]>
Commit | Line | Data |
---|---|---|
1 | /////////////////////////////////////////////////////////////////////////////// | |
2 | // Name: src/common/matrix.cpp | |
3 | // Purpose: wxTransformMatrix class | |
4 | // Author: Chris Breeze, Julian Smart | |
5 | // Modified by: Klaas Holwerda | |
6 | // Created: 01/02/97 | |
7 | // Copyright: (c) Julian Smart | |
8 | // Licence: wxWindows licence | |
9 | /////////////////////////////////////////////////////////////////////////////// | |
10 | ||
11 | // Note: this is intended to be used in wxDC at some point to replace | |
12 | // the current system of scaling/translation. It is not yet used. | |
13 | ||
14 | // For compilers that support precompilation, includes "wx.h". | |
15 | #include "wx/wxprec.h" | |
16 | ||
17 | #ifdef __BORLANDC__ | |
18 | #pragma hdrstop | |
19 | #endif | |
20 | ||
21 | #include "wx/matrix.h" | |
22 | ||
23 | #ifndef WX_PRECOMP | |
24 | #include "wx/math.h" | |
25 | #endif | |
26 | ||
27 | static const double pi = M_PI; | |
28 | ||
29 | wxTransformMatrix::wxTransformMatrix(void) | |
30 | { | |
31 | m_isIdentity = false; | |
32 | ||
33 | Identity(); | |
34 | } | |
35 | ||
36 | wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat) | |
37 | : wxObject() | |
38 | { | |
39 | (*this) = mat; | |
40 | } | |
41 | ||
42 | double wxTransformMatrix::GetValue(int col, int row) const | |
43 | { | |
44 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
45 | return 0.0; | |
46 | ||
47 | return m_matrix[col][row]; | |
48 | } | |
49 | ||
50 | void wxTransformMatrix::SetValue(int col, int row, double value) | |
51 | { | |
52 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
53 | return; | |
54 | ||
55 | m_matrix[col][row] = value; | |
56 | m_isIdentity = IsIdentity1(); | |
57 | } | |
58 | ||
59 | void wxTransformMatrix::operator = (const wxTransformMatrix& mat) | |
60 | { | |
61 | int i, j; | |
62 | for (i = 0; i < 3; i++) | |
63 | { | |
64 | for (j = 0; j < 3; j++) | |
65 | { | |
66 | m_matrix[i][j] = mat.m_matrix[i][j]; | |
67 | } | |
68 | } | |
69 | m_isIdentity = mat.m_isIdentity; | |
70 | } | |
71 | ||
72 | bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) const | |
73 | { | |
74 | if (m_isIdentity && mat.m_isIdentity) | |
75 | return true; | |
76 | ||
77 | int i, j; | |
78 | for (i = 0; i < 3; i++) | |
79 | { | |
80 | for (j = 0; j < 3; j++) | |
81 | { | |
82 | if ( !wxIsSameDouble(m_matrix[i][j], mat.m_matrix[i][j]) ) | |
83 | return false; | |
84 | } | |
85 | } | |
86 | return true; | |
87 | } | |
88 | ||
89 | bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) const | |
90 | { | |
91 | return (! ((*this) == mat)); | |
92 | } | |
93 | ||
94 | double& wxTransformMatrix::operator()(int col, int row) | |
95 | { | |
96 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
97 | return m_matrix[0][0]; | |
98 | ||
99 | return m_matrix[col][row]; | |
100 | } | |
101 | ||
102 | double wxTransformMatrix::operator()(int col, int row) const | |
103 | { | |
104 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
105 | return 0.0; | |
106 | ||
107 | return m_matrix[col][row]; | |
108 | } | |
109 | ||
110 | // Invert matrix | |
111 | bool wxTransformMatrix::Invert(void) | |
112 | { | |
113 | double inverseMatrix[3][3]; | |
114 | ||
115 | // calculate the adjoint | |
116 | inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]); | |
117 | inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]); | |
118 | inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]); | |
119 | ||
120 | inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]); | |
121 | inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]); | |
122 | inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]); | |
123 | ||
124 | inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]); | |
125 | inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]); | |
126 | inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]); | |
127 | ||
128 | // now divide by the determinant | |
129 | double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0]; | |
130 | if ( wxIsNullDouble(det) ) | |
131 | return false; | |
132 | ||
133 | inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det; | |
134 | inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det; | |
135 | inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det; | |
136 | ||
137 | for (int i = 0; i < 3; i++) | |
138 | { | |
139 | for (int j = 0; j < 3; j++) | |
140 | { | |
141 | m_matrix[i][j] = inverseMatrix[i][j]; | |
142 | } | |
143 | } | |
144 | m_isIdentity = IsIdentity1(); | |
145 | return true; | |
146 | } | |
147 | ||
148 | // Make into identity matrix | |
149 | bool wxTransformMatrix::Identity(void) | |
150 | { | |
151 | m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0; | |
152 | m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0; | |
153 | m_isIdentity = true; | |
154 | ||
155 | return true; | |
156 | } | |
157 | ||
158 | // Scale by scale (isotropic scaling i.e. the same in x and y): | |
159 | // | scale 0 0 | | |
160 | // matrix' = | 0 scale 0 | x matrix | |
161 | // | 0 0 scale | | |
162 | // | |
163 | bool wxTransformMatrix::Scale(double scale) | |
164 | { | |
165 | int i, j; | |
166 | for (i = 0; i < 3; i++) | |
167 | { | |
168 | for (j = 0; j < 3; j++) | |
169 | { | |
170 | m_matrix[i][j] *= scale; | |
171 | } | |
172 | } | |
173 | m_isIdentity = IsIdentity1(); | |
174 | ||
175 | return true; | |
176 | } | |
177 | ||
178 | ||
179 | // scale a matrix in 2D | |
180 | // | |
181 | // xs 0 xc(1-xs) | |
182 | // 0 ys yc(1-ys) | |
183 | // 0 0 1 | |
184 | // | |
185 | wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc) | |
186 | { | |
187 | double r00,r10,r20,r01,r11,r21; | |
188 | ||
189 | if (m_isIdentity) | |
190 | { | |
191 | double tx = xc*(1-xs); | |
192 | double ty = yc*(1-ys); | |
193 | r00 = xs; | |
194 | r10 = 0; | |
195 | r20 = tx; | |
196 | r01 = 0; | |
197 | r11 = ys; | |
198 | r21 = ty; | |
199 | } | |
200 | else if ( !wxIsNullDouble(xc) || !wxIsNullDouble(yc) ) | |
201 | { | |
202 | double tx = xc*(1-xs); | |
203 | double ty = yc*(1-ys); | |
204 | r00 = xs * m_matrix[0][0]; | |
205 | r10 = xs * m_matrix[1][0]; | |
206 | r20 = xs * m_matrix[2][0] + tx; | |
207 | r01 = ys * m_matrix[0][1]; | |
208 | r11 = ys * m_matrix[1][1]; | |
209 | r21 = ys * m_matrix[2][1] + ty; | |
210 | } | |
211 | else | |
212 | { | |
213 | r00 = xs * m_matrix[0][0]; | |
214 | r10 = xs * m_matrix[1][0]; | |
215 | r20 = xs * m_matrix[2][0]; | |
216 | r01 = ys * m_matrix[0][1]; | |
217 | r11 = ys * m_matrix[1][1]; | |
218 | r21 = ys * m_matrix[2][1]; | |
219 | } | |
220 | ||
221 | m_matrix[0][0] = r00; | |
222 | m_matrix[1][0] = r10; | |
223 | m_matrix[2][0] = r20; | |
224 | m_matrix[0][1] = r01; | |
225 | m_matrix[1][1] = r11; | |
226 | m_matrix[2][1] = r21; | |
227 | ||
228 | /* or like this | |
229 | // first translate to origin O | |
230 | (*this).Translate(-x_cen, -y_cen); | |
231 | ||
232 | // now do the scaling | |
233 | wxTransformMatrix scale; | |
234 | scale.m_matrix[0][0] = x_fac; | |
235 | scale.m_matrix[1][1] = y_fac; | |
236 | scale.m_isIdentity = IsIdentity1(); | |
237 | ||
238 | *this = scale * (*this); | |
239 | ||
240 | // translate back from origin to x_cen, y_cen | |
241 | (*this).Translate(x_cen, y_cen); | |
242 | */ | |
243 | ||
244 | m_isIdentity = IsIdentity1(); | |
245 | ||
246 | return *this; | |
247 | } | |
248 | ||
249 | ||
250 | // mirror a matrix in x, y | |
251 | // | |
252 | // -1 0 0 Y-mirror | |
253 | // 0 -1 0 X-mirror | |
254 | // 0 0 -1 Z-mirror | |
255 | wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y) | |
256 | { | |
257 | wxTransformMatrix temp; | |
258 | if (x) | |
259 | { | |
260 | temp.m_matrix[1][1] = -1; | |
261 | temp.m_isIdentity=false; | |
262 | } | |
263 | if (y) | |
264 | { | |
265 | temp.m_matrix[0][0] = -1; | |
266 | temp.m_isIdentity=false; | |
267 | } | |
268 | ||
269 | *this = temp * (*this); | |
270 | m_isIdentity = IsIdentity1(); | |
271 | return *this; | |
272 | } | |
273 | ||
274 | // Translate by dx, dy: | |
275 | // | 1 0 dx | | |
276 | // matrix' = | 0 1 dy | x matrix | |
277 | // | 0 0 1 | | |
278 | // | |
279 | bool wxTransformMatrix::Translate(double dx, double dy) | |
280 | { | |
281 | int i; | |
282 | for (i = 0; i < 3; i++) | |
283 | m_matrix[i][0] += dx * m_matrix[i][2]; | |
284 | for (i = 0; i < 3; i++) | |
285 | m_matrix[i][1] += dy * m_matrix[i][2]; | |
286 | ||
287 | m_isIdentity = IsIdentity1(); | |
288 | ||
289 | return true; | |
290 | } | |
291 | ||
292 | // Rotate clockwise by the given number of degrees: | |
293 | // | cos sin 0 | | |
294 | // matrix' = | -sin cos 0 | x matrix | |
295 | // | 0 0 1 | | |
296 | bool wxTransformMatrix::Rotate(double degrees) | |
297 | { | |
298 | Rotate(-degrees,0,0); | |
299 | return true; | |
300 | } | |
301 | ||
302 | // counter clockwise rotate around a point | |
303 | // | |
304 | // cos(r) -sin(r) x(1-cos(r))+y(sin(r) | |
305 | // sin(r) cos(r) y(1-cos(r))-x(sin(r) | |
306 | // 0 0 1 | |
307 | wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y) | |
308 | { | |
309 | double angle = degrees * pi / 180.0; | |
310 | double c = cos(angle); | |
311 | double s = sin(angle); | |
312 | double r00,r10,r20,r01,r11,r21; | |
313 | ||
314 | if (m_isIdentity) | |
315 | { | |
316 | double tx = x*(1-c)+y*s; | |
317 | double ty = y*(1-c)-x*s; | |
318 | r00 = c ; | |
319 | r10 = -s; | |
320 | r20 = tx; | |
321 | r01 = s; | |
322 | r11 = c; | |
323 | r21 = ty; | |
324 | } | |
325 | else if ( !wxIsNullDouble(x) || !wxIsNullDouble(y) ) | |
326 | { | |
327 | double tx = x*(1-c)+y*s; | |
328 | double ty = y*(1-c)-x*s; | |
329 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2]; | |
330 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2]; | |
331 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2]; | |
332 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2]; | |
333 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2]; | |
334 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2]; | |
335 | } | |
336 | else | |
337 | { | |
338 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1]; | |
339 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1]; | |
340 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1]; | |
341 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0]; | |
342 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0]; | |
343 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0]; | |
344 | } | |
345 | ||
346 | m_matrix[0][0] = r00; | |
347 | m_matrix[1][0] = r10; | |
348 | m_matrix[2][0] = r20; | |
349 | m_matrix[0][1] = r01; | |
350 | m_matrix[1][1] = r11; | |
351 | m_matrix[2][1] = r21; | |
352 | ||
353 | /* or like this | |
354 | wxTransformMatrix rotate; | |
355 | rotate.m_matrix[2][0] = tx; | |
356 | rotate.m_matrix[2][1] = ty; | |
357 | ||
358 | rotate.m_matrix[0][0] = c; | |
359 | rotate.m_matrix[0][1] = s; | |
360 | ||
361 | rotate.m_matrix[1][0] = -s; | |
362 | rotate.m_matrix[1][1] = c; | |
363 | ||
364 | rotate.m_isIdentity=false; | |
365 | *this = rotate * (*this); | |
366 | */ | |
367 | m_isIdentity = IsIdentity1(); | |
368 | ||
369 | return *this; | |
370 | } | |
371 | ||
372 | // Transform a point from logical to device coordinates | |
373 | bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const | |
374 | { | |
375 | if (IsIdentity()) | |
376 | { | |
377 | tx = x; ty = y; return true; | |
378 | } | |
379 | ||
380 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]; | |
381 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]; | |
382 | ||
383 | return true; | |
384 | } | |
385 | ||
386 | // Transform a point from device to logical coordinates. | |
387 | ||
388 | // Example of use: | |
389 | // wxTransformMatrix mat = dc.GetTransformation(); | |
390 | // mat.Invert(); | |
391 | // mat.InverseTransformPoint(x, y, x1, y1); | |
392 | // OR (shorthand:) | |
393 | // dc.LogicalToDevice(x, y, x1, y1); | |
394 | // The latter is slightly less efficient if we're doing several | |
395 | // conversions, since the matrix is inverted several times. | |
396 | bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const | |
397 | { | |
398 | if (IsIdentity()) | |
399 | { | |
400 | tx = x; | |
401 | ty = y; | |
402 | return true; | |
403 | } | |
404 | ||
405 | const double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2]; | |
406 | if ( wxIsNullDouble(z) ) | |
407 | return false; | |
408 | ||
409 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; | |
410 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; | |
411 | return true; | |
412 | } | |
413 | ||
414 | wxTransformMatrix& wxTransformMatrix::operator*=(const double& t) | |
415 | { | |
416 | for (int i = 0; i < 3; i++) | |
417 | for (int j = 0; j < 3; j++) | |
418 | m_matrix[i][j]*= t; | |
419 | m_isIdentity = IsIdentity1(); | |
420 | return *this; | |
421 | } | |
422 | ||
423 | wxTransformMatrix& wxTransformMatrix::operator/=(const double& t) | |
424 | { | |
425 | for (int i = 0; i < 3; i++) | |
426 | for (int j = 0; j < 3; j++) | |
427 | m_matrix[i][j]/= t; | |
428 | m_isIdentity = IsIdentity1(); | |
429 | return *this; | |
430 | } | |
431 | ||
432 | wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat) | |
433 | { | |
434 | for (int i = 0; i < 3; i++) | |
435 | for (int j = 0; j < 3; j++) | |
436 | m_matrix[i][j] += mat.m_matrix[i][j]; | |
437 | m_isIdentity = IsIdentity1(); | |
438 | return *this; | |
439 | } | |
440 | ||
441 | wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat) | |
442 | { | |
443 | for (int i = 0; i < 3; i++) | |
444 | for (int j = 0; j < 3; j++) | |
445 | m_matrix[i][j] -= mat.m_matrix[i][j]; | |
446 | m_isIdentity = IsIdentity1(); | |
447 | return *this; | |
448 | } | |
449 | ||
450 | wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat) | |
451 | { | |
452 | ||
453 | if (mat.m_isIdentity) | |
454 | return *this; | |
455 | if (m_isIdentity) | |
456 | { | |
457 | *this = mat; | |
458 | return *this; | |
459 | } | |
460 | else | |
461 | { | |
462 | wxTransformMatrix result; | |
463 | for (int i = 0; i < 3; i++) | |
464 | { | |
465 | for (int j = 0; j < 3; j++) | |
466 | { | |
467 | double sum = 0; | |
468 | for (int k = 0; k < 3; k++) | |
469 | sum += m_matrix[k][i] * mat.m_matrix[j][k]; | |
470 | result.m_matrix[j][i] = sum; | |
471 | } | |
472 | } | |
473 | *this = result; | |
474 | } | |
475 | ||
476 | m_isIdentity = IsIdentity1(); | |
477 | return *this; | |
478 | } | |
479 | ||
480 | ||
481 | // constant operators | |
482 | wxTransformMatrix wxTransformMatrix::operator*(const double& t) const | |
483 | { | |
484 | wxTransformMatrix result = *this; | |
485 | result *= t; | |
486 | result.m_isIdentity = result.IsIdentity1(); | |
487 | return result; | |
488 | } | |
489 | ||
490 | wxTransformMatrix wxTransformMatrix::operator/(const double& t) const | |
491 | { | |
492 | wxTransformMatrix result = *this; | |
493 | // wxASSERT(t!=0); | |
494 | result /= t; | |
495 | result.m_isIdentity = result.IsIdentity1(); | |
496 | return result; | |
497 | } | |
498 | ||
499 | wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const | |
500 | { | |
501 | wxTransformMatrix result = *this; | |
502 | result += m; | |
503 | result.m_isIdentity = result.IsIdentity1(); | |
504 | return result; | |
505 | } | |
506 | ||
507 | wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const | |
508 | { | |
509 | wxTransformMatrix result = *this; | |
510 | result -= m; | |
511 | result.m_isIdentity = result.IsIdentity1(); | |
512 | return result; | |
513 | } | |
514 | ||
515 | ||
516 | wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const | |
517 | { | |
518 | wxTransformMatrix result = *this; | |
519 | result *= m; | |
520 | result.m_isIdentity = result.IsIdentity1(); | |
521 | return result; | |
522 | } | |
523 | ||
524 | ||
525 | wxTransformMatrix wxTransformMatrix::operator-() const | |
526 | { | |
527 | wxTransformMatrix result = *this; | |
528 | for (int i = 0; i < 3; i++) | |
529 | for (int j = 0; j < 3; j++) | |
530 | result.m_matrix[i][j] = -(this->m_matrix[i][j]); | |
531 | result.m_isIdentity = result.IsIdentity1(); | |
532 | return result; | |
533 | } | |
534 | ||
535 | static double CheckInt(double getal) | |
536 | { | |
537 | // check if the number is very close to an integer | |
538 | if ( (ceil(getal) - getal) < 0.0001) | |
539 | return ceil(getal); | |
540 | ||
541 | else if ( (getal - floor(getal)) < 0.0001) | |
542 | return floor(getal); | |
543 | ||
544 | return getal; | |
545 | ||
546 | } | |
547 | ||
548 | double wxTransformMatrix::Get_scaleX() | |
549 | { | |
550 | double scale_factor; | |
551 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
552 | if ( !wxIsSameDouble(rot_angle, 90) && !wxIsSameDouble(rot_angle, -90) ) | |
553 | scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi); | |
554 | else | |
555 | scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
556 | ||
557 | scale_factor = CheckInt(scale_factor); | |
558 | if (scale_factor < 0) | |
559 | scale_factor = -scale_factor; | |
560 | ||
561 | return scale_factor; | |
562 | } | |
563 | ||
564 | double wxTransformMatrix::Get_scaleY() | |
565 | { | |
566 | double scale_factor; | |
567 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
568 | if ( !wxIsSameDouble(rot_angle, 90) && !wxIsSameDouble(rot_angle, -90) ) | |
569 | scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi); | |
570 | else | |
571 | scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
572 | ||
573 | scale_factor = CheckInt(scale_factor); | |
574 | if (scale_factor < 0) | |
575 | ||
576 | scale_factor = -scale_factor; | |
577 | ||
578 | return scale_factor; | |
579 | ||
580 | } | |
581 | ||
582 | double wxTransformMatrix::GetRotation() | |
583 | { | |
584 | double temp1 = GetValue(0,0); // for angle calculation | |
585 | double temp2 = GetValue(0,1); // | |
586 | ||
587 | // Rotation | |
588 | double rot_angle = atan2(temp2,temp1)*180/pi; | |
589 | ||
590 | rot_angle = CheckInt(rot_angle); | |
591 | return rot_angle; | |
592 | } | |
593 | ||
594 | void wxTransformMatrix::SetRotation(double rotation) | |
595 | { | |
596 | double x=GetValue(2,0); | |
597 | double y=GetValue(2,1); | |
598 | Rotate(-GetRotation(), x, y); | |
599 | Rotate(rotation, x, y); | |
600 | } |