema scanlines | */ | |
84 | /* _ _ __________________|____________________| */ | |
85 | /* */ | |
86 | /* ^ ^ */ | |
87 | /* | | */ | |
88 | /* maxBuff sizeBuff = end of pool */ | |
89 | /* */ | |
90 | /* This list is later used during the sweep phase in order to */ | |
91 | /* optimize performance (see technical note on the sweep below). */ | |
92 | /* */ | |
93 | /* Of course, the raster detects whether the two stacks collide and */ | |
94 | /* handles the situation propertly. */ | |
95 | /* */ | |
96 | /*************************************************************************/ | |
97 | ||
98 | ||
99 | /*************************************************************************/ | |
100 | /*************************************************************************/ | |
101 | /** **/ | |
102 | /** CONFIGURATION MACROS **/ | |
103 | /** **/ | |
104 | /*************************************************************************/ | |
105 | /*************************************************************************/ | |
106 | ||
107 | /* define DEBUG_RASTER if you want to compile a debugging version */ | |
108 | #define xxxDEBUG_RASTER | |
109 | ||
110 | /* The default render pool size in bytes */ | |
111 | #define RASTER_RENDER_POOL 8192 | |
112 | ||
113 | /* undefine FT_RASTER_OPTION_ANTI_ALIASING if you do not want to support */ | |
114 | /* 5-levels anti-aliasing */ | |
115 | #ifdef FT_CONFIG_OPTION_5_GRAY_LEVELS | |
116 | #define FT_RASTER_OPTION_ANTI_ALIASING | |
117 | #endif | |
118 | ||
119 | /* The size of the two-lines intermediate bitmap used */ | |
120 | /* for anti-aliasing, in bytes. */ | |
121 | #define RASTER_GRAY_LINES 2048 | |
122 | ||
123 | ||
124 | /*************************************************************************/ | |
125 | /*************************************************************************/ | |
126 | /** **/ | |
127 | /** OTHER MACROS (do not change) **/ | |
128 | /** **/ | |
129 | /*************************************************************************/ | |
130 | /*************************************************************************/ | |
131 | ||
132 | /*************************************************************************/ | |
133 | /* */ | |
134 | /* The macro FT_COMPONENT is used in trace mode. It is an implicit */ | |
135 | /* parameter of the FT_TRACE() and FT_ERROR() macros, used to print/log */ | |
136 | /* messages during execution. */ | |
137 | /* */ | |
138 | #undef FT_COMPONENT | |
139 | #define FT_COMPONENT trace_raster | |
140 | ||
141 | ||
142 | #ifdef _STANDALONE_ | |
143 | ||
144 | ||
145 | /* This macro is used to indicate that a function parameter is unused. */ | |
146 | /* Its purpose is simply to reduce compiler warnings. Note also that */ | |
147 | /* simply defining it as `(void)x' doesn't avoid warnings with certain */ | |
148 | /* ANSI compilers (e.g. LCC). */ | |
149 | #define FT_UNUSED( x ) (x) = (x) | |
150 | ||
151 | /* Disable the tracing mechanism for simplicity -- developers can */ | |
152 | /* activate it easily by redefining these two macros. */ | |
153 | #ifndef FT_ERROR | |
154 | #define FT_ERROR( x ) do ; while ( 0 ) /* nothing */ | |
155 | #endif | |
156 | ||
157 | #ifndef FT_TRACE | |
158 | #define FT_TRACE( x ) do ; while ( 0 ) /* nothing */ | |
159 | #endif | |
160 | ||
161 | #define Raster_Err_None 0 | |
162 | #define Raster_Err_Not_Ini -1 | |
163 | #define Raster_Err_Overflow -2 | |
164 | #define Raster_Err_Neg_Height -3 | |
165 | #define Raster_Err_Invalid -4 | |
166 | #define Raster_Err_Unsupported -5 | |
167 | ||
168 | ||
169 | #else /* _STANDALONE_ */ | |
170 | ||
171 | ||
172 | #include <freetype/internal/ftobjs.h> | |
173 | #include <freetype/internal/ftdebug.h> /* for FT_TRACE() and FT_ERROR() */ | |
174 | ||
175 | #define Raster_Err_None FT_Err_Ok | |
176 | #define Raster_Err_Not_Ini FT_Err_Raster_Uninitialized | |
177 | #define Raster_Err_Overflow FT_Err_Raster_Overflow | |
178 | #define Raster_Err_Neg_Height FT_Err_Raster_Negative_Height | |
179 | #define Raster_Err_Invalid FT_Err_Invalid_Outline | |
180 | #define Raster_Err_Unsupported FT_Err_Unimplemented_Feature | |
181 | ||
182 | ||
183 | #endif /* _STANDALONE_ */ | |
184 | ||
185 | ||
186 | /* FMulDiv means `Fast MulDiv'; it is used in case where `b' is */ | |
187 | /* typically a small value and the result of a*b is known to fit into */ | |
188 | /* 32 bits. */ | |
189 | #define FMulDiv( a, b, c ) ( (a) * (b) / (c) ) | |
190 | ||
191 | /* On the other hand, SMulDiv means `Slow MulDiv', and is used typically */ | |
192 | /* for clipping computations. It simply uses the FT_MulDiv() function */ | |
193 | /* defined in `ftcalc.h'. */ | |
194 | #define SMulDiv FT_MulDiv | |
195 | ||
196 | /* The rasterizer is a very general purpose component; please leave */ | |
197 | /* the following redefinitions there (you never know your target */ | |
198 | /* environment). */ | |
199 | ||
200 | #ifndef TRUE | |
201 | #define TRUE 1 | |
202 | #endif | |
203 | ||
204 | #ifndef FALSE | |
205 | #define FALSE 0 | |
206 | #endif | |
207 | ||
208 | #ifndef NULL | |
209 | #define NULL (void*)0 | |
210 | #endif | |
211 | ||
212 | #ifndef SUCCESS | |
213 | #define SUCCESS 0 | |
214 | #endif | |
215 | ||
216 | #ifndef FAILURE | |
217 | #define FAILURE 1 | |
218 | #endif | |
219 | ||
220 | ||
221 | #define MaxBezier 32 /* The maximum number of stacked Bezier curves. */ | |
222 | /* Setting this constant to more than 32 is a */ | |
223 | /* pure waste of space. */ | |
224 | ||
225 | #define Pixel_Bits 6 /* fractional bits of *input* coordinates */ | |
226 | ||
227 | ||
228 | /*************************************************************************/ | |
229 | /*************************************************************************/ | |
230 | /** **/ | |
231 | /** SIMPLE TYPE DECLARATIONS **/ | |
232 | /** **/ | |
233 | /*************************************************************************/ | |
234 | /*************************************************************************/ | |
235 | ||
236 | typedef int Int; | |
237 | typedef unsigned int UInt; | |
238 | typedef short Short; | |
239 | typedef unsigned short UShort, *PUShort; | |
240 | typedef long Long, *PLong; | |
241 | typedef unsigned long ULong; | |
242 | ||
243 | typedef unsigned char Byte, *PByte; | |
244 | typedef char Bool; | |
245 | ||
246 | typedef struct TPoint_ | |
247 | { | |
248 | Long x; | |
249 | Long y; | |
250 | ||
251 | } TPoint; | |
252 | ||
253 | ||
254 | typedef enum TFlow_ | |
255 | { | |
256 | Flow_None = 0, | |
257 | Flow_Up = 1, | |
258 | Flow_Down = -1 | |
259 | ||
260 | } TFlow; | |
261 | ||
262 | ||
263 | /* States of each line, arc, and profile */ | |
264 | typedef enum TStates_ | |
265 | { | |
266 | Unknown, | |
267 | Ascending, | |
268 | Descending, | |
269 | Flat | |
270 | ||
271 | } TStates; | |
272 | ||
273 | ||
274 | typedef struct TProfile_ TProfile; | |
275 | typedef TProfile* PProfile; | |
276 | ||
277 | struct TProfile_ | |
278 | { | |
279 | FT_F26Dot6 X; /* current coordinate during sweep */ | |
280 | PProfile link; /* link to next profile - various purpose */ | |
281 | PLong offset; /* start of profile's data in render pool */ | |
282 | Int flow; /* Profile orientation: Asc/Descending */ | |
283 | Long height; /* profile's height in scanlines */ | |
284 | Long start; /* profile's starting scanline */ | |
285 | ||
286 | UShort countL; /* number of lines to step before this */ | |
287 | /* profile becomes drawable */ | |
288 | ||
289 | PProfile next; /* next profile in same contour, used */ | |
290 | /* during drop-out control */ | |
291 | }; | |
292 | ||
293 | typedef PProfile TProfileList; | |
294 | typedef PProfile* PProfileList; | |
295 | ||
296 | ||
297 | /* Simple record used to implement a stack of bands, required */ | |
298 | /* by the sub-banding mechanism */ | |
299 | typedef struct TBand_ | |
300 | { | |
301 | Short y_min; /* band's minimum */ | |
302 | Short y_max; /* band's maximum */ | |
303 | ||
304 | } TBand; | |
305 | ||
306 | ||
307 | #define AlignProfileSize \ | |
308 | ( ( sizeof ( TProfile ) + sizeof ( long ) - 1 ) / sizeof ( long ) ) | |
309 | ||
310 | ||
311 | #ifdef TT_STATIC_RASTER | |
312 | ||
313 | ||
314 | #define RAS_ARGS /* void */ | |
315 | #define RAS_ARG /* void */ | |
316 | ||
317 | #define RAS_VARS /* void */ | |
318 | #define RAS_VAR /* void */ | |
319 | ||
320 | #define FT_UNUSED_RASTER do ; while ( 0 ) | |
321 | ||
322 | ||
323 | #else /* TT_STATIC_RASTER */ | |
324 | ||
325 | ||
326 | #define RAS_ARGS TRaster_Instance* raster, | |
327 | #define RAS_ARG TRaster_Instance* raster | |
328 | ||
329 | #define RAS_VARS raster, | |
330 | #define RAS_VAR raster | |
331 | ||
332 | #define FT_UNUSED_RASTER FT_UNUSED( raster ) | |
333 | ||
334 | ||
335 | #endif /* TT_STATIC_RASTER */ | |
336 | ||
337 | ||
338 | typedef struct TRaster_Instance_ TRaster_Instance; | |
339 | ||
340 | ||
341 | /* prototypes used for sweep function dispatch */ | |
342 | typedef void Function_Sweep_Init( RAS_ARGS Short* min, | |
343 | Short* max ); | |
344 | ||
345 | typedef void Function_Sweep_Span( RAS_ARGS Short y, | |
346 | FT_F26Dot6 x1, | |
347 | FT_F26Dot6 x2, | |
348 | PProfile left, | |
349 | PProfile right ); | |
350 | ||
351 | typedef void Function_Sweep_Step( RAS_ARG ); | |
352 | ||
353 | ||
354 | /* NOTE: These operations are only valid on 2's complement processors */ | |
355 | ||
356 | #define FLOOR( x ) ( (x) & -ras.precision ) | |
357 | #define CEILING( x ) ( ( (x) + ras.precision - 1 ) & -ras.precision ) | |
358 | #define TRUNC( x ) ( (signed long)(x) >> ras.precision_bits ) | |
359 | #define FRAC( x ) ( (x) & ( ras.precision - 1 ) ) | |
360 | #define SCALED( x ) ( ( (x) << ras.scale_shift ) - ras.precision_half ) | |
361 | ||
362 | /* Note that I have moved the location of some fields in the */ | |
363 | /* structure to ensure that the most used variables are used */ | |
364 | /* at the top. Thus, their offset can be coded with less */ | |
365 | /* opcodes, and it results in a smaller executable. */ | |
366 | ||
367 | struct TRaster_Instance_ | |
368 | { | |
369 | Int precision_bits; /* precision related variables */ | |
370 | Int precision; | |
371 | Int precision_half; | |
372 | Long precision_mask; | |
373 | Int precision_shift; | |
374 | Int precision_step; | |
375 | Int precision_jitter; | |
376 | ||
377 | Int scale_shift; /* == precision_shift for bitmaps */ | |
378 | /* == precision_shift+1 for pixmaps */ | |
379 | ||
380 | PLong buff; /* The profiles buffer */ | |
381 | PLong sizeBuff; /* Render pool size */ | |
382 | PLong maxBuff; /* Profiles buffer size */ | |
383 | PLong top; /* Current cursor in buffer */ | |
384 | ||
385 | FT_Error error; | |
386 | ||
387 | Int numTurns; /* number of Y-turns in outline */ | |
388 | ||
389 | TPoint* arc; /* current Bezier arc pointer */ | |
390 | ||
391 | UShort bWidth; /* target bitmap width */ | |
392 | PByte bTarget; /* target bitmap buffer */ | |
393 | PByte gTarget; /* target pixmap buffer */ | |
394 | ||
395 | Long lastX, lastY, minY, maxY; | |
396 | ||
397 | UShort num_Profs; /* current number of profiles */ | |
398 | ||
399 | Bool fresh; /* signals a fresh new profile which */ | |
400 | /* 'start' field must be completed */ | |
401 | Bool joint; /* signals that the last arc ended */ | |
402 | /* exactly on a scanline. Allows */ | |
403 | /* removal of doublets */ | |
404 | PProfile cProfile; /* current profile */ | |
405 | PProfile fProfile; /* head of linked list of profiles */ | |
406 | PProfile gProfile; /* contour's first profile in case */ | |
407 | /* of impact */ | |
408 | ||
409 | TStates state; /* rendering state */ | |
410 | ||
411 | FT_Bitmap target; /* description of target bit/pixmap */ | |
412 | FT_Outline outline; | |
413 | ||
414 | Long traceOfs; /* current offset in target bitmap */ | |
415 | Long traceG; /* current offset in target pixmap */ | |
416 | ||
417 | Short traceIncr; /* sweep's increment in target bitmap */ | |
418 | ||
419 | Short gray_min_x; /* current min x during gray rendering */ | |
420 | Short gray_max_x; /* current max x during gray rendering */ | |
421 | ||
422 | /* dispatch variables */ | |
423 | ||
424 | Function_Sweep_Init* Proc_Sweep_Init; | |
425 | Function_Sweep_Span* Proc_Sweep_Span; | |
426 | Function_Sweep_Span* Proc_Sweep_Drop; | |
427 | Function_Sweep_Step* Proc_Sweep_Step; | |
428 | ||
429 | Byte dropOutControl; /* current drop_out control method */ | |
430 | ||
431 | Bool second_pass; /* indicates wether a horizontal pass */ | |
432 | /* should be performed to control */ | |
433 | /* drop-out accurately when calling */ | |
434 | /* Render_Glyph. Note that there is */ | |
435 | /* no horizontal pass during gray */ | |
436 | /* rendering. */ | |
437 | ||
438 | TPoint arcs[2 * MaxBezier + 1]; /* The Bezier stack */ | |
439 | ||
440 | TBand band_stack[16]; /* band stack used for sub-banding */ | |
441 | Int band_top; /* band stack top */ | |
442 | ||
443 | Int count_table[256]; /* Look-up table used to quickly count */ | |
444 | /* set bits in a gray 2x2 cell */ | |
445 | ||
446 | void* memory; | |
447 | ||
448 | #ifdef FT_RASTER_OPTION_ANTI_ALIASING | |
449 | ||
450 | Byte grays[5]; /* Palette of gray levels used for */ | |
451 | /* render. */ | |
452 | ||
453 | Byte gray_lines[RASTER_GRAY_LINES]; | |
454 | /* Intermediate table used to render the */ | |
455 | /* graylevels pixmaps. */ | |
456 | /* gray_lines is a buffer holding two */ | |
457 | /* monochrome scanlines */ | |
458 | ||
459 | Short gray_width; /* width in bytes of one monochrome */ | |
460 | /* intermediate scanline of gray_lines. */ | |
461 | /* Each gray pixel takes 2 bits long there */ | |
462 | ||
463 | /* The gray_lines must hold 2 lines, thus with size */ | |
464 | /* in bytes of at least `gray_width*2'. */ | |
465 | ||
466 | #endif /* FT_RASTER_ANTI_ALIASING */ | |
467 | ||
468 | #if 0 | |
469 | PByte flags; /* current flags table */ | |
470 | PUShort outs; /* current outlines table */ | |
471 | FT_Vector* coords; | |
472 | ||
473 | UShort nPoints; /* number of points in current glyph */ | |
474 | Short nContours; /* number of contours in current glyph */ | |
475 | #endif | |
476 | ||
477 | }; | |
478 | ||
479 | ||
480 | #ifdef FT_CONFIG_OPTION_STATIC_RASTER | |
481 | ||
482 | static TRaster_Instance cur_ras; | |
483 | #define ras cur_ras | |
484 | ||
485 | #else | |
486 | ||
487 | #define ras (*raster) | |
488 | ||
489 | #endif /* FT_CONFIG_OPTION_STATIC_RASTER */ | |
490 | ||
491 | ||
492 | /*************************************************************************/ | |
493 | /*************************************************************************/ | |
494 | /** **/ | |
495 | /** PROFILES COMPUTATION **/ | |
496 | /** **/ | |
497 | /*************************************************************************/ | |
498 | /*************************************************************************/ | |
499 | ||
500 | ||
501 | /*************************************************************************/ | |
502 | /* */ | |
503 | /* <Function> */ | |
504 | /* Set_High_Precision */ | |
505 | /* */ | |
506 | /* <Description> */ | |
507 | /* Sets precision variables according to param flag. */ | |
508 | /* */ | |
509 | /* <Input> */ | |
510 | /* High :: Set to True for high precision (typically for ppem < 18), */ | |
511 | /* false otherwise. */ | |
512 | /* */ | |
513 | static | |
514 | void Set_High_Precision( RAS_ARGS Int High ) | |
515 | { | |
516 | if ( High ) | |
517 | { | |
518 | ras.precision_bits = 10; | |
519 | ras.precision_step = 128; | |
520 | ras.precision_jitter = 24; | |
521 | } | |
522 | else | |
523 | { | |
524 | ras.precision_bits = 6; | |
525 | ras.precision_step = 32; | |
526 | ras.precision_jitter = 2; | |
527 | } | |
528 | ||
529 | FT_TRACE6(( "Set_High_Precision(%s)\n", High ? "true" : "false" )); | |
530 | ||
531 | ras.precision = 1L << ras.precision_bits; | |
532 | ras.precision_half = ras.precision / 2; | |
533 | ras.precision_shift = ras.precision_bits - Pixel_Bits; | |
534 | ras.precision_mask = -ras.precision; | |
535 | } | |
536 | ||
537 | ||
538 | /*************************************************************************/ | |
539 | /* */ | |
540 | /* <Function> */ | |
541 | /* New_Profile */ | |
542 | /* */ | |
543 | /* <Description> */ | |
544 | /* Creates a new profile in the render pool. */ | |
545 | /* */ | |
546 | /* <Input> */ | |
547 | /* aState :: The state/orientation of the new profile. */ | |
548 | /* */ | |
549 | /* <Return> */ | |
550 | /* SUCCESS on success. FAILURE in case of overflow or of incoherent */ | |
551 | /* profile. */ | |
552 | /* */ | |
553 | static | |
554 | Bool New_Profile( RAS_ARGS TStates aState ) | |
555 | { | |
556 | if ( !ras.fProfile ) | |
557 | { | |
558 | ras.cProfile = (PProfile)ras.top; | |
559 | ras.fProfile = ras.cProfile; | |
560 | ras.top += AlignProfileSize; | |
561 | } | |
562 | ||
563 | if ( ras.top >= ras.maxBuff ) | |
564 | { | |
565 | ras.error = Raster_Err_Overflow; | |
566 | return FAILURE; | |
567 | } | |
568 | ||
569 | switch ( aState ) | |
570 | { | |
571 | case Ascending: | |
572 | ras.cProfile->flow = Flow_Up; | |
573 | FT_TRACE6(( "New ascending profile = %lx\n", (long)ras.cProfile )); | |
574 | break; | |
575 | ||
576 | case Descending: | |
577 | ras.cProfile->flow = Flow_Down; | |
578 | FT_TRACE6(( "New descending profile = %lx\n", (long)ras.cProfile )); | |
579 | break; | |
580 | ||
581 | default: | |
582 | FT_ERROR(( "New_Profile: invalid profile direction!\n" )); | |
583 | ras.error = Raster_Err_Invalid; | |
584 | return FAILURE; | |
585 | } | |
586 | ||
587 | ras.cProfile->start = 0; | |
588 | ras.cProfile->height = 0; | |
589 | ras.cProfile->offset = ras.top; | |
590 | ras.cProfile->link = (PProfile)0; | |
591 | ras.cProfile->next = (PProfile)0; | |
592 | ||
593 | if ( !ras.gProfile ) | |
594 | ras.gProfile = ras.cProfile; | |
595 | ||
596 | ras.state = aState; | |
597 | ras.fresh = TRUE; | |
598 | ras.joint = FALSE; | |
599 | ||
600 | return SUCCESS; | |
601 | } | |
602 | ||
603 | ||
604 | /*************************************************************************/ | |
605 | /* */ | |
606 | /* <Function> */ | |
607 | /* End_Profile */ | |
608 | /* */ | |
609 | /* <Description> */ | |
610 | /* Finalizes the current profile. */ | |
611 | /* */ | |
612 | /* <Return> */ | |
613 | /* SUCCESS on success. FAILURE in case of overflow or incoherency. */ | |
614 | /* */ | |
615 | static | |
616 | Bool End_Profile( RAS_ARG ) | |
617 | { | |
618 | Long h; | |
619 | PProfile oldProfile; | |
620 | ||
621 | ||
622 | h = ras.top - ras.cProfile->offset; | |
623 | ||
624 | if ( h < 0 ) | |
625 | { | |
626 | FT_ERROR(( "End_Profile: negative height encountered!\n" )); | |
627 | ras.error = Raster_Err_Neg_Height; | |
628 | return FAILURE; | |
629 | } | |
630 | ||
631 | if ( h > 0 ) | |
632 | { | |
633 | FT_TRACE6(( "Ending profile %lx, start = %ld, height = %ld\n", | |
634 | (long)ras.cProfile, ras.cProfile->start, h )); | |
635 | ||
636 | oldProfile = ras.cProfile; | |
637 | ras.cProfile->height = h; | |
638 | ras.cProfile = (PProfile)ras.top; | |
639 | ||
640 | ras.top += AlignProfileSize; | |
641 | ||
642 | ras.cProfile->height = 0; | |
643 | ras.cProfile->offset = ras.top; | |
644 | oldProfile->next = ras.cProfile; | |
645 | ras.num_Profs++; | |
646 | } | |
647 | ||
648 | if ( ras.top >= ras.maxBuff ) | |
649 | { | |
650 | FT_TRACE1(( "overflow in End_Profile\n" )); | |
651 | ras.error = Raster_Err_Overflow; | |
652 | return FAILURE; | |
653 | } | |
654 | ||
655 | ras.joint = FALSE; | |
656 | ||
657 | return SUCCESS; | |
658 | } | |
659 | ||
660 | ||
661 | /*************************************************************************/ | |
662 | /* */ | |
663 | /* <Function> */ | |
664 | /* Insert_Y_Turn */ | |
665 | /* */ | |
666 | /* <Description> */ | |
667 | /* Inserts a salient into the sorted list placed on top of the render */ | |
668 | /* pool. */ | |
669 | /* */ | |
670 | /* <Input> */ | |
671 | /* New y scanline position. */ | |
672 | /* */ | |
673 | /* <Return> */ | |
674 | /* SUCCESS on success. FAILURE in case of overflow. */ | |
675 | /* */ | |
676 | static | |
677 | Bool Insert_Y_Turn( RAS_ARGS Int y ) | |
678 | { | |
679 | PLong y_turns; | |
680 | Int y2, n; | |
681 | ||
682 | ||
683 | n = ras.numTurns - 1; | |
684 | y_turns = ras.sizeBuff - ras.numTurns; | |
685 | ||
686 | /* look for first y value that is <= */ | |
687 | while ( n >= 0 && y < y_turns[n] ) | |
688 | n--; | |
689 | ||
690 | /* if it is <, simply insert it, ignore if == */ | |
691 | if ( n >= 0 && y > y_turns[n] ) | |
692 | while ( n >= 0 ) | |
693 | { | |
694 | y2 = y_turns[n]; | |
695 | y_turns[n] = y; | |
696 | y = y2; | |
697 | n--; | |
698 | } | |
699 | ||
700 | if ( n < 0 ) | |
701 | { | |
702 | if ( ras.maxBuff <= ras.top ) | |
703 | { | |
704 | ras.error = Raster_Err_Overflow; | |
705 | return FAILURE; | |
706 | } | |
707 | ras.maxBuff--; | |
708 | ras.numTurns++; | |
709 | ras.sizeBuff[-ras.numTurns] = y; | |
710 | } | |
711 | ||
712 | return SUCCESS; | |
713 | } | |
714 | ||
715 | ||
716 | /*************************************************************************/ | |
717 | /* */ | |
718 | /* <Function> */ | |
719 | /* Finalize_Profile_Table */ | |
720 | /* */ | |
721 | /* <Description> */ | |
722 | /* Adjusts all links in the profiles list. */ | |
723 | /* */ | |
724 | /* <Return> */ | |
725 | /* SUCCESS on success. FAILURE in case of overflow. */ | |
726 | /* */ | |
727 | static | |
728 | Bool Finalize_Profile_Table( RAS_ARG ) | |
729 | { | |
730 | Int bottom, top; | |
731 | UShort n; | |
732 | PProfile p; | |
733 | ||
734 | ||
735 | n = ras.num_Profs; | |
736 | ||
737 | if ( n > 1 ) | |
738 | { | |
739 | p = ras.fProfile; | |
740 | while ( n > 0 ) | |
741 | { | |
742 | if ( n > 1 ) | |
743 | p->link = (PProfile)( p->offset + p->height ); | |
744 | else | |
745 | p->link = NULL; | |
746 | ||
747 | switch ( p->flow ) | |
748 | { | |
749 | case Flow_Down: | |
750 | bottom = p->start - p->height+1; | |
751 | top = p->start; | |
752 | p->start = bottom; | |
753 | p->offset += p->height - 1; | |
754 | break; | |
755 | ||
756 | case Flow_Up: | |
757 | default: | |
758 | bottom = p->start; | |
759 | top = p->start + p->height - 1; | |
760 | } | |
761 | ||
762 | if ( Insert_Y_Turn( RAS_VARS bottom ) || | |
763 | Insert_Y_Turn( RAS_VARS top + 1 ) ) | |
764 | return FAILURE; | |
765 | ||
766 | p = p->link; | |
767 | n--; | |
768 | } | |
769 | } | |
770 | else | |
771 | ras.fProfile = NULL; | |
772 | ||
773 | return SUCCESS; | |
774 | } | |
775 | ||
776 | ||
777 | /*************************************************************************/ | |
778 | /* */ | |
779 | /* <Function> */ | |
780 | /* Split_Conic */ | |
781 | /* */ | |
782 | /* <Description> */ | |
783 | /* Subdivides one conic Bezier into two joint sub-arcs in the Bezier */ | |
784 | /* stack. */ | |
785 | /* */ | |
786 | /* <Input> */ | |
787 | /* None (subdivided Bezier is taken from the top of the stack). */ | |
788 | /* */ | |
789 | /* <Note> */ | |
790 | /* This routine is the `beef' of this component. It is _the_ inner */ | |
791 | /* loop that should be optimized to hell to get the best performance. */ | |
792 | /* */ | |
793 | static | |
794 | void Split_Conic( TPoint* base ) | |
795 | { | |
796 | Long a, b; | |
797 | ||
798 | ||
799 | base[4].x = base[2].x; | |
800 | b = base[1].x; | |
801 | a = base[3].x = ( base[2].x + b ) / 2; | |
802 | b = base[1].x = ( base[0].x + b ) / 2; | |
803 | base[2].x = ( a + b ) / 2; | |
804 | ||
805 | base[4].y = base[2].y; | |
806 | b = base[1].y; | |
807 | a = base[3].y = ( base[2].y + b ) / 2; | |
808 | b = base[1].y = ( base[0].y + b ) / 2; | |
809 | base[2].y = ( a + b ) / 2; | |
810 | ||
811 | /* hand optimized. gcc doesn't seem to be too good at common */ | |
812 | /* expression substitution and instruction scheduling ;-) */ | |
813 | } | |
814 | ||
815 | ||
816 | /*************************************************************************/ | |
817 | /* */ | |
818 | /* <Function> */ | |
819 | /* Split_Cubic */ | |
820 | /* */ | |
821 | /* <Description> */ | |
822 | /* Subdivides a third-order Bezier arc into two joint sub-arcs in the */ | |
823 | /* Bezier stack. */ | |
824 | /* */ | |
825 | /* <Note> */ | |
826 | /* This routine is the `beef' of the component. It is one of _the_ */ | |
827 | /* inner loops that should be optimized like hell to get the best */ | |
828 | /* performance. */ | |
829 | /* */ | |
830 | static | |
831 | void Split_Cubic( TPoint* base ) | |
832 | { | |
833 | Long a, b, c, d; | |
834 | ||
835 | ||
836 | base[6].x = base[3].x; | |
837 | c = base[1].x; | |
838 | d = base[2].x; | |
839 | base[1].x = a = ( base[0].x + c + 1 ) >> 1; | |
840 | base[5].x = b = ( base[3].x + d + 1 ) >> 1; | |
841 | c = ( c + d + 1 ) >> 1; | |
842 | base[2].x = a = ( a + c + 1 ) >> 1; | |
843 | base[4].x = b = ( b + c + 1 ) >> 1; | |
844 | base[3].x = ( a + b + 1 ) >> 1; | |
845 | ||
846 | base[6].y = base[3].y; | |
847 | c = base[1].y; | |
848 | d = base[2].y; | |
849 | base[1].y = a = ( base[0].y + c + 1 ) >> 1; | |
850 | base[5].y = b = ( base[3].y + d + 1 ) >> 1; | |
851 | c = ( c + d + 1 ) >> 1; | |
852 | base[2].y = a = ( a + c + 1 ) >> 1; | |
853 | base[4].y = b = ( b + c + 1 ) >> 1; | |
854 | base[3].y = ( a + b + 1 ) >> 1; | |
855 | } | |
856 | ||
857 | ||
858 | /*************************************************************************/ | |
859 | /* */ | |
860 | /* <Function> */ | |
861 | /* Line_Up */ | |
862 | /* */ | |
863 | /* <Description> */ | |
864 | /* Computes the x-coordinates of an ascending line segment and stores */ | |
865 | /* them in the render pool. */ | |
866 | /* */ | |
867 | /* <Input> */ | |
868 | /* x1 :: The x-coordinate of the segment's start point. */ | |
869 | /* */ | |
870 | /* y1 :: The y-coordinate of the segment's start point. */ | |
871 | /* */ | |
872 | /* x2 :: The x-coordinate of the segment's end point. */ | |
873 | /* */ | |
874 | /* y2 :: The y-coordinate of the segment's end point. */ | |
875 | /* */ | |
876 | /* miny :: A lower vertical clipping bound value. */ | |
877 | /* */ | |
878 | /* maxy :: An upper vertical clipping bound value. */ | |
879 | /* */ | |
880 | /* <Return> */ | |
881 | /* SUCCESS on success, FAILURE on render pool overflow. */ | |
882 | /* */ | |
883 | static | |
884 | Bool Line_Up( RAS_ARGS Long x1, | |
885 | Long y1, | |
886 | Long x2, | |
887 | Long y2, | |
888 | Long miny, | |
889 | Long maxy ) | |
890 | { | |
891 | Long Dx, Dy; | |
892 | Int e1, e2, f1, f2, size; /* XXX: is `Short' sufficient? */ | |
893 | Long Ix, Rx, Ax; | |
894 | ||
895 | PLong top; | |
896 | ||
897 | ||
898 | Dx = x2 - x1; | |
899 | Dy = y2 - y1; | |
900 | ||
901 | if ( Dy <= 0 || y2 < miny || y1 > maxy ) | |
902 | return SUCCESS; | |
903 | ||
904 | if ( y1 < miny ) | |
905 | { | |
906 | /* Take care: miny-y1 can be a very large value; we use */ | |
907 | /* a slow MulDiv function to avoid clipping bugs */ | |
908 | x1 += SMulDiv( Dx, miny - y1, Dy ); | |
909 | e1 = TRUNC( miny ); | |
910 | f1 = 0; | |
911 | } | |
912 | else | |
913 | { | |
914 | e1 = TRUNC( y1 ); | |
915 | f1 = FRAC( y1 ); | |
916 | } | |
917 | ||
918 | if ( y2 > maxy ) | |
919 | { | |
920 | /* x2 += FMulDiv( Dx, maxy - y2, Dy ); UNNECESSARY */ | |
921 | e2 = TRUNC( maxy ); | |
922 | f2 = 0; | |
923 | } | |
924 | else | |
925 | { | |
926 | e2 = TRUNC( y2 ); | |
927 | f2 = FRAC( y2 ); | |
928 | } | |
929 | ||
930 | if ( f1 > 0 ) | |
931 | { | |
932 | if ( e1 == e2 ) | |
933 | return SUCCESS; | |
934 | else | |
935 | { | |
936 | x1 += FMulDiv( Dx, ras.precision - f1, Dy ); | |
937 | e1 += 1; | |
938 | } | |
939 | } | |
940 | else | |
941 | if ( ras.joint ) | |
942 | { | |
943 | ras.top--; | |
944 | ras.joint = FALSE; | |
945 | } | |
946 | ||
947 | ras.joint = ( f2 == 0 ); | |
948 | ||
949 | if ( ras.fresh ) | |
950 | { | |
951 | ras.cProfile->start = e1; | |
952 | ras.fresh = FALSE; | |
953 | } | |
954 | ||
955 | size = e2 - e1 + 1; | |
956 | if ( ras.top + size >= ras.maxBuff ) | |
957 | { | |
958 | ras.error = Raster_Err_Overflow; | |
959 | return FAILURE; | |
960 | } | |
961 | ||
962 | if ( Dx > 0 ) | |
963 | { | |
964 | Ix = ( ras.precision * Dx ) / Dy; | |
965 | Rx = ( ras.precision * Dx ) % Dy; | |
966 | Dx = 1; | |
967 | } | |
968 | else | |
969 | { | |
970 | Ix = -( ( ras.precision * -Dx ) / Dy ); | |
971 | Rx = ( ras.precision * -Dx ) % Dy; | |
972 | Dx = -1; | |
973 | } | |
974 | ||
975 | Ax = -Dy; | |
976 | top = ras.top; | |
977 | ||
978 | while ( size > 0 ) | |
979 | { | |
980 | *top++ = x1; | |
981 | ||
982 | x1 += Ix; | |
983 | Ax += Rx; | |
984 | if ( Ax >= 0 ) | |
985 | { | |
986 | Ax -= Dy; | |
987 | x1 += Dx; | |
988 | } | |
989 | size--; | |
990 | } | |
991 | ||
992 | ras.top = top; | |
993 | return SUCCESS; | |
994 | } | |
995 | ||
996 | ||
997 | /*************************************************************************/ | |
998 | /* */ | |
999 | /* <Function> */ | |
1000 | /* Line_Down */ | |
1001 | /* */ | |
1002 | /* <Description> */ | |
1003 | /* Computes the x-coordinates of an descending line segment and */ | |
1004 | /* stores them in the render pool. */ | |
1005 | /* */ | |
1006 | /* <Input> */ | |
1007 | /* x1 :: The x-coordinate of the segment's start point. */ | |
1008 | /* */ | |
1009 | /* y1 :: The y-coordinate of the segment's start point. */ | |
1010 | /* */ | |
1011 | /* x2 :: The x-coordinate of the segment's end point. */ | |
1012 | /* */ | |
1013 | /* y2 :: The y-coordinate of the segment's end point. */ | |
1014 | /* */ | |
1015 | /* miny :: A lower vertical clipping bound value. */ | |
1016 | /* */ | |
1017 | /* maxy :: An upper vertical clipping bound value. */ | |
1018 | /* */ | |
1019 | /* <Return> */ | |
1020 | /* SUCCESS on success, FAILURE on render pool overflow. */ | |
1021 | /* */ | |
1022 | static | |
1023 | Bool Line_Down( RAS_ARGS Long x1, | |
1024 | Long y1, | |
1025 | Long x2, | |
1026 | Long y2, | |
1027 | Long miny, | |
1028 | Long maxy ) | |
1029 | { | |
1030 | Bool result, fresh; | |
1031 | ||
1032 | ||
1033 | fresh = ras.fresh; | |
1034 | ||
1035 | result = Line_Up( RAS_VARS x1, -y1, x2, -y2, -maxy, -miny ); | |
1036 | ||
1037 | if ( fresh && !ras.fresh ) | |
1038 | ras.cProfile->start = -ras.cProfile->start; | |
1039 | ||
1040 | return result; | |
1041 | } | |
1042 | ||
1043 | ||
1044 | /* A function type describing the functions used to split Bezier arcs */ | |
1045 | typedef void (*TSplitter)( TPoint* base ); | |
1046 | ||
1047 | ||
1048 | /*************************************************************************/ | |
1049 | /* */ | |
1050 | /* <Function> */ | |
1051 | /* Bezier_Up */ | |
1052 | /* */ | |
1053 | /* <Description> */ | |
1054 | /* Computes the x-coordinates of an ascending Bezier arc and stores */ | |
1055 | /* them in the render pool. */ | |
1056 | /* */ | |
1057 | /* <Input> */ | |
1058 | /* degree :: The degree of the Bezier arc (either 2 or 3). */ | |
1059 | /* */ | |
1060 | /* splitter :: The function to split Bezier arcs. */ | |
1061 | /* */ | |
1062 | /* miny :: A lower vertical clipping bound value. */ | |
1063 | /* */ | |
1064 | /* maxy :: An upper vertical clipping bound value. */ | |
1065 | /* */ | |
1066 | /* <Return> */ | |
1067 | /* SUCCESS on success, FAILURE on render pool overflow. */ | |
1068 | /* */ | |
1069 | static | |
1070 | Bool Bezier_Up( RAS_ARGS Int degree, | |
1071 | TSplitter splitter, | |
1072 | Long miny, | |
1073 | Long maxy ) | |
1074 | { | |
1075 | Long y1, y2, e, e2, e0; | |
1076 | Short f1; | |
1077 | ||
1078 | TPoint* arc; | |
1079 | TPoint* start_arc; | |
1080 | ||
1081 | PLong top; | |
1082 | ||
1083 | ||
1084 | arc = ras.arc; | |
1085 | y1 = arc[degree].y; | |
1086 | y2 = arc[0].y; | |
1087 | top = ras.top; | |
1088 | ||
1089 | if ( y2 < miny || y1 > maxy ) | |
1090 | goto Fin; | |
1091 | ||
1092 | e2 = FLOOR( y2 ); | |
1093 | ||
1094 | if ( e2 > maxy ) | |
1095 | e2 = maxy; | |
1096 | ||
1097 | e0 = miny; | |
1098 | ||
1099 | if ( y1 < miny ) | |
1100 | e = miny; | |
1101 | else | |
1102 | { | |
1103 | e = CEILING( y1 ); | |
1104 | f1 = FRAC( y1 ); | |
1105 | e0 = e; | |
1106 | ||
1107 | if ( f1 == 0 ) | |
1108 | { | |
1109 | if ( ras.joint ) | |
1110 | { | |
1111 | top--; | |
1112 | ras.joint = FALSE; | |
1113 | } | |
1114 | ||
1115 | *top++ = arc[degree].x; | |
1116 | ||
1117 | e += ras.precision; | |
1118 | } | |
1119 | } | |
1120 | ||
1121 | if ( ras.fresh ) | |
1122 | { | |
1123 | ras.cProfile->start = TRUNC( e0 ); | |
1124 | ras.fresh = FALSE; | |
1125 | } | |
1126 | ||
1127 | if ( e2 < e ) | |
1128 | goto Fin; | |
1129 | ||
1130 | if ( ( top + TRUNC( e2 - e ) + 1 ) >= ras.maxBuff ) | |
1131 | { | |
1132 | ras.top = top; | |
1133 | ras.error = Raster_Err_Overflow; | |
1134 | return FAILURE; | |
1135 | } | |
1136 | ||
1137 | start_arc = arc; | |
1138 | ||
1139 | while ( arc >= start_arc && e <= e2 ) | |
1140 | { | |
1141 | ras.joint = FALSE; | |
1142 | ||
1143 | y2 = arc[0].y; | |
1144 | ||
1145 | if ( y2 > e ) | |
1146 | { | |
1147 | y1 = arc[degree].y; | |
1148 | if ( y2 - y1 >= ras.precision_step ) | |
1149 | { | |
1150 | splitter( arc ); | |
1151 | arc += degree; | |
1152 | } | |
1153 | else | |
1154 | { | |
1155 | *top++ = arc[degree].x + FMulDiv( arc[0].x-arc[degree].x, | |
1156 | e - y1, y2 - y1 ); | |
1157 | arc -= degree; | |
1158 | e += ras.precision; | |
1159 | } | |
1160 | } | |
1161 | else | |
1162 | { | |
1163 | if ( y2 == e ) | |
1164 | { | |
1165 | ras.joint = TRUE; | |
1166 | *top++ = arc[0].x; | |
1167 | ||
1168 | e += ras.precision; | |
1169 | } | |
1170 | arc -= degree; | |
1171 | } | |
1172 | } | |
1173 | ||
1174 | Fin: | |
1175 | ras.top = top; | |
1176 | ras.arc -= degree; | |
1177 | return SUCCESS; | |
1178 | } | |
1179 | ||
1180 | ||
1181 | /*************************************************************************/ | |
1182 | /* */ | |
1183 | /* <Function> */ | |
1184 | /* Bezier_Down */ | |
1185 | /* */ | |
1186 | /* <Description> */ | |
1187 | /* Computes the x-coordinates of an descending Bezier arc and stores */ | |
1188 | /* them in the render pool. */ | |
1189 | /* */ | |
1190 | /* <Input> */ | |
1191 | /* degree :: The degree of the Bezier arc (either 2 or 3). */ | |
1192 | /* */ | |
1193 | /* splitter :: The function to split Bezier arcs. */ | |
1194 | /* */ | |
1195 | /* miny :: A lower vertical clipping bound value. */ | |
1196 | /* */ | |
1197 | /* maxy :: An upper vertical clipping bound value. */ | |
1198 | /* */ | |
1199 | /* <Return> */ | |
1200 | /* SUCCESS on success, FAILURE on render pool overflow. */ | |
1201 | /* */ | |
1202 | static | |
1203 | Bool Bezier_Down( RAS_ARGS Int degree, | |
1204 | TSplitter splitter, | |
1205 | Long miny, | |
1206 | Long maxy ) | |
1207 | { | |
1208 | TPoint* arc = ras.arc; | |
1209 | Bool result, fresh; | |
1210 | ||
1211 | ||
1212 | arc[0].y = -arc[0].y; | |
1213 | arc[1].y = -arc[1].y; | |
1214 | arc[2].y = -arc[2].y; | |
1215 | if ( degree > 2 ) | |
1216 | arc[3].y = -arc[3].y; | |
1217 | ||
1218 | fresh = ras.fresh; | |
1219 | ||
1220 | result = Bezier_Up( RAS_VARS degree, splitter, -maxy, -miny ); | |
1221 | ||
1222 | if ( fresh && !ras.fresh ) | |
1223 | ras.cProfile->start = -ras.cProfile->start; | |
1224 | ||
1225 | arc[0].y = -arc[0].y; | |
1226 | return result; | |
1227 | } | |
1228 | ||
1229 | ||
1230 | /*************************************************************************/ | |
1231 | /* */ | |
1232 | /* <Function> */ | |
1233 | /* Line_To */ | |
1234 | /* */ | |
1235 | /* <Description> */ | |
1236 | /* Injects a new line segment and adjusts Profiles list. */ | |
1237 | /* */ | |
1238 | /* <Input> */ | |
1239 | /* x :: The x-coordinate of the segment's end point (its start point */ | |
1240 | /* is stored in `LastX'). */ | |
1241 | /* */ | |
1242 | /* y :: The y-coordinate of the segment's end point (its start point */ | |
1243 | /* is stored in `LastY'). */ | |
1244 | /* */ | |
1245 | /* <Return> */ | |
1246 | /* SUCCESS on success, FAILURE on render pool overflow or incorrect */ | |
1247 | /* profile. */ | |
1248 | /* */ | |
1249 | static | |
1250 | Bool Line_To( RAS_ARGS Long x, | |
1251 | Long y ) | |
1252 | { | |
1253 | /* First, detect a change of direction */ | |
1254 | ||
1255 | switch ( ras.state ) | |
1256 | { | |
1257 | case Unknown: | |
1258 | if ( y > ras.lastY ) | |
1259 | { | |
1260 | if ( New_Profile( RAS_VARS Ascending ) ) | |
1261 | return FAILURE; | |
1262 | } | |
1263 | else | |
1264 | { | |
1265 | if ( y < ras.lastY ) | |
1266 | if ( New_Profile( RAS_VARS Descending ) ) | |
1267 | return FAILURE; | |
1268 | } | |
1269 | break; | |
1270 | ||
1271 | case Ascending: | |
1272 | if ( y < ras.lastY ) | |
1273 | { | |
1274 | if ( End_Profile( RAS_VAR ) || | |
1275 | New_Profile( RAS_VARS Descending ) ) | |
1276 | return FAILURE; | |
1277 | } | |
1278 | break; | |
1279 | ||
1280 | case Descending: | |
1281 | if ( y > ras.lastY ) | |
1282 | { | |
1283 | if ( End_Profile( RAS_VAR ) || | |
1284 | New_Profile( RAS_VARS Ascending ) ) | |
1285 | return FAILURE; | |
1286 | } | |
1287 | break; | |
1288 | ||
1289 | default: | |
1290 | ; | |
1291 | } | |
1292 | ||
1293 | /* Then compute the lines */ | |
1294 | ||
1295 | switch ( ras.state ) | |
1296 | { | |
1297 | case Ascending: | |
1298 | if ( Line_Up( RAS_VARS ras.lastX, ras.lastY, | |
1299 | x, y, ras.minY, ras.maxY ) ) | |
1300 | return FAILURE; | |
1301 | break; | |
1302 | ||
1303 | case Descending: | |
1304 | if ( Line_Down( RAS_VARS ras.lastX, ras.lastY, | |
1305 | x, y, ras.minY, ras.maxY ) ) | |
1306 | return FAILURE; | |
1307 | break; | |
1308 | ||
1309 | default: | |
1310 | ; | |
1311 | } | |
1312 | ||
1313 | ras.lastX = x; | |
1314 | ras.lastY = y; | |
1315 | ||
1316 | return SUCCESS; | |
1317 | } | |
1318 | ||
1319 | ||
1320 | /*************************************************************************/ | |
1321 | /* */ | |
1322 | /* <Function> */ | |
1323 | /* Conic_To */ | |
1324 | /* */ | |
1325 | /* <Description> */ | |
1326 | /* Injects a new conic arc and adjusts the profile list. */ | |
1327 | /* */ | |
1328 | /* <Input> */ | |
1329 | /* cx :: The x-coordinate of the arc's new control point. */ | |
1330 | /* */ | |
1331 | /* cy :: The y-coordinate of the arc's new control point. */ | |
1332 | /* */ | |
1333 | /* x :: The x-coordinate of the arc's end point (its start point is */ | |
1334 | /* stored in `LastX'). */ | |
1335 | /* */ | |
1336 | /* y :: The y-coordinate of the arc's end point (its start point is */ | |
1337 | /* stored in `LastY'). */ | |
1338 | /* */ | |
1339 | /* <Return> */ | |
1340 | /* SUCCESS on success, FAILURE on render pool overflow or incorrect */ | |
1341 | /* profile. */ | |
1342 | /* */ | |
1343 | static | |
1344 | Bool Conic_To( RAS_ARGS Long cx, | |
1345 | Long cy, | |
1346 | Long x, | |
1347 | Long y ) | |
1348 | { | |
1349 | Long y1, y2, y3, x3, ymin, ymax; | |
1350 | TStates state_bez; | |
1351 | ||
1352 | ||
1353 | ras.arc = ras.arcs; | |
1354 | ras.arc[2].x = ras.lastX; | |
1355 | ras.arc[2].y = ras.lastY; | |
1356 | ras.arc[1].x = cx; ras.arc[1].y = cy; | |
1357 | ras.arc[0].x = x; ras.arc[0].y = y; | |
1358 | ||
1359 | do | |
1360 | { | |
1361 | y1 = ras.arc[2].y; | |
1362 | y2 = ras.arc[1].y; | |
1363 | y3 = ras.arc[0].y; | |
1364 | x3 = ras.arc[0].x; | |
1365 | ||
1366 | /* first, categorize the Bezier arc */ | |
1367 | ||
1368 | if ( y1 <= y3 ) | |
1369 | { | |
1370 | ymin = y1; | |
1371 | ymax = y3; | |
1372 | } | |
1373 | else | |
1374 | { | |
1375 | ymin = y3; | |
1376 | ymax = y1; | |
1377 | } | |
1378 | ||
1379 | if ( y2 < ymin || y2 > ymax ) | |
1380 | { | |
1381 | /* this arc has no given direction, split it! */ | |
1382 | Split_Conic( ras.arc ); | |
1383 | ras.arc += 2; | |
1384 | } | |
1385 | else if ( y1 == y3 ) | |
1386 | { | |
1387 | /* this arc is flat, ignore it and pop it from the Bezier stack */ | |
1388 | ras.arc -= 2; | |
1389 | } | |
1390 | else | |
1391 | { | |
1392 | /* the arc is y-monotonous, either ascending or descending */ | |
1393 | /* detect a change of direction */ | |
1394 | state_bez = y1 < y3 ? Ascending : Descending; | |
1395 | if ( ras.state != state_bez ) | |
1396 | { | |
1397 | /* finalize current profile if any */ | |
1398 | if ( ras.state != Unknown && | |
1399 | End_Profile( RAS_VAR ) ) | |
1400 | goto Fail; | |
1401 | ||
1402 | /* create a new profile */ | |
1403 | if ( New_Profile( RAS_VARS state_bez ) ) | |
1404 | goto Fail; | |
1405 | } | |
1406 | ||
1407 | /* now call the appropriate routine */ | |
1408 | if ( state_bez == Ascending ) | |
1409 | { | |
1410 | if ( Bezier_Up( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) ) | |
1411 | goto Fail; | |
1412 | } | |
1413 | else | |
1414 | if ( Bezier_Down( RAS_VARS 2, Split_Conic, ras.minY, ras.maxY ) ) | |
1415 | goto Fail; | |
1416 | } | |
1417 | ||
1418 | } while ( ras.arc >= ras.arcs ); | |
1419 | ||
1420 | ras.lastX = x3; | |
1421 | ras.lastY = y3; | |
1422 | ||
1423 | return SUCCESS; | |
1424 | ||
1425 | Fail: | |
1426 | return FAILURE; | |
1427 | } | |
1428 | ||
1429 | ||
1430 | /*************************************************************************/ | |
1431 | /* */ | |
1432 | /* <Function> */ | |
1433 | /* Cubic_To */ | |
1434 | /* */ | |
1435 | /* <Description> */ | |
1436 | /* Injects a new cubic arc and adjusts the profile list. */ | |
1437 | /* */ | |
1438 | /* <Input> */ | |
1439 | /* cx1 :: The x-coordinate of the arc's first new control point. */ | |
1440 | /* */ | |
1441 | /* cy1 :: The y-coordinate of the arc's first new control point. */ | |
1442 | /* */ | |
1443 | /* cx2 :: The x-coordinate of the arc's second new control point. */ | |
1444 | /* */ | |
1445 | /* cy2 :: The y-coordinate of the arc's second new control point. */ | |
1446 | /* */ | |
1447 | /* x :: The x-coordinate of the arc's end point (its start point is */ | |
1448 | /* stored in `LastX'). */ | |
1449 | /* */ | |
1450 | /* y :: The y-coordinate of the arc's end point (its start point is */ | |
1451 | /* stored in `LastY'). */ | |
1452 | /* */ | |
1453 | /* <Return> */ | |
1454 | /* SUCCESS on success, FAILURE on render pool overflow or incorrect */ | |
1455 | /* profile. */ | |
1456 | /* */ | |
1457 | static | |
1458 | Bool Cubic_To( RAS_ARGS Long cx1, | |
1459 | Long cy1, | |
1460 | Long cx2, | |
1461 | Long cy2, | |
1462 | Long x, | |
1463 | Long y ) | |
1464 | { | |
1465 | Long y1, y2, y3, y4, x4, ymin1, ymax1, ymin2, ymax2; | |
1466 | TStates state_bez; | |
1467 | ||
1468 | ||
1469 | ras.arc = ras.arcs; | |
1470 | ras.arc[3].x = ras.lastX; | |
1471 | ras.arc[3].y = ras.lastY; | |
1472 | ras.arc[2].x = cx1; ras.arc[2].y = cy1; | |
1473 | ras.arc[1].x = cx2; ras.arc[1].y = cy2; | |
1474 | ras.arc[0].x = x; ras.arc[0].y = y; | |
1475 | ||
1476 | do | |
1477 | { | |
1478 | y1 = ras.arc[3].y; | |
1479 | y2 = ras.arc[2].y; | |
1480 | y3 = ras.arc[1].y; | |
1481 | y4 = ras.arc[0].y; | |
1482 | x4 = ras.arc[0].x; | |
1483 | ||
1484 | /* first, categorize the Bezier arc */ | |
1485 | ||
1486 | if ( y1 <= y4 ) | |
1487 | { | |
1488 | ymin1 = y1; | |
1489 | ymax1 = y4; | |
1490 | } | |
1491 | else | |
1492 | { | |
1493 | ymin1 = y4; | |
1494 | ymax1 = y1; | |
1495 | } | |
1496 | ||
1497 | if ( y2 <= y3 ) | |
1498 | { | |
1499 | ymin2 = y2; | |
1500 | ymax2 = y3; | |
1501 | } | |
1502 | else | |
1503 | { | |
1504 | ymin2 = y3; | |
1505 | ymax2 = y2; | |
1506 | } | |
1507 | ||
1508 | if ( ymin2 < ymin1 || ymax2 > ymax1 ) | |
1509 | { | |
1510 | /* this arc has no given direction, split it! */ | |
1511 | Split_Cubic( ras.arc ); | |
1512 | ras.arc += 3; | |
1513 | } | |
1514 | else if ( y1 == y4 ) | |
1515 | { | |
1516 | /* this arc is flat, ignore it and pop it from the Bezier stack */ | |
1517 | ras.arc -= 3; | |
1518 | } | |
1519 | else | |
1520 | { | |
1521 | state_bez = ( y1 <= y4 ) ? Ascending : Descending; | |
1522 | ||
1523 | /* detect a change of direction */ | |
1524 | if ( ras.state != state_bez ) | |
1525 | { | |
1526 | if ( ras.state != Unknown && | |
1527 | End_Profile( RAS_VAR ) ) | |
1528 | goto Fail; | |
1529 | ||
1530 | if ( New_Profile( RAS_VARS state_bez ) ) | |
1531 | goto Fail; | |
1532 | } | |
1533 | ||
1534 | /* compute intersections */ | |
1535 | if ( state_bez == Ascending ) | |
1536 | { | |
1537 | if ( Bezier_Up( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) ) | |
1538 | goto Fail; | |
1539 | } | |
1540 | else | |
1541 | if ( Bezier_Down( RAS_VARS 3, Split_Cubic, ras.minY, ras.maxY ) ) | |
1542 | goto Fail; | |
1543 | } | |
1544 | ||
1545 | } while ( ras.arc >= ras.arcs ); | |
1546 | ||
1547 | ras.lastX = x4; | |
1548 | ras.lastY = y4; | |
1549 | ||
1550 | return SUCCESS; | |
1551 | ||
1552 | Fail: | |
1553 | return FAILURE; | |
1554 | } | |
1555 | ||
1556 | ||
1557 | #undef SWAP_ | |
1558 | #define SWAP_( x, y ) do \ | |
1559 | { \ | |
1560 | Long swap = x; \ | |
1561 | \ | |
1562 | \ | |
1563 | x = y; \ | |
1564 | y = swap; \ | |
1565 | } while ( 0 ) | |
1566 | ||
1567 | ||
1568 | /*************************************************************************/ | |
1569 | /* */ | |
1570 | /* <Function> */ | |
1571 | /* Decompose_Curve */ | |
1572 | /* */ | |
1573 | /* <Description> */ | |
1574 | /* Scans the outline arays in order to emit individual segments and */ | |
1575 | /* Beziers by calling Line_To() and Bezier_To(). It handles all */ | |
1576 | /* weird cases, like when the first point is off the curve, or when */ | |
1577 | /* there are simply no `on' points in the contour! */ | |
1578 | /* */ | |
1579 | /* <Input> */ | |
1580 | /* first :: The index of the first point in the contour. */ | |
1581 | /* */ | |
1582 | /* last :: The index of the last point in the contour. */ | |
1583 | /* */ | |
1584 | /* flipped :: If set, flip the direction of the curve. */ | |
1585 | /* */ | |
1586 | /* <Return> */ | |
1587 | /* SUCCESS on success, FAILURE on error. */ | |
1588 | /* */ | |
1589 | static | |
1590 | Bool Decompose_Curve( RAS_ARGS UShort first, | |
1591 | UShort last, | |
1592 | int flipped ) | |
1593 | { | |
1594 | FT_Vector v_last; | |
1595 | FT_Vector v_control; | |
1596 | FT_Vector v_start; | |
1597 | ||
1598 | FT_Vector* points; | |
1599 | FT_Vector* point; | |
1600 | FT_Vector* limit; | |
1601 | char* tags; | |
1602 | ||
1603 | char tag; /* current point's state */ | |
1604 | ||
1605 | ||
1606 | points = ras.outline.points; | |
1607 | limit = points + last; | |
1608 | ||
1609 | v_start.x = SCALED( points[first].x ); | |
1610 | v_start.y = SCALED( points[first].y ); | |
1611 | v_last.x = SCALED( points[last].x ); | |
1612 | v_last.y = SCALED( points[last].y ); | |
1613 | ||
1614 | if ( flipped ) | |
1615 | { | |
1616 | SWAP_( v_start.x, v_start.y ); | |
1617 | SWAP_( v_last.x, v_last.y ); | |
1618 | } | |
1619 | ||
1620 | v_control = v_start; | |
1621 | ||
1622 | point = points + first; | |
1623 | tags = ras.outline.tags + first; | |
1624 | tag = FT_CURVE_TAG( tags[0] ); | |
1625 | ||
1626 | /* A contour cannot start with a cubic control point! */ | |
1627 | if ( tag == FT_Curve_Tag_Cubic ) | |
1628 | goto Invalid_Outline; | |
1629 | ||
1630 | /* check first point to determine origin */ | |
1631 | if ( tag == FT_Curve_Tag_Conic ) | |
1632 | { | |
1633 | /* first point is conic control. Yes, this happens. */ | |
1634 | if ( FT_CURVE_TAG( ras.outline.tags[last] ) == FT_Curve_Tag_On ) | |
1635 | { | |
1636 | /* start at last point if it is on the curve */ | |
1637 | v_start = v_last; | |
1638 | limit--; | |
1639 | } | |
1640 | else | |
1641 | { | |
1642 | /* if both first and last points are conic, */ | |
1643 | /* start at their middle and record its position */ | |
1644 | /* for closure */ | |
1645 | v_start.x = ( v_start.x + v_last.x ) / 2; | |
1646 | v_start.y = ( v_start.y + v_last.y ) / 2; | |
1647 | ||
1648 | v_last = v_start; | |
1649 | } | |
1650 | point--; | |
1651 | tags--; | |
1652 | } | |
1653 | ||
1654 | ras.lastX = v_start.x; | |
1655 | ras.lastY = v_start.y; | |
1656 | ||
1657 | while ( point < limit ) | |
1658 | { | |
1659 | point++; | |
1660 | tags++; | |
1661 | ||
1662 | tag = FT_CURVE_TAG( tags[0] ); | |
1663 | ||
1664 | switch ( tag ) | |
1665 | { | |
1666 | case FT_Curve_Tag_On: /* emit a single line_to */ | |
1667 | { | |
1668 | Long x, y; | |
1669 | ||
1670 | ||
1671 | x = SCALED( point->x ); | |
1672 | y = SCALED( point->y ); | |
1673 | if ( flipped ) | |
1674 | SWAP_( x, y ); | |
1675 | ||
1676 | if ( Line_To( RAS_VARS x, y ) ) | |
1677 | goto Fail; | |
1678 | continue; | |
1679 | } | |
1680 | ||
1681 | case FT_Curve_Tag_Conic: /* consume conic arcs */ | |
1682 | v_control.x = SCALED( point[0].x ); | |
1683 | v_control.y = SCALED( point[0].y ); | |
1684 | ||
1685 | if ( flipped ) | |
1686 | SWAP_( v_control.x, v_control.y ); | |
1687 | ||
1688 | Do_Conic: | |
1689 | if ( point < limit ) | |
1690 | { | |
1691 | FT_Vector v_middle; | |
1692 | Long x, y; | |
1693 | ||
1694 | ||
1695 | point++; | |
1696 | tags++; | |
1697 | tag = FT_CURVE_TAG( tags[0] ); | |
1698 | ||
1699 | x = SCALED( point[0].x ); | |
1700 | y = SCALED( point[0].y ); | |
1701 | ||
1702 | if ( flipped ) | |
1703 | SWAP_( x, y ); | |
1704 | ||
1705 | if ( tag == FT_Curve_Tag_On ) | |
1706 | { | |
1707 | if ( Conic_To( RAS_VARS v_control.x, v_control.y, x, y ) ) | |
1708 | goto Fail; | |
1709 | continue; | |
1710 | } | |
1711 | ||
1712 | if ( tag != FT_Curve_Tag_Conic ) | |
1713 | goto Invalid_Outline; | |
1714 | ||
1715 | v_middle.x = ( v_control.x + x ) / 2; | |
1716 | v_middle.y = ( v_control.y + y ) / 2; | |
1717 | ||
1718 | if ( Conic_To( RAS_VARS v_control.x, v_control.y, | |
1719 | v_middle.x, v_middle.y ) ) | |
1720 | goto Fail; | |
1721 | ||
1722 | v_control.x = x; | |
1723 | v_control.y = y; | |
1724 | ||
1725 | goto Do_Conic; | |
1726 | } | |
1727 | ||
1728 | if ( Conic_To( RAS_VARS v_control.x, v_control.y, | |
1729 | v_start.x, v_start.y ) ) | |
1730 | goto Fail; | |
1731 | ||
1732 | goto Close; | |
1733 | ||
1734 | default: /* FT_Curve_Tag_Cubic */ | |
1735 | { | |
1736 | Long x1, y1, x2, y2, x3, y3; | |
1737 | ||
1738 | ||
1739 | if ( point + 1 > limit || | |
1740 | FT_CURVE_TAG( tags[1] ) != FT_Curve_Tag_Cubic ) | |
1741 | goto Invalid_Outline; | |
1742 | ||
1743 | point += 2; | |
1744 | tags += 2; | |
1745 | ||
1746 | x1 = SCALED( point[-2].x ); | |
1747 | y1 = SCALED( point[-2].y ); | |
1748 | x2 = SCALED( point[-1].x ); | |
1749 | y2 = SCALED( point[-1].y ); | |
1750 | x3 = SCALED( point[ 0].x ); | |
1751 | y3 = SCALED( point[ 0].y ); | |
1752 | ||
1753 | if ( flipped ) | |
1754 | { | |
1755 | SWAP_( x1, y1 ); | |
1756 | SWAP_( x2, y2 ); | |
1757 | SWAP_( x3, y3 ); | |
1758 | } | |
1759 | ||
1760 | if ( point <= limit ) | |
1761 | { | |
1762 | if ( Cubic_To( RAS_VARS x1, y1, x2, y2, x3, y3 ) ) | |
1763 | goto Fail; | |
1764 | continue; | |
1765 | } | |
1766 | ||
1767 | if ( Cubic_To( RAS_VARS x1, y1, x2, y2, v_start.x, v_start.y ) ) | |
1768 | goto Fail; | |
1769 | goto Close; | |
1770 | } | |
1771 | } | |
1772 | } | |
1773 | ||
1774 | /* close the contour with a line segment */ | |
1775 | if ( Line_To( RAS_VARS v_start.x, v_start.y ) ) | |
1776 | goto Fail; | |
1777 | ||
1778 | Close: | |
1779 | return SUCCESS; | |
1780 | ||
1781 | Invalid_Outline: | |
1782 | ras.error = Raster_Err_Invalid; | |
1783 | ||
1784 | Fail: | |
1785 | return FAILURE; | |
1786 | } | |
1787 | ||
1788 | ||
1789 | /*************************************************************************/ | |
1790 | /* */ | |
1791 | /* <Function> */ | |
1792 | /* Convert_Glyph */ | |
1793 | /* */ | |
1794 | /* <Description> */ | |
1795 | /* Converts a glyph into a series of segments and arcs and makes a */ | |
1796 | /* profiles list with them. */ | |
1797 | /* */ | |
1798 | /* <Input> */ | |
1799 | /* flipped :: If set, flip the direction of curve. */ | |
1800 | /* */ | |
1801 | /* <Return> */ | |
1802 | /* SUCCESS on success, FAILURE if any error was encountered during */ | |
1803 | /* rendering. */ | |
1804 | /* */ | |
1805 | static | |
1806 | Bool Convert_Glyph( RAS_ARGS int flipped ) | |
1807 | { | |
1808 | Short i; | |
1809 | UShort start; | |
1810 | ||
1811 | PProfile lastProfile; | |
1812 | ||
1813 | ||
1814 | ras.fProfile = NULL; | |
1815 | ras.joint = FALSE; | |
1816 | ras.fresh = FALSE; | |
1817 | ||
1818 | ras.maxBuff = ras.sizeBuff - AlignProfileSize; | |
1819 | ||
1820 | ras.numTurns = 0; | |
1821 | ||
1822 | ras.cProfile = (PProfile)ras.top; | |
1823 | ras.cProfile->offset = ras.top; | |
1824 | ras.num_Profs = 0; | |
1825 | ||
1826 | start = 0; | |
1827 | ||
1828 | for ( i = 0; i < ras.outline.n_contours; i++ ) | |
1829 | { | |
1830 | ras.state = Unknown; | |
1831 | ras.gProfile = NULL; | |
1832 | ||
1833 | if ( Decompose_Curve( RAS_VARS start, ras.outline.contours[i], flipped ) ) | |
1834 | return FAILURE; | |
1835 | ||
1836 | start = ras.outline.contours[i] + 1; | |
1837 | ||
1838 | /* We must now see whether the extreme arcs join or not */ | |
1839 | if ( FRAC( ras.lastY ) == 0 && | |
1840 | ras.lastY >= ras.minY && | |
1841 | ras.lastY <= ras.maxY ) | |
1842 | if ( ras.gProfile && ras.gProfile->flow == ras.cProfile->flow ) | |
1843 | ras.top--; | |
1844 | /* Note that ras.gProfile can be nil if the contour was too small */ | |
1845 | /* to be drawn. */ | |
1846 | ||
1847 | lastProfile = ras.cProfile; | |
1848 | if ( End_Profile( RAS_VAR ) ) | |
1849 | return FAILURE; | |
1850 | ||
1851 | /* close the `next profile in contour' linked list */ | |
1852 | if ( ras.gProfile ) | |
1853 | lastProfile->next = ras.gProfile; | |
1854 | } | |
1855 | ||
1856 | if ( Finalize_Profile_Table( RAS_VAR ) ) | |
1857 | return FAILURE; | |
1858 | ||
1859 | return ( ras.top < ras.maxBuff ? SUCCESS : FAILURE ); | |
1860 | } | |
1861 | ||
1862 | ||
1863 | /*************************************************************************/ | |
1864 | /*************************************************************************/ | |
1865 | /** **/ | |
1866 | /** SCAN-LINE SWEEPS AND DRAWING **/ | |
1867 | /** **/ | |
1868 | /*************************************************************************/ | |
1869 | /*************************************************************************/ | |
1870 | ||
1871 | ||
1872 | /*************************************************************************/ | |
1873 | /* */ | |
1874 | /* Init_Linked */ | |
1875 | /* */ | |
1876 | /* Initializes an empty linked list. */ | |
1877 | /* */ | |
1878 | static | |
1879 | void Init_Linked( TProfileList* l ) | |
1880 | { | |
1881 | *l = NULL; | |
1882 | } | |
1883 | ||
1884 | ||
1885 | /*************************************************************************/ | |
1886 | /* */ | |
1887 | /* InsNew */ | |
1888 | /* */ | |
1889 | /* Inserts a new profile in a linked list. */ | |
1890 | /* */ | |
1891 | static | |
1892 | void InsNew( PProfileList list, | |
1893 | PProfile profile ) | |
1894 | { | |
1895 | PProfile *old, current; | |
1896 | Long x; | |
1897 | ||
1898 | ||
1899 | old = list; | |
1900 | current = *old; | |
1901 | x = profile->X; | |
1902 | ||
1903 | while ( current ) | |
1904 | { | |
1905 | if ( x < current->X ) | |
1906 | break; | |
1907 | old = ¤t->link; | |
1908 | current = *old; | |
1909 | } | |
1910 | ||
1911 | profile->link = current; | |
1912 | *old = profile; | |
1913 | } | |
1914 | ||
1915 | ||
1916 | /*************************************************************************/ | |
1917 | /* */ | |
1918 | /* DelOld */ | |
1919 | /* */ | |
1920 | /* Removes an old profile from a linked list. */ | |
1921 | /* */ | |
1922 | static | |
1923 | void DelOld( PProfileList list, | |
1924 | PProfile profile ) | |
1925 | { | |
1926 | PProfile *old, current; | |
1927 | ||
1928 | ||
1929 | old = list; | |
1930 | current = *old; | |
1931 | ||
1932 | while ( current ) | |
1933 | { | |
1934 | if ( current == profile ) | |
1935 | { | |
1936 | *old = current->link; | |
1937 | return; | |
1938 | } | |
1939 | ||
1940 | old = ¤t->link; | |
1941 | current = *old; | |
1942 | } | |
1943 | ||
1944 | /* we should never get there, unless the profile was not part of */ | |
1945 | /* the list. */ | |
1946 | } | |
1947 | ||
1948 | ||
1949 | /*************************************************************************/ | |
1950 | /* */ | |
1951 | /* Update */ | |
1952 | /* */ | |
1953 | /* Update all X offsets of a drawing list. */ | |
1954 | /* */ | |
1955 | static | |
1956 | void Update( PProfile first ) | |
1957 | { | |
1958 | PProfile current = first; | |
1959 | ||
1960 | ||
1961 | while ( current ) | |
1962 | { | |
1963 | current->X = *current->offset; | |
1964 | current->offset += current->flow; | |
1965 | current->height--; | |
1966 | current = current->link; | |
1967 | } | |
1968 | } | |
1969 | ||
1970 | ||
1971 | /*************************************************************************/ | |
1972 | /* */ | |
1973 | /* Sort */ | |
1974 | /* */ | |
1975 | /* Sorts a trace list. In 95%, the list is already sorted. We need */ | |
1976 | /* an algorithm which is fast in this case. Bubble sort is enough */ | |
1977 | /* and simple. */ | |
1978 | /* */ | |
1979 | static | |
1980 | void Sort( PProfileList list ) | |
1981 | { | |
1982 | PProfile *old, current, next; | |
1983 | ||
1984 | ||
1985 | /* First, set the new X coordinate of each profile */ | |
1986 | Update( *list ); | |
1987 | ||
1988 | /* Then sort them */ | |
1989 | old = list; | |
1990 | current = *old; | |
1991 | ||
1992 | if ( !current ) | |
1993 | return; | |
1994 | ||
1995 | next = current->link; | |
1996 | ||
1997 | while ( next ) | |
1998 | { | |
1999 | if ( current->X <= next->X ) | |
2000 | { | |
2001 | old = ¤t->link; | |
2002 | current = *old; | |
2003 | ||
2004 | if ( !current ) | |
2005 | return; | |
2006 | } | |
2007 | else | |
2008 | { | |
2009 | *old = next; | |
2010 | current->link = next->link; | |
2011 | next->link = current; | |
2012 | ||
2013 | old = list; | |
2014 | current = *old; | |
2015 | } | |
2016 | ||
2017 | next = current->link; | |
2018 | } | |
2019 | } | |
2020 | ||
2021 | ||
2022 | /*************************************************************************/ | |
2023 | /* */ | |
2024 | /* Vertical Sweep Procedure Set */ | |
2025 | /* */ | |
2026 | /* These four routines are used during the vertical black/white sweep */ | |
2027 | /* phase by the generic Draw_Sweep() function. */ | |
2028 | /* */ | |
2029 | /*************************************************************************/ | |
2030 | ||
2031 | static | |
2032 | void Vertical_Sweep_Init( RAS_ARGS Short* min, | |
2033 | Short* max ) | |
2034 | { | |
2035 | Long pitch = ras.target.pitch; | |
2036 | ||
2037 | FT_UNUSED( max ); | |
2038 | ||
2039 | ||
2040 | ras.traceIncr = (Short)-pitch; | |
2041 | ras.traceOfs = -*min * pitch; | |
2042 | if ( pitch > 0 ) | |
2043 | ras.traceOfs += ( ras.target.rows - 1 ) * pitch; | |
2044 | ||
2045 | ras.gray_min_x = 0; | |
2046 | ras.gray_max_x = 0; | |
2047 | } | |
2048 | ||
2049 | ||
2050 | static | |
2051 | void Vertical_Sweep_Span( RAS_ARGS Short y, | |
2052 | FT_F26Dot6 x1, | |
2053 | FT_F26Dot6 x2, | |
2054 | PProfile left, | |
2055 | PProfile right ) | |
2056 | { | |
2057 | Long e1, e2; | |
2058 | Short c1, c2; | |
2059 | Byte f1, f2; | |
2060 | Byte* target; | |
2061 | ||
2062 | FT_UNUSED( y ); | |
2063 | FT_UNUSED( left ); | |
2064 | FT_UNUSED( right ); | |
2065 | ||
2066 | ||
2067 | /* Drop-out control */ | |
2068 | ||
2069 | e1 = TRUNC( CEILING( x1 ) ); | |
2070 | ||
2071 | if ( x2 - x1 - ras.precision <= ras.precision_jitter ) | |
2072 | e2 = e1; | |
2073 | else | |
2074 | e2 = TRUNC( FLOOR( x2 ) ); | |
2075 | ||
2076 | if ( e2 >= 0 && e1 < ras.bWidth ) | |
2077 | { | |
2078 | if ( e1 < 0 ) | |
2079 | e1 = 0; | |
2080 | if ( e2 >= ras.bWidth ) | |
2081 | e2 = ras.bWidth - 1; | |
2082 | ||
2083 | c1 = (Short)( e1 >> 3 ); | |
2084 | c2 = (Short)( e2 >> 3 ); | |
2085 | ||
2086 | f1 = (unsigned char)0xFF >> ( e1 & 7 ); | |
2087 | f2 = ~( (unsigned char)0x7F >> ( e2 & 7 ) ); | |
2088 | ||
2089 | if ( ras.gray_min_x > c1 ) ras.gray_min_x = c1; | |
2090 | if ( ras.gray_max_x < c2 ) ras.gray_max_x = c2; | |
2091 | ||
2092 | target = ras.bTarget + ras.traceOfs + c1; | |
2093 | c2 -= c1; | |
2094 | ||
2095 | if ( c2 > 0 ) | |
2096 | { | |
2097 | target[0] |= f1; | |
2098 | ||
2099 | /* memset() is slower than the following code on many platforms. */ | |
2100 | /* This is due to the fact that, in the vast majority of cases, */ | |
2101 | /* the span length in bytes is relatively small. */ | |
2102 | c2--; | |
2103 | while ( c2 > 0 ) | |
2104 | { | |
2105 | *(++target) = 0xFF; | |
2106 | c2--; | |
2107 | } | |
2108 | target[1] |= f2; | |
2109 | } | |
2110 | else | |
2111 | *target |= ( f1 & f2 ); | |
2112 | } | |
2113 | } | |
2114 | ||
2115 | ||
2116 | static | |
2117 | void Vertical_Sweep_Drop( RAS_ARGS Short y, | |
2118 | FT_F26Dot6 x1, | |
2119 | FT_F26Dot6 x2, | |
2120 | PProfile left, | |
2121 | PProfile right ) | |
2122 | { | |
2123 | Long e1, e2; | |
2124 | Short c1, f1; | |
2125 | ||
2126 | ||
2127 | /* Drop-out control */ | |
2128 | ||
2129 | e1 = CEILING( x1 ); | |
2130 | e2 = FLOOR ( x2 ); | |
2131 | ||
2132 | if ( e1 > e2 ) | |
2133 | { | |
2134 | if ( e1 == e2 + ras.precision ) | |
2135 | { | |
2136 | switch ( ras.dropOutControl ) | |
2137 | { | |
2138 | case 1: | |
2139 | e1 = e2; | |
2140 | break; | |
2141 | ||
2142 | case 4: | |
2143 | e1 = CEILING( (x1 + x2 + 1) / 2 ); | |
2144 | break; | |
2145 | ||
2146 | case 2: | |
2147 | case 5: | |
2148 | /* Drop-out Control Rule #4 */ | |
2149 | ||
2150 | /* The spec is not very clear regarding rule #4. It */ | |
2151 | /* presents a method that is way too costly to implement */ | |
2152 | /* while the general idea seems to get rid of `stubs'. */ | |
2153 | /* */ | |
2154 | /* Here, we only get rid of stubs recognized if: */ | |
2155 | /* */ | |
2156 | /* upper stub: */ | |
2157 | /* */ | |
2158 | /* - P_Left and P_Right are in the same contour */ | |
2159 | /* - P_Right is the successor of P_Left in that contour */ | |
2160 | /* - y is the top of P_Left and P_Right */ | |
2161 | /* */ | |
2162 | /* lower stub: */ | |
2163 | /* */ | |
2164 | /* - P_Left and P_Right are in the same contour */ | |
2165 | /* - P_Left is the successor of P_Right in that contour */ | |
2166 | /* - y is the bottom of P_Left */ | |
2167 | /* */ | |
2168 | ||
2169 | /* FIXXXME: uncommenting this line solves the disappearing */ | |
2170 | /* bit problem in the `7' of verdana 10pts, but */ | |
2171 | /* makes a new one in the `C' of arial 14pts */ | |
2172 | ||
2173 | #if 0 | |
2174 | if ( x2 - x1 < ras.precision_half ) | |
2175 | #endif | |
2176 | { | |
2177 | /* upper stub test */ | |
2178 | if ( left->next == right && left->height <= 0 ) | |
2179 | return; | |
2180 | ||
2181 | /* lower stub test */ | |
2182 | if ( right->next == left && left->start == y ) | |
2183 | return; | |
2184 | } | |
2185 | ||
2186 | /* check that the rightmost pixel isn't set */ | |
2187 | ||
2188 | e1 = TRUNC( e1 ); | |
2189 | ||
2190 | c1 = (Short)( e1 >> 3 ); | |
2191 | f1 = e1 & 7; | |
2192 | ||
2193 | if ( e1 >= 0 && e1 < ras.bWidth && | |
2194 | ras.bTarget[ras.traceOfs + c1] & ( 0x80 >> f1 ) ) | |
2195 | return; | |
2196 | ||
2197 | if ( ras.dropOutControl == 2 ) | |
2198 | e1 = e2; | |
2199 | else | |
2200 | e1 = CEILING( ( x1 + x2 + 1 ) / 2 ); | |
2201 | ||
2202 | break; | |
2203 | ||
2204 | default: | |
2205 | return; /* unsupported mode */ | |
2206 | } | |
2207 | } | |
2208 | else | |
2209 | return; | |
2210 | } | |
2211 | ||
2212 | e1 = TRUNC( e1 ); | |
2213 | ||
2214 | if ( e1 >= 0 && e1 < ras.bWidth ) | |
2215 | { | |
2216 | c1 = (Short)( e1 >> 3 ); | |
2217 | f1 = e1 & 7; | |
2218 | ||
2219 | if ( ras.gray_min_x > c1 ) ras.gray_min_x = c1; | |
2220 | if ( ras.gray_max_x < c1 ) ras.gray_max_x = c1; | |
2221 | ||
2222 | ras.bTarget[ras.traceOfs + c1] |= (char)( 0x80 >> f1 ); | |
2223 | } | |
2224 | } | |
2225 | ||
2226 | ||
2227 | static | |
2228 | void Vertical_Sweep_Step( RAS_ARG ) | |
2229 | { | |
2230 | ras.traceOfs += ras.traceIncr; | |
2231 | } | |
2232 | ||
2233 | ||
2234 | /***********************************************************************/ | |
2235 | /* */ | |
2236 | /* Horizontal Sweep Procedure Set */ | |
2237 | /* */ | |
2238 | /* These four routines are used during the horizontal black/white */ | |
2239 | /* sweep phase by the generic Draw_Sweep() function. */ | |
2240 | /* */ | |
2241 | /***********************************************************************/ | |
2242 | ||
2243 | static | |
2244 | void Horizontal_Sweep_Init( RAS_ARGS Short* min, | |
2245 | Short* max ) | |
2246 | { | |
2247 | /* nothing, really */ | |
2248 | FT_UNUSED( raster ); | |
2249 | FT_UNUSED( min ); | |
2250 | FT_UNUSED( max ); | |
2251 | } | |
2252 | ||
2253 | ||
2254 | static | |
2255 | void Horizontal_Sweep_Span( RAS_ARGS Short y, | |
2256 | FT_F26Dot6 x1, | |
2257 | FT_F26Dot6 x2, | |
2258 | PProfile left, | |
2259 | PProfile right ) | |
2260 | { | |
2261 | Long e1, e2; | |
2262 | PByte bits; | |
2263 | Byte f1; | |
2264 | ||
2265 | FT_UNUSED( left ); | |
2266 | FT_UNUSED( right ); | |
2267 | ||
2268 | ||
2269 | if ( x2 - x1 < ras.precision ) | |
2270 | { | |
2271 | e1 = CEILING( x1 ); | |
2272 | e2 = FLOOR ( x2 ); | |
2273 | ||
2274 | if ( e1 == e2 ) | |
2275 | { | |
2276 | bits = ras.bTarget + ( y >> 3 ); | |
2277 | f1 = (Byte)( 0x80 >> ( y & 7 ) ); | |
2278 | ||
2279 | e1 = TRUNC( e1 ); | |
2280 | ||
2281 | if ( e1 >= 0 && e1 < ras.target.rows ) | |
2282 | { | |
2283 | PByte p; | |
2284 | ||
2285 | ||
2286 | p = bits - e1*ras.target.pitch; | |
2287 | if ( ras.target.pitch > 0 ) | |
2288 | p += ( ras.target.rows - 1 ) * ras.target.pitch; | |
2289 | ||
2290 | p[0] |= f1; | |
2291 | } | |
2292 | } | |
2293 | } | |
2294 | } | |
2295 | ||
2296 | ||
2297 | static | |
2298 | void Horizontal_Sweep_Drop( RAS_ARGS Short y, | |
2299 | FT_F26Dot6 x1, | |
2300 | FT_F26Dot6 x2, | |
2301 | PProfile left, | |
2302 | PProfile right ) | |
2303 | { | |
2304 | Long e1, e2; | |
2305 | PByte bits; | |
2306 | Byte f1; | |
2307 | ||
2308 | ||
2309 | /* During the horizontal sweep, we only take care of drop-outs */ | |
2310 | ||
2311 | e1 = CEILING( x1 ); | |
2312 | e2 = FLOOR ( x2 ); | |
2313 | ||
2314 | if ( e1 > e2 ) | |
2315 | { | |
2316 | if ( e1 == e2 + ras.precision ) | |
2317 | { | |
2318 | switch ( ras.dropOutControl ) | |
2319 | { | |
2320 | case 1: | |
2321 | e1 = e2; | |
2322 | break; | |
2323 | ||
2324 | case 4: | |
2325 | e1 = CEILING( ( x1 + x2 + 1 ) / 2 ); | |
2326 | break; | |
2327 | ||
2328 | case 2: | |
2329 | case 5: | |
2330 | ||
2331 | /* Drop-out Control Rule #4 */ | |
2332 | ||
2333 | /* The spec is not very clear regarding rule #4. It */ | |
2334 | /* presents a method that is way too costly to implement */ | |
2335 | /* while the general idea seems to get rid of `stubs'. */ | |
2336 | /* */ | |
2337 | ||
2338 | /* rightmost stub test */ | |
2339 | if ( left->next == right && left->height <= 0 ) | |
2340 | return; | |
2341 | ||
2342 | /* leftmost stub test */ | |
2343 | if ( right->next == left && left->start == y ) | |
2344 | return; | |
2345 | ||
2346 | /* check that the rightmost pixel isn't set */ | |
2347 | ||
2348 | e1 = TRUNC( e1 ); | |
2349 | ||
2350 | bits = ras.bTarget + ( y >> 3 ); | |
2351 | f1 = (Byte)( 0x80 >> ( y & 7 ) ); | |
2352 | ||
2353 | bits -= e1 * ras.target.pitch; | |
2354 | if ( ras.target.pitch > 0 ) | |
2355 | bits += ( ras.target.rows - 1 ) * ras.target.pitch; | |
2356 | ||
2357 | if ( e1 >= 0 && | |
2358 | e1 < ras.target.rows && | |
2359 | *bits & f1 ) | |
2360 | return; | |
2361 | ||
2362 | if ( ras.dropOutControl == 2 ) | |
2363 | e1 = e2; | |
2364 | else | |
2365 | e1 = CEILING( ( x1 + x2 + 1 ) / 2 ); | |
2366 | ||
2367 | break; | |
2368 | ||
2369 | default: | |
2370 | return; /* unsupported mode */ | |
2371 | } | |
2372 | } | |
2373 | else | |
2374 | return; | |
2375 | } | |
2376 | ||
2377 | bits = ras.bTarget + ( y >> 3 ); | |
2378 | f1 = (Byte)( 0x80 >> ( y & 7 ) ); | |
2379 | ||
2380 | e1 = TRUNC( e1 ); | |
2381 | ||
2382 | if ( e1 >= 0 && e1 < ras.target.rows ) | |
2383 | { | |
2384 | bits -= e1 * ras.target.pitch; | |
2385 | if ( ras.target.pitch > 0 ) | |
2386 | bits += ( ras.target.rows - 1 ) * ras.target.pitch; | |
2387 | ||
2388 | bits[0] |= f1; | |
2389 | } | |
2390 | } | |
2391 | ||
2392 | ||
2393 | static | |
2394 | void Horizontal_Sweep_Step( RAS_ARG ) | |
2395 | { | |
2396 | /* Nothing, really */ | |
2397 | FT_UNUSED( raster ); | |
2398 | } | |
2399 | ||
2400 | ||
2401 | #ifdef FT_RASTER_OPTION_ANTI_ALIASING | |
2402 | ||
2403 | ||
2404 | /*************************************************************************/ | |
2405 | /* */ | |
2406 | /* Vertical Gray Sweep Procedure Set */ | |
2407 | /* */ | |
2408 | /* These two routines are used during the vertical gray-levels sweep */ | |
2409 | /* phase by the generic Draw_Sweep() function. */ | |
2410 | /* */ | |
2411 | /* NOTES */ | |
2412 | /* */ | |
2413 | /* - The target pixmap's width *must* be a multiple of 4. */ | |
2414 | /* */ | |
2415 | /* - You have to use the function Vertical_Sweep_Span() for the gray */ | |
2416 | /* span call. */ | |
2417 | /* */ | |
2418 | /*************************************************************************/ | |
2419 | ||
2420 | static | |
2421 | void Vertical_Gray_Sweep_Init( RAS_ARGS Short* min, | |
2422 | Short* max ) | |
2423 | { | |
2424 | Long pitch, byte_len; | |
2425 | ||
2426 | ||
2427 | *min = *min & -2; | |
2428 | *max = ( *max + 3 ) & -2; | |
2429 | ||
2430 | ras.traceOfs = 0; | |
2431 | pitch = ras.target.pitch; | |
2432 | byte_len = -pitch; | |
2433 | ras.traceIncr = (Short)byte_len; | |
2434 | ras.traceG = ( *min / 2 ) * byte_len; | |
2435 | ||
2436 | if ( pitch > 0 ) | |
2437 | { | |
2438 | ras.traceG += ( ras.target.rows - 1 ) * pitch; | |
2439 | byte_len = -byte_len; | |
2440 | } | |
2441 | ||
2442 | ras.gray_min_x = (Short)byte_len; | |
2443 | ras.gray_max_x = -(Short)byte_len; | |
2444 | } | |
2445 | ||
2446 | ||
2447 | static | |
2448 | void Vertical_Gray_Sweep_Step( RAS_ARG ) | |
2449 | { | |
2450 | Int c1, c2; | |
2451 | PByte pix, bit, bit2; | |
2452 | Int* count = ras.count_table; | |
2453 | Byte* grays; | |
2454 | ||
2455 | ||
2456 | ras.traceOfs += ras.gray_width; | |
2457 | ||
2458 | if ( ras.traceOfs > ras.gray_width ) | |
2459 | { | |
2460 | pix = ras.gTarget + ras.traceG + ras.gray_min_x * 4; | |
2461 | grays = ras.grays; | |
2462 | ||
2463 | if ( ras.gray_max_x >= 0 ) | |
2464 | { | |
2465 | Long last_pixel = ras.target.width - 1; | |
2466 | Int last_cell = last_pixel >> 2; | |
2467 | Int last_bit = last_pixel & 3; | |
2468 | Bool over = 0; | |
2469 | ||
2470 | ||
2471 | if ( ras.gray_max_x >= last_cell && last_bit != 3 ) | |
2472 | { | |
2473 | ras.gray_max_x = last_cell - 1; | |
2474 | over = 1; | |
2475 | } | |
2476 | ||
2477 | if ( ras.gray_min_x < 0 ) | |
2478 | ras.gray_min_x = 0; | |
2479 | ||
2480 | bit = ras.bTarget + ras.gray_min_x; | |
2481 | bit2 = bit + ras.gray_width; | |
2482 | ||
2483 | c1 = ras.gray_max_x - ras.gray_min_x; | |
2484 | ||
2485 | while ( c1 >= 0 ) | |
2486 | { | |
2487 | c2 = count[*bit] + count[*bit2]; | |
2488 | ||
2489 | if ( c2 ) | |
2490 | { | |
2491 | pix[0] = grays[(c2 >> 12) & 0x000F]; | |
2492 | pix[1] = grays[(c2 >> 8 ) & 0x000F]; | |
2493 | pix[2] = grays[(c2 >> 4 ) & 0x000F]; | |
2494 | pix[3] = grays[ c2 & 0x000F]; | |
2495 | ||
2496 | *bit = 0; | |
2497 | *bit2 = 0; | |
2498 | } | |
2499 | ||
2500 | bit++; | |
2501 | bit2++; | |
2502 | pix += 4; | |
2503 | c1--; | |
2504 | } | |
2505 | ||
2506 | if ( over ) | |
2507 | { | |
2508 | c2 = count[*bit] + count[*bit2]; | |
2509 | if ( c2 ) | |
2510 | { | |
2511 | switch ( last_bit ) | |
2512 | { | |
2513 | case 2: | |
2514 | pix[2] = grays[(c2 >> 4 ) & 0x000F]; | |
2515 | case 1: | |
2516 | pix[1] = grays[(c2 >> 8 ) & 0x000F]; | |
2517 | default: | |
2518 | pix[0] = grays[(c2 >> 12) & 0x000F]; | |
2519 | } | |
2520 | ||
2521 | *bit = 0; | |
2522 | *bit2 = 0; | |
2523 | } | |
2524 | } | |
2525 | } | |
2526 | ||
2527 | ras.traceOfs = 0; | |
2528 | ras.traceG += ras.traceIncr; | |
2529 | ||
2530 | ras.gray_min_x = 32000; | |
2531 | ras.gray_max_x = -32000; | |
2532 | } | |
2533 | } | |
2534 | ||
2535 | ||
2536 | static | |
2537 | void Horizontal_Gray_Sweep_Span( RAS_ARGS Short y, | |
2538 | FT_F26Dot6 x1, | |
2539 | FT_F26Dot6 x2, | |
2540 | PProfile left, | |
2541 | PProfile right ) | |
2542 | { | |
2543 | /* nothing, really */ | |
2544 | FT_UNUSED( raster ); | |
2545 | FT_UNUSED( y ); | |
2546 | FT_UNUSED( x1 ); | |
2547 | FT_UNUSED( x2 ); | |
2548 | FT_UNUSED( left ); | |
2549 | FT_UNUSED( right ); | |
2550 | } | |
2551 | ||
2552 | ||
2553 | static | |
2554 | void Horizontal_Gray_Sweep_Drop( RAS_ARGS Short y, | |
2555 | FT_F26Dot6 x1, | |
2556 | FT_F26Dot6 x2, | |
2557 | PProfile left, | |
2558 | PProfile right ) | |
2559 | { | |
2560 | Long e1, e2; | |
2561 | PByte pixel; | |
2562 | Byte color; | |
2563 | ||
2564 | ||
2565 | /* During the horizontal sweep, we only take care of drop-outs */ | |
2566 | e1 = CEILING( x1 ); | |
2567 | e2 = FLOOR ( x2 ); | |
2568 | ||
2569 | if ( e1 > e2 ) | |
2570 | { | |
2571 | if ( e1 == e2 + ras.precision ) | |
2572 | { | |
2573 | switch ( ras.dropOutControl ) | |
2574 | { | |
2575 | case 1: | |
2576 | e1 = e2; | |
2577 | break; | |
2578 | ||
2579 | case 4: | |
2580 | e1 = CEILING( ( x1 + x2 + 1 ) / 2 ); | |
2581 | break; | |
2582 | ||
2583 | case 2: | |
2584 | case 5: | |
2585 | ||
2586 | /* Drop-out Control Rule #4 */ | |
2587 | ||
2588 | /* The spec is not very clear regarding rule #4. It */ | |
2589 | /* presents a method that is way too costly to implement */ | |
2590 | /* while the general idea seems to get rid of `stubs'. */ | |
2591 | /* */ | |
2592 | ||
2593 | /* rightmost stub test */ | |
2594 | if ( left->next == right && left->height <= 0 ) | |
2595 | return; | |
2596 | ||
2597 | /* leftmost stub test */ | |
2598 | if ( right->next == left && left->start == y ) | |
2599 | return; | |
2600 | ||
2601 | if ( ras.dropOutControl == 2 ) | |
2602 | e1 = e2; | |
2603 | else | |
2604 | e1 = CEILING( ( x1 + x2 + 1 ) / 2 ); | |
2605 | ||
2606 | break; | |
2607 | ||
2608 | default: | |
2609 | return; /* unsupported mode */ | |
2610 | } | |
2611 | } | |
2612 | else | |
2613 | return; | |
2614 | } | |
2615 | ||
2616 | if ( e1 >= 0 ) | |
2617 | { | |
2618 | if ( x2 - x1 >= ras.precision_half ) | |
2619 | color = ras.grays[2]; | |
2620 | else | |
2621 | color = ras.grays[1]; | |
2622 | ||
2623 | e1 = TRUNC( e1 ) / 2; | |
2624 | if ( e1 < ras.target.rows ) | |
2625 | { | |
2626 | pixel = ras.gTarget - e1 * ras.target.pitch + y / 2; | |
2627 | if ( ras.target.pitch > 0 ) | |
2628 | pixel += ( ras.target.rows - 1 ) * ras.target.pitch; | |
2629 | ||
2630 | if ( pixel[0] == ras.grays[0] ) | |
2631 | pixel[0] = color; | |
2632 | } | |
2633 | } | |
2634 | } | |
2635 | ||
2636 | ||
2637 | #endif /* FT_RASTER_OPTION_ANTI_ALIASING */ | |
2638 | ||
2639 | ||
2640 | /*************************************************************************/ | |
2641 | /* */ | |
2642 | /* Generic Sweep Drawing routine */ | |
2643 | /* */ | |
2644 | /*************************************************************************/ | |
2645 | ||
2646 | static | |
2647 | Bool Draw_Sweep( RAS_ARG ) | |
2648 | { | |
2649 | Short y, y_change, y_height; | |
2650 | ||
2651 | PProfile P, Q, P_Left, P_Right; | |
2652 | ||
2653 | Short min_Y, max_Y, top, bottom, dropouts; | |
2654 | ||
2655 | Long x1, x2, xs, e1, e2; | |
2656 | ||
2657 | TProfileList wait; | |
2658 | TProfileList draw_left, draw_right; | |
2659 | ||
2660 | ||
2661 | /* Init empty linked lists */ | |
2662 | ||
2663 | Init_Linked( &wait ); | |
2664 | ||
2665 | Init_Linked( &draw_left ); | |
2666 | Init_Linked( &draw_right ); | |
2667 | ||
2668 | /* first, compute min and max Y */ | |
2669 | ||
2670 | P = ras.fProfile; | |
2671 | max_Y = (Short)TRUNC( ras.minY ); | |
2672 | min_Y = (Short)TRUNC( ras.maxY ); | |
2673 | ||
2674 | while ( P ) | |
2675 | { | |
2676 | Q = P->link; | |
2677 | ||
2678 | bottom = (Short)P->start; | |
2679 | top = (Short)P->start + P->height - 1; | |
2680 | ||
2681 | if ( min_Y > bottom ) min_Y = bottom; | |
2682 | if ( max_Y < top ) max_Y = top; | |
2683 | ||
2684 | P->X = 0; | |
2685 | InsNew( &wait, P ); | |
2686 | ||
2687 | P = Q; | |
2688 | } | |
2689 | ||
2690 | /* Check the Y-turns */ | |
2691 | if ( ras.numTurns == 0 ) | |
2692 | { | |
2693 | ras.error = Raster_Err_Invalid; | |
2694 | return FAILURE; | |
2695 | } | |
2696 | ||
2697 | /* Now inits the sweep */ | |
2698 | ||
2699 | ras.Proc_Sweep_Init( RAS_VARS &min_Y, &max_Y ); | |
2700 | ||
2701 | /* Then compute the distance of each profile from min_Y */ | |
2702 | ||
2703 | P = wait; | |
2704 | ||
2705 | while ( P ) | |
2706 | { | |
2707 | P->countL = P->start - min_Y; | |
2708 | P = P->link; | |
2709 | } | |
2710 | ||
2711 | /* Let's go */ | |
2712 | ||
2713 | y = min_Y; | |
2714 | y_height = 0; | |
2715 | ||
2716 | if ( ras.numTurns > 0 && | |
2717 | ras.sizeBuff[-ras.numTurns] == min_Y ) | |
2718 | ras.numTurns--; | |
2719 | ||
2720 | while ( ras.numTurns > 0 ) | |
2721 | { | |
2722 | /* look in the wait list for new activations */ | |
2723 | ||
2724 | P = wait; | |
2725 | ||
2726 | while ( P ) | |
2727 | { | |
2728 | Q = P->link; | |
2729 | P->countL -= y_height; | |
2730 | if ( P->countL == 0 ) | |
2731 | { | |
2732 | DelOld( &wait, P ); | |
2733 | ||
2734 | switch ( P->flow ) | |
2735 | { | |
2736 | case Flow_Up: | |
2737 | InsNew( &draw_left, P ); | |
2738 | break; | |
2739 | ||
2740 | case Flow_Down: | |
2741 | InsNew( &draw_right, P ); | |
2742 | break; | |
2743 | } | |
2744 | } | |
2745 | ||
2746 | P = Q; | |
2747 | } | |
2748 | ||
2749 | /* Sort the drawing lists */ | |
2750 | ||
2751 | Sort( &draw_left ); | |
2752 | Sort( &draw_right ); | |
2753 | ||
2754 | y_change = (Short)ras.sizeBuff[-ras.numTurns--]; | |
2755 | y_height = y_change - y; | |
2756 | ||
2757 | while ( y < y_change ) | |
2758 | { | |
2759 | /* Let's trace */ | |
2760 | ||
2761 | dropouts = 0; | |
2762 | ||
2763 | P_Left = draw_left; | |
2764 | P_Right = draw_right; | |
2765 | ||
2766 | while ( P_Left ) | |
2767 | { | |
2768 | x1 = P_Left ->X; | |
2769 | x2 = P_Right->X; | |
2770 | ||
2771 | if ( x1 > x2 ) | |
2772 | { | |
2773 | xs = x1; | |
2774 | x1 = x2; | |
2775 | x2 = xs; | |
2776 | } | |
2777 | ||
2778 | if ( x2 - x1 <= ras.precision ) | |
2779 | { | |
2780 | e1 = FLOOR( x1 ); | |
2781 | e2 = CEILING( x2 ); | |
2782 | ||
2783 | if ( ras.dropOutControl != 0 && | |
2784 | ( e1 > e2 || e2 == e1 + ras.precision ) ) | |
2785 | { | |
2786 | /* a drop out was detected */ | |
2787 | ||
2788 | P_Left ->X = x1; | |
2789 | P_Right->X = x2; | |
2790 | ||
2791 | /* mark profile for drop-out processing */ | |
2792 | P_Left->countL = 1; | |
2793 | dropouts++; | |
2794 | ||
2795 | goto Skip_To_Next; | |
2796 | } | |
2797 | } | |
2798 | ||
2799 | ras.Proc_Sweep_Span( RAS_VARS y, x1, x2, P_Left, P_Right ); | |
2800 | ||
2801 | Skip_To_Next: | |
2802 | ||
2803 | P_Left = P_Left->link; | |
2804 | P_Right = P_Right->link; | |
2805 | } | |
2806 | ||
2807 | /* now perform the dropouts _after_ the span drawing -- */ | |
2808 | /* drop-outs processing has been moved out of the loop */ | |
2809 | /* for performance tuning */ | |
2810 | if ( dropouts > 0 ) | |
2811 | goto Scan_DropOuts; | |
2812 | ||
2813 | Next_Line: | |
2814 | ||
2815 | ras.Proc_Sweep_Step( RAS_VAR ); | |
2816 | ||
2817 | y++; | |
2818 | ||
2819 | if ( y < y_change ) | |
2820 | { | |
2821 | Sort( &draw_left ); | |
2822 | Sort( &draw_right ); | |
2823 | } | |
2824 | } | |
2825 | ||
2826 | /* Now finalize the profiles that needs it */ | |
2827 | ||
2828 | { | |
2829 | PProfile Q, P; | |
2830 | ||
2831 | ||
2832 | P = draw_left; | |
2833 | while ( P ) | |
2834 | { | |
2835 | Q = P->link; | |
2836 | if ( P->height == 0 ) | |
2837 | DelOld( &draw_left, P ); | |
2838 | P = Q; | |
2839 | } | |
2840 | } | |
2841 | ||
2842 | { | |
2843 | PProfile Q, P = draw_right; | |
2844 | ||
2845 | ||
2846 | while ( P ) | |
2847 | { | |
2848 | Q = P->link; | |
2849 | if ( P->height == 0 ) | |
2850 | DelOld( &draw_right, P ); | |
2851 | P = Q; | |
2852 | } | |
2853 | } | |
2854 | } | |
2855 | ||
2856 | /* for gray-scaling, flushes the bitmap scanline cache */ | |
2857 | while ( y <= max_Y ) | |
2858 | { | |
2859 | ras.Proc_Sweep_Step( RAS_VAR ); | |
2860 | y++; | |
2861 | } | |
2862 | ||
2863 | return SUCCESS; | |
2864 | ||
2865 | Scan_DropOuts: | |
2866 | ||
2867 | P_Left = draw_left; | |
2868 | P_Right = draw_right; | |
2869 | ||
2870 | while ( P_Left ) | |
2871 | { | |
2872 | if ( P_Left->countL ) | |
2873 | { | |
2874 | P_Left->countL = 0; | |
2875 | #if 0 | |
2876 | dropouts--; /* -- this is useful when debugging only */ | |
2877 | #endif | |
2878 | ras.Proc_Sweep_Drop( RAS_VARS y, | |
2879 | P_Left->X, | |
2880 | P_Right->X, | |
2881 | P_Left, | |
2882 | P_Right ); | |
2883 | } | |
2884 | ||
2885 | P_Left = P_Left->link; | |
2886 | P_Right = P_Right->link; | |
2887 | } | |
2888 | ||
2889 | goto Next_Line; | |
2890 | } | |
2891 | ||
2892 | ||
2893 | /*************************************************************************/ | |
2894 | /* */ | |
2895 | /* <Function> */ | |
2896 | /* Render_Single_Pass */ | |
2897 | /* */ | |
2898 | /* <Description> */ | |
2899 | /* Performs one sweep with sub-banding. */ | |
2900 | /* */ | |
2901 | /* <Input> */ | |
2902 | /* flipped :: If set, flip the direction of the outline. */ | |
2903 | /* */ | |
2904 | /* <Return> */ | |
2905 | /* Renderer error code. */ | |
2906 | /* */ | |
2907 | static | |
2908 | int Render_Single_Pass( RAS_ARGS Bool flipped ) | |
2909 | { | |
2910 | Short i, j, k; | |
2911 | ||
2912 | ||
2913 | while ( ras.band_top >= 0 ) | |
2914 | { | |
2915 | ras.maxY = (Long)ras.band_stack[ras.band_top].y_max * ras.precision; | |
2916 | ras.minY = (Long)ras.band_stack[ras.band_top].y_min * ras.precision; | |
2917 | ||
2918 | ras.top = ras.buff; | |
2919 | ||
2920 | ras.error = Raster_Err_None; | |
2921 | ||
2922 | if ( Convert_Glyph( RAS_VARS flipped ) ) | |
2923 | { | |
2924 | if ( ras.error != Raster_Err_Overflow ) | |
2925 | return FAILURE; | |
2926 | ||
2927 | ras.error = Raster_Err_None; | |
2928 | ||
2929 | /* sub-banding */ | |
2930 | ||
2931 | #ifdef DEBUG_RASTER | |
2932 | ClearBand( RAS_VARS TRUNC( ras.minY ), TRUNC( ras.maxY ) ); | |
2933 | #endif | |
2934 | ||
2935 | i = ras.band_stack[ras.band_top].y_min; | |
2936 | j = ras.band_stack[ras.band_top].y_max; | |
2937 | ||
2938 | k = ( i + j ) / 2; | |
2939 | ||
2940 | if ( ras.band_top >= 7 || k < i ) | |
2941 | { | |
2942 | ras.band_top = 0; | |
2943 | ras.error = Raster_Err_Invalid; | |
2944 | ||
2945 | return ras.error; | |
2946 | } | |
2947 | ||
2948 | ras.band_stack[ras.band_top + 1].y_min = k; | |
2949 | ras.band_stack[ras.band_top + 1].y_max = j; | |
2950 | ||
2951 | ras.band_stack[ras.band_top].y_max = k - 1; | |
2952 | ||
2953 | ras.band_top++; | |
2954 | } | |
2955 | else | |
2956 | { | |
2957 | if ( ras.fProfile ) | |
2958 | if ( Draw_Sweep( RAS_VAR ) ) | |
2959 | return ras.error; | |
2960 | ras.band_top--; | |
2961 | } | |
2962 | } | |
2963 | ||
2964 | return SUCCESS; | |
2965 | } | |
2966 | ||
2967 | ||
2968 | /*************************************************************************/ | |
2969 | /* */ | |
2970 | /* <Function> */ | |
2971 | /* Render_Glyph */ | |
2972 | /* */ | |
2973 | /* <Description> */ | |
2974 | /* Renders a glyph in a bitmap. Sub-banding if needed. */ | |
2975 | /* */ | |
2976 | /* <Return> */ | |
2977 | /* FreeType error code. 0 means success. */ | |
2978 | /* */ | |
2979 | /* XXX Fixme: ftraster's error codes don't harmonize with FT2's ones! */ | |
2980 | /* */ | |
2981 | LOCAL_FUNC | |
2982 | FT_Error Render_Glyph( RAS_ARG ) | |
2983 | { | |
2984 | FT_Error error; | |
2985 | ||
2986 | ||
2987 | Set_High_Precision( RAS_VARS ras.outline.flags & | |
2988 | ft_outline_high_precision ); | |
2989 | ras.scale_shift = ras.precision_shift; | |
2990 | ras.dropOutControl = 2; | |
2991 | ras.second_pass = !( ras.outline.flags & ft_outline_single_pass ); | |
2992 | ||
2993 | /* Vertical Sweep */ | |
2994 | ras.Proc_Sweep_Init = Vertical_Sweep_Init; | |
2995 | ras.Proc_Sweep_Span = Vertical_Sweep_Span; | |
2996 | ras.Proc_Sweep_Drop = Vertical_Sweep_Drop; | |
2997 | ras.Proc_Sweep_Step = Vertical_Sweep_Step; | |
2998 | ||
2999 | ras.band_top = 0; | |
3000 | ras.band_stack[0].y_min = 0; | |
3001 | ras.band_stack[0].y_max = ras.target.rows - 1; | |
3002 | ||
3003 | ras.bWidth = ras.target.width; | |
3004 | ras.bTarget = (Byte*)ras.target.buffer; | |
3005 | ||
3006 | if ( ( error = Render_Single_Pass( RAS_VARS 0 ) ) != 0 ) | |
3007 | return error; | |
3008 | ||
3009 | /* Horizontal Sweep */ | |
3010 | if ( ras.second_pass && ras.dropOutControl != 0 ) | |
3011 | { | |
3012 | ras.Proc_Sweep_Init = Horizontal_Sweep_Init; | |
3013 | ras.Proc_Sweep_Span = Horizontal_Sweep_Span; | |
3014 | ras.Proc_Sweep_Drop = Horizontal_Sweep_Drop; | |
3015 | ras.Proc_Sweep_Step = Horizontal_Sweep_Step; | |
3016 | ||
3017 | ras.band_top = 0; | |
3018 | ras.band_stack[0].y_min = 0; | |
3019 | ras.band_stack[0].y_max = ras.target.width - 1; | |
3020 | ||
3021 | if ( ( error = Render_Single_Pass( RAS_VARS 1 ) ) != 0 ) | |
3022 | return error; | |
3023 | } | |
3024 | ||
3025 | return FT_Err_Ok; | |
3026 | } | |
3027 | ||
3028 | ||
3029 | #ifdef FT_RASTER_OPTION_ANTI_ALIASING | |
3030 | ||
3031 | ||
3032 | /*************************************************************************/ | |
3033 | /* */ | |
3034 | /* <Function> */ | |
3035 | /* Render_Gray_Glyph */ | |
3036 | /* */ | |
3037 | /* <Description> */ | |
3038 | /* Renders a glyph with grayscaling. Sub-banding if needed. */ | |
3039 | /* */ | |
3040 | /* <Return> */ | |
3041 | /* FreeType error code. 0 means success. */ | |
3042 | /* */ | |
3043 | LOCAL_FUNC | |
3044 | FT_Error Render_Gray_Glyph( RAS_ARG ) | |
3045 | { | |
3046 | Long pixel_width; | |
3047 | FT_Error error; | |
3048 | ||
3049 | ||
3050 | Set_High_Precision( RAS_VARS ras.outline.flags & | |
3051 | ft_outline_high_precision ); | |
3052 | ras.scale_shift = ras.precision_shift + 1; | |
3053 | ras.dropOutControl = 2; | |
3054 | ras.second_pass = !( ras.outline.flags & ft_outline_single_pass ); | |
3055 | ||
3056 | /* Vertical Sweep */ | |
3057 | ||
3058 | ras.band_top = 0; | |
3059 | ras.band_stack[0].y_min = 0; | |
3060 | ras.band_stack[0].y_max = 2 * ras.target.rows - 1; | |
3061 | ||
3062 | ras.bWidth = ras.gray_width; | |
3063 | pixel_width = 2 * ( ( ras.target.width + 3 ) >> 2 ); | |
3064 | ||
3065 | if ( ras.bWidth > pixel_width ) | |
3066 | ras.bWidth = pixel_width; | |
3067 | ||
3068 | ras.bWidth = ras.bWidth * 8; | |
3069 | ras.bTarget = (Byte*)ras.gray_lines; | |
3070 | ras.gTarget = (Byte*)ras.target.buffer; | |
3071 | ||
3072 | ras.Proc_Sweep_Init = Vertical_Gray_Sweep_Init; | |
3073 | ras.Proc_Sweep_Span = Vertical_Sweep_Span; | |
3074 | ras.Proc_Sweep_Drop = Vertical_Sweep_Drop; | |
3075 | ras.Proc_Sweep_Step = Vertical_Gray_Sweep_Step; | |
3076 | ||
3077 | error = Render_Single_Pass( RAS_VARS 0 ); | |
3078 | if ( error ) | |
3079 | return error; | |
3080 | ||
3081 | /* Horizontal Sweep */ | |
3082 | if ( ras.second_pass && ras.dropOutControl != 0 ) | |
3083 | { | |
3084 | ras.Proc_Sweep_Init = Horizontal_Sweep_Init; | |
3085 | ras.Proc_Sweep_Span = Horizontal_Gray_Sweep_Span; | |
3086 | ras.Proc_Sweep_Drop = Horizontal_Gray_Sweep_Drop; | |
3087 | ras.Proc_Sweep_Step = Horizontal_Sweep_Step; | |
3088 | ||
3089 | ras.band_top = 0; | |
3090 | ras.band_stack[0].y_min = 0; | |
3091 | ras.band_stack[0].y_max = ras.target.width * 2 - 1; | |
3092 | ||
3093 | error = Render_Single_Pass( RAS_VARS 1 ); | |
3094 | if ( error ) | |
3095 | return error; | |
3096 | } | |
3097 | ||
3098 | return FT_Err_Ok; | |
3099 | } | |
3100 | ||
3101 | #else /* FT_RASTER_OPTION_ANTI_ALIASING */ | |
3102 | ||
3103 | LOCAL_FUNC | |
3104 | FT_Error Render_Gray_Glyph( RAS_ARG ) | |
3105 | { | |
3106 | FT_UNUSED_RASTER; | |
3107 | ||
3108 | return FT_Err_Cannot_Render_Glyph; | |
3109 | } | |
3110 | ||
3111 | #endif /* FT_RASTER_OPTION_ANTI_ALIASING */ | |
3112 | ||
3113 | ||
3114 | static | |
3115 | void ft_black_init( TRaster_Instance* raster ) | |
3116 | { | |
3117 | FT_UInt n; | |
3118 | FT_ULong c; | |
3119 | ||
3120 | ||
3121 | /* setup count table */ | |
3122 | for ( n = 0; n < 256; n++ ) | |
3123 | { | |
3124 | c = ( n & 0x55 ) + ( ( n & 0xAA ) >> 1 ); | |
3125 | ||
3126 | c = ( ( c << 6 ) & 0x3000 ) | | |
3127 | ( ( c << 4 ) & 0x0300 ) | | |
3128 | ( ( c << 2 ) & 0x0030 ) | | |
3129 | (c & 0x0003 ); | |
3130 | ||
3131 | raster->count_table[n] = c; | |
3132 | } | |
3133 | ||
3134 | #ifdef FT_RASTER_OPTION_ANTI_ALIASING | |
3135 | ||
3136 | /* set default 5-levels gray palette */ | |
3137 | for ( n = 0; n < 5; n++ ) | |
3138 | raster->grays[n] = n * 255 / 4; | |
3139 | ||
3140 | raster->gray_width = RASTER_GRAY_LINES / 2; | |
3141 | ||
3142 | #endif | |
3143 | } | |
3144 | ||
3145 | ||
3146 | /**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/ | |
3147 | /**** a static object. *****/ | |
3148 | ||
3149 | ||
3150 | #ifdef _STANDALONE_ | |
3151 | ||
3152 | ||
3153 | static | |
3154 | int ft_black_new( void* memory, | |
3155 | FT_Raster *araster ) | |
3156 | { | |
3157 | static FT_RasterRec_ the_raster; | |
3158 | ||
3159 | ||
3160 | *araster = &the_raster; | |
3161 | memset( &the_raster, sizeof ( the_raster ), 0 ); | |
3162 | ft_black_init( &the_raster ); | |
3163 | ||
3164 | return 0; | |
3165 | } | |
3166 | ||
3167 | ||
3168 | static | |
3169 | void ft_black_done( FT_Raster raster ) | |
3170 | { | |
3171 | /* nothing */ | |
3172 | raster->init = 0; | |
3173 | } | |
3174 | ||
3175 | ||
3176 | #else /* _STANDALONE_ */ | |
3177 | ||
3178 | ||
3179 | static | |
3180 | int ft_black_new( FT_Memory memory, | |
3181 | TRaster_Instance** araster ) | |
3182 | { | |
3183 | FT_Error error; | |
3184 | TRaster_Instance* raster; | |
3185 | ||
3186 | ||
3187 | *araster = 0; | |
3188 | if ( !ALLOC( raster, sizeof ( *raster ) ) ) | |
3189 | { | |
3190 | raster->memory = memory; | |
3191 | ft_black_init( raster ); | |
3192 | ||
3193 | *araster = raster; | |
3194 | } | |
3195 | ||
3196 | return error; | |
3197 | } | |
3198 | ||
3199 | ||
3200 | static | |
3201 | void ft_black_done( TRaster_Instance* raster ) | |
3202 | { | |
3203 | FT_Memory memory = (FT_Memory)raster->memory; | |
3204 | FREE( raster ); | |
3205 | } | |
3206 | ||
3207 | ||
3208 | #endif /* _STANDALONE_ */ | |
3209 | ||
3210 | ||
3211 | static | |
3212 | void ft_black_reset( TRaster_Instance* raster, | |
3213 | const char* pool_base, | |
3214 | long pool_size ) | |
3215 | { | |
3216 | if ( raster && pool_base && pool_size >= 4096 ) | |
3217 | { | |
3218 | /* save the pool */ | |
3219 | raster->buff = (PLong)pool_base; | |
3220 | raster->sizeBuff = raster->buff + pool_size / sizeof ( Long ); | |
3221 | } | |
3222 | } | |
3223 | ||
3224 | ||
3225 | static | |
3226 | void ft_black_set_mode( TRaster_Instance* raster, | |
3227 | unsigned long mode, | |
3228 | const char* palette ) | |
3229 | { | |
3230 | #ifdef FT_RASTER_OPTION_ANTI_ALIASING | |
3231 | ||
3232 | if ( mode == FT_MAKE_TAG( 'p', 'a', 'l', '5' ) ) | |
3233 | { | |
3234 | /* set 5-levels gray palette */ | |
3235 | raster->grays[0] = palette[0]; | |
3236 | raster->grays[1] = palette[1]; | |
3237 | raster->grays[2] = palette[2]; | |
3238 | raster->grays[3] = palette[3]; | |
3239 | raster->grays[4] = palette[4]; | |
3240 | } | |
3241 | ||
3242 | #else | |
3243 | ||
3244 | FT_UNUSED( raster ); | |
3245 | FT_UNUSED( mode ); | |
3246 | FT_UNUSED( palette ); | |
3247 | ||
3248 | #endif | |
3249 | } | |
3250 | ||
3251 | ||
3252 | static | |
3253 | int ft_black_render( TRaster_Instance* raster, | |
3254 | FT_Raster_Params* params ) | |
3255 | { | |
3256 | FT_Outline* outline = (FT_Outline*)params->source; | |
3257 | FT_Bitmap* target_map = params->target; | |
3258 | ||
3259 | ||
3260 | if ( !raster || !raster->buff || !raster->sizeBuff ) | |
3261 | return Raster_Err_Not_Ini; | |
3262 | ||
3263 | if ( !outline || !outline->contours || !outline->points ) | |
3264 | return Raster_Err_Invalid; | |
3265 | ||
3266 | /* return immediately if the outline is empty */ | |
3267 | if ( outline->n_points == 0 || outline->n_contours <= 0 ) | |
3268 | return Raster_Err_None; | |
3269 | ||
3270 | if ( outline->n_points != outline->contours[outline->n_contours - 1] + 1 ) | |
3271 | return Raster_Err_Invalid; | |
3272 | ||
3273 | if ( !target_map || !target_map->buffer ) | |
3274 | return Raster_Err_Invalid; | |
3275 | ||
3276 | /* this version of the raster does not support direct rendering, sorry */ | |
3277 | if ( params->flags & ft_raster_flag_direct ) | |
3278 | return Raster_Err_Unsupported; | |
3279 | ||
3280 | ras.outline = *outline; | |
3281 | ras.target = *target_map; | |
3282 | ||
3283 | return ( ( params->flags & ft_raster_flag_aa ) | |
3284 | ? Render_Gray_Glyph( raster ) | |
3285 | : Render_Glyph( raster ) ); | |
3286 | } | |
3287 | ||
3288 | ||
3289 | FT_Raster_Funcs ft_standard_raster = | |
3290 | { | |
3291 | ft_glyph_format_outline, | |
3292 | (FT_Raster_New_Func) ft_black_new, | |
3293 | (FT_Raster_Reset_Func) ft_black_reset, | |
3294 | (FT_Raster_Set_Mode_Func)ft_black_set_mode, | |
3295 | (FT_Raster_Render_Func) ft_black_render, | |
3296 | (FT_Raster_Done_Func) ft_black_done | |
3297 | }; | |
3298 | ||
3299 | ||
3300 | /* END */ |