]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * jidctred.c | |
3 | * | |
4 | * Copyright (C) 1994-1998, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains inverse-DCT routines that produce reduced-size output: | |
9 | * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block. | |
10 | * | |
11 | * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M) | |
12 | * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step | |
13 | * with an 8-to-4 step that produces the four averages of two adjacent outputs | |
14 | * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output). | |
15 | * These steps were derived by computing the corresponding values at the end | |
16 | * of the normal LL&M code, then simplifying as much as possible. | |
17 | * | |
18 | * 1x1 is trivial: just take the DC coefficient divided by 8. | |
19 | * | |
20 | * See jidctint.c for additional comments. | |
21 | */ | |
22 | ||
23 | #define JPEG_INTERNALS | |
24 | #include "jinclude.h" | |
25 | #include "jpeglib.h" | |
26 | #include "jdct.h" /* Private declarations for DCT subsystem */ | |
27 | ||
28 | #ifdef IDCT_SCALING_SUPPORTED | |
29 | ||
30 | ||
31 | /* | |
32 | * This module is specialized to the case DCTSIZE = 8. | |
33 | */ | |
34 | ||
35 | #if DCTSIZE != 8 | |
36 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
37 | #endif | |
38 | ||
39 | ||
40 | /* Scaling is the same as in jidctint.c. */ | |
41 | ||
42 | #if BITS_IN_JSAMPLE == 8 | |
43 | #define CONST_BITS 13 | |
44 | #define PASS1_BITS 2 | |
45 | #else | |
46 | #define CONST_BITS 13 | |
47 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |
48 | #endif | |
49 | ||
50 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | |
51 | * causing a lot of useless floating-point operations at run time. | |
52 | * To get around this we use the following pre-calculated constants. | |
53 | * If you change CONST_BITS you may want to add appropriate values. | |
54 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) | |
55 | */ | |
56 | ||
57 | #if CONST_BITS == 13 | |
58 | #define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */ | |
59 | #define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */ | |
60 | #define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */ | |
61 | #define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */ | |
62 | #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ | |
63 | #define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */ | |
64 | #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ | |
65 | #define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */ | |
66 | #define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */ | |
67 | #define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */ | |
68 | #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ | |
69 | #define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */ | |
70 | #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ | |
71 | #define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */ | |
72 | #else | |
73 | #define FIX_0_211164243 FIX(0.211164243) | |
74 | #define FIX_0_509795579 FIX(0.509795579) | |
75 | #define FIX_0_601344887 FIX(0.601344887) | |
76 | #define FIX_0_720959822 FIX(0.720959822) | |
77 | #define FIX_0_765366865 FIX(0.765366865) | |
78 | #define FIX_0_850430095 FIX(0.850430095) | |
79 | #define FIX_0_899976223 FIX(0.899976223) | |
80 | #define FIX_1_061594337 FIX(1.061594337) | |
81 | #define FIX_1_272758580 FIX(1.272758580) | |
82 | #define FIX_1_451774981 FIX(1.451774981) | |
83 | #define FIX_1_847759065 FIX(1.847759065) | |
84 | #define FIX_2_172734803 FIX(2.172734803) | |
85 | #define FIX_2_562915447 FIX(2.562915447) | |
86 | #define FIX_3_624509785 FIX(3.624509785) | |
87 | #endif | |
88 | ||
89 | ||
90 | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. | |
91 | * For 8-bit samples with the recommended scaling, all the variable | |
92 | * and constant values involved are no more than 16 bits wide, so a | |
93 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. | |
94 | * For 12-bit samples, a full 32-bit multiplication will be needed. | |
95 | */ | |
96 | ||
97 | #if BITS_IN_JSAMPLE == 8 | |
98 | #define MULTIPLY(var,const) MULTIPLY16C16(var,const) | |
99 | #else | |
100 | #define MULTIPLY(var,const) ((var) * (const)) | |
101 | #endif | |
102 | ||
103 | ||
104 | /* Dequantize a coefficient by multiplying it by the multiplier-table | |
105 | * entry; produce an int result. In this module, both inputs and result | |
106 | * are 16 bits or less, so either int or short multiply will work. | |
107 | */ | |
108 | ||
109 | #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) | |
110 | ||
111 | ||
112 | /* | |
113 | * Perform dequantization and inverse DCT on one block of coefficients, | |
114 | * producing a reduced-size 4x4 output block. | |
115 | */ | |
116 | ||
117 | GLOBAL(void) | |
118 | jpeg_idct_4x4 (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
119 | JCOEFPTR coef_block, | |
120 | JSAMPARRAY output_buf, JDIMENSION output_col) | |
121 | { | |
122 | INT32 tmp0, tmp2, tmp10, tmp12; | |
123 | INT32 z1, z2, z3, z4; | |
124 | JCOEFPTR inptr; | |
125 | ISLOW_MULT_TYPE * quantptr; | |
126 | int * wsptr; | |
127 | JSAMPROW outptr; | |
128 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); | |
129 | int ctr; | |
130 | int workspace[DCTSIZE*4]; /* buffers data between passes */ | |
131 | SHIFT_TEMPS | |
132 | ||
133 | /* Pass 1: process columns from input, store into work array. */ | |
134 | ||
135 | inptr = coef_block; | |
136 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; | |
137 | wsptr = workspace; | |
138 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | |
139 | /* Don't bother to process column 4, because second pass won't use it */ | |
140 | if (ctr == DCTSIZE-4) | |
141 | continue; | |
142 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | |
143 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*5] == 0 && | |
144 | inptr[DCTSIZE*6] == 0 && inptr[DCTSIZE*7] == 0) { | |
145 | /* AC terms all zero; we need not examine term 4 for 4x4 output */ | |
146 | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; | |
147 | ||
148 | wsptr[DCTSIZE*0] = dcval; | |
149 | wsptr[DCTSIZE*1] = dcval; | |
150 | wsptr[DCTSIZE*2] = dcval; | |
151 | wsptr[DCTSIZE*3] = dcval; | |
152 | ||
153 | continue; | |
154 | } | |
155 | ||
156 | /* Even part */ | |
157 | ||
158 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |
159 | tmp0 <<= (CONST_BITS+1); | |
160 | ||
161 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | |
162 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | |
163 | ||
164 | tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, - FIX_0_765366865); | |
165 | ||
166 | tmp10 = tmp0 + tmp2; | |
167 | tmp12 = tmp0 - tmp2; | |
168 | ||
169 | /* Odd part */ | |
170 | ||
171 | z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | |
172 | z2 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | |
173 | z3 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | |
174 | z4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | |
175 | ||
176 | tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ | |
177 | + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ | |
178 | + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ | |
179 | + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ | |
180 | ||
181 | tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ | |
182 | + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ | |
183 | + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ | |
184 | + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ | |
185 | ||
186 | /* Final output stage */ | |
187 | ||
188 | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp2, CONST_BITS-PASS1_BITS+1); | |
189 | wsptr[DCTSIZE*3] = (int) DESCALE(tmp10 - tmp2, CONST_BITS-PASS1_BITS+1); | |
190 | wsptr[DCTSIZE*1] = (int) DESCALE(tmp12 + tmp0, CONST_BITS-PASS1_BITS+1); | |
191 | wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 - tmp0, CONST_BITS-PASS1_BITS+1); | |
192 | } | |
193 | ||
194 | /* Pass 2: process 4 rows from work array, store into output array. */ | |
195 | ||
196 | wsptr = workspace; | |
197 | for (ctr = 0; ctr < 4; ctr++) { | |
198 | outptr = output_buf[ctr] + output_col; | |
199 | /* It's not clear whether a zero row test is worthwhile here ... */ | |
200 | ||
201 | #ifndef NO_ZERO_ROW_TEST | |
202 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && | |
203 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | |
204 | /* AC terms all zero */ | |
205 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) | |
206 | & RANGE_MASK]; | |
207 | ||
208 | outptr[0] = dcval; | |
209 | outptr[1] = dcval; | |
210 | outptr[2] = dcval; | |
211 | outptr[3] = dcval; | |
212 | ||
213 | wsptr += DCTSIZE; /* advance pointer to next row */ | |
214 | continue; | |
215 | } | |
216 | #endif | |
217 | ||
218 | /* Even part */ | |
219 | ||
220 | tmp0 = ((INT32) wsptr[0]) << (CONST_BITS+1); | |
221 | ||
222 | tmp2 = MULTIPLY((INT32) wsptr[2], FIX_1_847759065) | |
223 | + MULTIPLY((INT32) wsptr[6], - FIX_0_765366865); | |
224 | ||
225 | tmp10 = tmp0 + tmp2; | |
226 | tmp12 = tmp0 - tmp2; | |
227 | ||
228 | /* Odd part */ | |
229 | ||
230 | z1 = (INT32) wsptr[7]; | |
231 | z2 = (INT32) wsptr[5]; | |
232 | z3 = (INT32) wsptr[3]; | |
233 | z4 = (INT32) wsptr[1]; | |
234 | ||
235 | tmp0 = MULTIPLY(z1, - FIX_0_211164243) /* sqrt(2) * (c3-c1) */ | |
236 | + MULTIPLY(z2, FIX_1_451774981) /* sqrt(2) * (c3+c7) */ | |
237 | + MULTIPLY(z3, - FIX_2_172734803) /* sqrt(2) * (-c1-c5) */ | |
238 | + MULTIPLY(z4, FIX_1_061594337); /* sqrt(2) * (c5+c7) */ | |
239 | ||
240 | tmp2 = MULTIPLY(z1, - FIX_0_509795579) /* sqrt(2) * (c7-c5) */ | |
241 | + MULTIPLY(z2, - FIX_0_601344887) /* sqrt(2) * (c5-c1) */ | |
242 | + MULTIPLY(z3, FIX_0_899976223) /* sqrt(2) * (c3-c7) */ | |
243 | + MULTIPLY(z4, FIX_2_562915447); /* sqrt(2) * (c1+c3) */ | |
244 | ||
245 | /* Final output stage */ | |
246 | ||
247 | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp2, | |
248 | CONST_BITS+PASS1_BITS+3+1) | |
249 | & RANGE_MASK]; | |
250 | outptr[3] = range_limit[(int) DESCALE(tmp10 - tmp2, | |
251 | CONST_BITS+PASS1_BITS+3+1) | |
252 | & RANGE_MASK]; | |
253 | outptr[1] = range_limit[(int) DESCALE(tmp12 + tmp0, | |
254 | CONST_BITS+PASS1_BITS+3+1) | |
255 | & RANGE_MASK]; | |
256 | outptr[2] = range_limit[(int) DESCALE(tmp12 - tmp0, | |
257 | CONST_BITS+PASS1_BITS+3+1) | |
258 | & RANGE_MASK]; | |
259 | ||
260 | wsptr += DCTSIZE; /* advance pointer to next row */ | |
261 | } | |
262 | } | |
263 | ||
264 | ||
265 | /* | |
266 | * Perform dequantization and inverse DCT on one block of coefficients, | |
267 | * producing a reduced-size 2x2 output block. | |
268 | */ | |
269 | ||
270 | GLOBAL(void) | |
271 | jpeg_idct_2x2 (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
272 | JCOEFPTR coef_block, | |
273 | JSAMPARRAY output_buf, JDIMENSION output_col) | |
274 | { | |
275 | INT32 tmp0, tmp10, z1; | |
276 | JCOEFPTR inptr; | |
277 | ISLOW_MULT_TYPE * quantptr; | |
278 | int * wsptr; | |
279 | JSAMPROW outptr; | |
280 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); | |
281 | int ctr; | |
282 | int workspace[DCTSIZE*2]; /* buffers data between passes */ | |
283 | SHIFT_TEMPS | |
284 | ||
285 | /* Pass 1: process columns from input, store into work array. */ | |
286 | ||
287 | inptr = coef_block; | |
288 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; | |
289 | wsptr = workspace; | |
290 | for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) { | |
291 | /* Don't bother to process columns 2,4,6 */ | |
292 | if (ctr == DCTSIZE-2 || ctr == DCTSIZE-4 || ctr == DCTSIZE-6) | |
293 | continue; | |
294 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*3] == 0 && | |
295 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*7] == 0) { | |
296 | /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */ | |
297 | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; | |
298 | ||
299 | wsptr[DCTSIZE*0] = dcval; | |
300 | wsptr[DCTSIZE*1] = dcval; | |
301 | ||
302 | continue; | |
303 | } | |
304 | ||
305 | /* Even part */ | |
306 | ||
307 | z1 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |
308 | tmp10 = z1 << (CONST_BITS+2); | |
309 | ||
310 | /* Odd part */ | |
311 | ||
312 | z1 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | |
313 | tmp0 = MULTIPLY(z1, - FIX_0_720959822); /* sqrt(2) * (c7-c5+c3-c1) */ | |
314 | z1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | |
315 | tmp0 += MULTIPLY(z1, FIX_0_850430095); /* sqrt(2) * (-c1+c3+c5+c7) */ | |
316 | z1 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | |
317 | tmp0 += MULTIPLY(z1, - FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */ | |
318 | z1 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | |
319 | tmp0 += MULTIPLY(z1, FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ | |
320 | ||
321 | /* Final output stage */ | |
322 | ||
323 | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp0, CONST_BITS-PASS1_BITS+2); | |
324 | wsptr[DCTSIZE*1] = (int) DESCALE(tmp10 - tmp0, CONST_BITS-PASS1_BITS+2); | |
325 | } | |
326 | ||
327 | /* Pass 2: process 2 rows from work array, store into output array. */ | |
328 | ||
329 | wsptr = workspace; | |
330 | for (ctr = 0; ctr < 2; ctr++) { | |
331 | outptr = output_buf[ctr] + output_col; | |
332 | /* It's not clear whether a zero row test is worthwhile here ... */ | |
333 | ||
334 | #ifndef NO_ZERO_ROW_TEST | |
335 | if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) { | |
336 | /* AC terms all zero */ | |
337 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) | |
338 | & RANGE_MASK]; | |
339 | ||
340 | outptr[0] = dcval; | |
341 | outptr[1] = dcval; | |
342 | ||
343 | wsptr += DCTSIZE; /* advance pointer to next row */ | |
344 | continue; | |
345 | } | |
346 | #endif | |
347 | ||
348 | /* Even part */ | |
349 | ||
350 | tmp10 = ((INT32) wsptr[0]) << (CONST_BITS+2); | |
351 | ||
352 | /* Odd part */ | |
353 | ||
354 | tmp0 = MULTIPLY((INT32) wsptr[7], - FIX_0_720959822) /* sqrt(2) * (c7-c5+c3-c1) */ | |
355 | + MULTIPLY((INT32) wsptr[5], FIX_0_850430095) /* sqrt(2) * (-c1+c3+c5+c7) */ | |
356 | + MULTIPLY((INT32) wsptr[3], - FIX_1_272758580) /* sqrt(2) * (-c1+c3-c5-c7) */ | |
357 | + MULTIPLY((INT32) wsptr[1], FIX_3_624509785); /* sqrt(2) * (c1+c3+c5+c7) */ | |
358 | ||
359 | /* Final output stage */ | |
360 | ||
361 | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp0, | |
362 | CONST_BITS+PASS1_BITS+3+2) | |
363 | & RANGE_MASK]; | |
364 | outptr[1] = range_limit[(int) DESCALE(tmp10 - tmp0, | |
365 | CONST_BITS+PASS1_BITS+3+2) | |
366 | & RANGE_MASK]; | |
367 | ||
368 | wsptr += DCTSIZE; /* advance pointer to next row */ | |
369 | } | |
370 | } | |
371 | ||
372 | ||
373 | /* | |
374 | * Perform dequantization and inverse DCT on one block of coefficients, | |
375 | * producing a reduced-size 1x1 output block. | |
376 | */ | |
377 | ||
378 | GLOBAL(void) | |
379 | jpeg_idct_1x1 (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
380 | JCOEFPTR coef_block, | |
381 | JSAMPARRAY output_buf, JDIMENSION output_col) | |
382 | { | |
383 | int dcval; | |
384 | ISLOW_MULT_TYPE * quantptr; | |
385 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); | |
386 | SHIFT_TEMPS | |
387 | ||
388 | /* We hardly need an inverse DCT routine for this: just take the | |
389 | * average pixel value, which is one-eighth of the DC coefficient. | |
390 | */ | |
391 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; | |
392 | dcval = DEQUANTIZE(coef_block[0], quantptr[0]); | |
393 | dcval = (int) DESCALE((INT32) dcval, 3); | |
394 | ||
395 | output_buf[0][output_col] = range_limit[dcval & RANGE_MASK]; | |
396 | } | |
397 | ||
398 | #endif /* IDCT_SCALING_SUPPORTED */ |