]>
Commit | Line | Data |
---|---|---|
1 | /* inflate.c -- put in the public domain by Mark Adler | |
2 | version c16b, 29 March 1998 */ | |
3 | ||
4 | ||
5 | /* You can do whatever you like with this source file, though I would | |
6 | prefer that if you modify it and redistribute it that you include | |
7 | comments to that effect with your name and the date. Thank you. | |
8 | ||
9 | History: | |
10 | vers date who what | |
11 | ---- --------- -------------- ------------------------------------ | |
12 | a ~~ Feb 92 M. Adler used full (large, one-step) lookup table | |
13 | b1 21 Mar 92 M. Adler first version with partial lookup tables | |
14 | b2 21 Mar 92 M. Adler fixed bug in fixed-code blocks | |
15 | b3 22 Mar 92 M. Adler sped up match copies, cleaned up some | |
16 | b4 25 Mar 92 M. Adler added prototypes; removed window[] (now | |
17 | is the responsibility of unzip.h--also | |
18 | changed name to slide[]), so needs diffs | |
19 | for unzip.c and unzip.h (this allows | |
20 | compiling in the small model on MSDOS); | |
21 | fixed cast of q in huft_build(); | |
22 | b5 26 Mar 92 M. Adler got rid of unintended macro recursion. | |
23 | b6 27 Mar 92 M. Adler got rid of nextbyte() routine. fixed | |
24 | bug in inflate_fixed(). | |
25 | c1 30 Mar 92 M. Adler removed lbits, dbits environment variables. | |
26 | changed BMAX to 16 for explode. Removed | |
27 | OUTB usage, and replaced it with flush()-- | |
28 | this was a 20% speed improvement! Added | |
29 | an explode.c (to replace unimplod.c) that | |
30 | uses the huft routines here. Removed | |
31 | register union. | |
32 | c2 4 Apr 92 M. Adler fixed bug for file sizes a multiple of 32k. | |
33 | c3 10 Apr 92 M. Adler reduced memory of code tables made by | |
34 | huft_build significantly (factor of two to | |
35 | three). | |
36 | c4 15 Apr 92 M. Adler added NOMEMCPY do kill use of memcpy(). | |
37 | worked around a Turbo C optimization bug. | |
38 | c5 21 Apr 92 M. Adler added the WSIZE #define to allow reducing | |
39 | the 32K window size for specialized | |
40 | applications. | |
41 | c6 31 May 92 M. Adler added some typecasts to eliminate warnings | |
42 | c7 27 Jun 92 G. Roelofs added some more typecasts (444: MSC bug). | |
43 | c8 5 Oct 92 J-l. Gailly added ifdef'd code to deal with PKZIP bug. | |
44 | c9 9 Oct 92 M. Adler removed a memory error message (~line 416). | |
45 | c10 17 Oct 92 G. Roelofs changed ULONG/UWORD/byte to ulg/ush/uch, | |
46 | removed old inflate, renamed inflate_entry | |
47 | to inflate, added Mark's fix to a comment. | |
48 | c10.5 14 Dec 92 M. Adler fix up error messages for incomplete trees. | |
49 | c11 2 Jan 93 M. Adler fixed bug in detection of incomplete | |
50 | tables, and removed assumption that EOB is | |
51 | the longest code (bad assumption). | |
52 | c12 3 Jan 93 M. Adler make tables for fixed blocks only once. | |
53 | c13 5 Jan 93 M. Adler allow all zero length codes (pkzip 2.04c | |
54 | outputs one zero length code for an empty | |
55 | distance tree). | |
56 | c14 12 Mar 93 M. Adler made inflate.c standalone with the | |
57 | introduction of inflate.h. | |
58 | c14b 16 Jul 93 G. Roelofs added (unsigned) typecast to w at 470. | |
59 | c14c 19 Jul 93 J. Bush changed v[N_MAX], l[288], ll[28x+3x] arrays | |
60 | to static for Amiga. | |
61 | c14d 13 Aug 93 J-l. Gailly de-complicatified Mark's c[*p++]++ thing. | |
62 | c14e 8 Oct 93 G. Roelofs changed memset() to memzero(). | |
63 | c14f 22 Oct 93 G. Roelofs renamed quietflg to qflag; made Trace() | |
64 | conditional; added inflate_free(). | |
65 | c14g 28 Oct 93 G. Roelofs changed l/(lx+1) macro to pointer (Cray bug) | |
66 | c14h 7 Dec 93 C. Ghisler huft_build() optimizations. | |
67 | c14i 9 Jan 94 A. Verheijen set fixed_t{d,l} to NULL after freeing; | |
68 | G. Roelofs check NEXTBYTE macro for EOF. | |
69 | c14j 23 Jan 94 G. Roelofs removed Ghisler "optimizations"; ifdef'd | |
70 | EOF check. | |
71 | c14k 27 Feb 94 G. Roelofs added some typecasts to avoid warnings. | |
72 | c14l 9 Apr 94 G. Roelofs fixed split comments on preprocessor lines | |
73 | to avoid bug in Encore compiler. | |
74 | c14m 7 Jul 94 P. Kienitz modified to allow assembler version of | |
75 | inflate_codes() (define ASM_INFLATECODES) | |
76 | c14n 22 Jul 94 G. Roelofs changed fprintf to macro for DLL versions | |
77 | c14o 23 Aug 94 C. Spieler added a newline to a debug statement; | |
78 | G. Roelofs added another typecast to avoid MSC warning | |
79 | c14p 4 Oct 94 G. Roelofs added (voidp *) cast to free() argument | |
80 | c14q 30 Oct 94 G. Roelofs changed fprintf macro to MESSAGE() | |
81 | c14r 1 Nov 94 G. Roelofs fixed possible redefinition of CHECK_EOF | |
82 | c14s 7 May 95 S. Maxwell OS/2 DLL globals stuff incorporated; | |
83 | P. Kienitz "fixed" ASM_INFLATECODES macro/prototype | |
84 | c14t 18 Aug 95 G. Roelofs added UZinflate() to use zlib functions; | |
85 | changed voidp to zvoid; moved huft_build() | |
86 | and huft_free() to end of file | |
87 | c14u 1 Oct 95 G. Roelofs moved G into definition of MESSAGE macro | |
88 | c14v 8 Nov 95 P. Kienitz changed ASM_INFLATECODES to use a regular | |
89 | call with __G__ instead of a macro | |
90 | c15 3 Aug 96 M. Adler fixed bomb-bug on random input data (Adobe) | |
91 | c15b 24 Aug 96 M. Adler more fixes for random input data | |
92 | c15c 28 Mar 97 G. Roelofs changed USE_ZLIB fatal exit code from | |
93 | PK_MEM2 to PK_MEM3 | |
94 | c16 20 Apr 97 J. Altman added memzero(v[]) in huft_build() | |
95 | c16b 29 Mar 98 C. Spieler modified DLL code for slide redirection | |
96 | */ | |
97 | ||
98 | ||
99 | /* | |
100 | Inflate deflated (PKZIP's method 8 compressed) data. The compression | |
101 | method searches for as much of the current string of bytes (up to a | |
102 | length of 258) in the previous 32K bytes. If it doesn't find any | |
103 | matches (of at least length 3), it codes the next byte. Otherwise, it | |
104 | codes the length of the matched string and its distance backwards from | |
105 | the current position. There is a single Huffman code that codes both | |
106 | single bytes (called "literals") and match lengths. A second Huffman | |
107 | code codes the distance information, which follows a length code. Each | |
108 | length or distance code actually represents a base value and a number | |
109 | of "extra" (sometimes zero) bits to get to add to the base value. At | |
110 | the end of each deflated block is a special end-of-block (EOB) literal/ | |
111 | length code. The decoding process is basically: get a literal/length | |
112 | code; if EOB then done; if a literal, emit the decoded byte; if a | |
113 | length then get the distance and emit the referred-to bytes from the | |
114 | sliding window of previously emitted data. | |
115 | ||
116 | There are (currently) three kinds of inflate blocks: stored, fixed, and | |
117 | dynamic. The compressor outputs a chunk of data at a time and decides | |
118 | which method to use on a chunk-by-chunk basis. A chunk might typically | |
119 | be 32K to 64K, uncompressed. If the chunk is uncompressible, then the | |
120 | "stored" method is used. In this case, the bytes are simply stored as | |
121 | is, eight bits per byte, with none of the above coding. The bytes are | |
122 | preceded by a count, since there is no longer an EOB code. | |
123 | ||
124 | If the data are compressible, then either the fixed or dynamic methods | |
125 | are used. In the dynamic method, the compressed data are preceded by | |
126 | an encoding of the literal/length and distance Huffman codes that are | |
127 | to be used to decode this block. The representation is itself Huffman | |
128 | coded, and so is preceded by a description of that code. These code | |
129 | descriptions take up a little space, and so for small blocks, there is | |
130 | a predefined set of codes, called the fixed codes. The fixed method is | |
131 | used if the block ends up smaller that way (usually for quite small | |
132 | chunks); otherwise the dynamic method is used. In the latter case, the | |
133 | codes are customized to the probabilities in the current block and so | |
134 | can code it much better than the pre-determined fixed codes can. | |
135 | ||
136 | The Huffman codes themselves are decoded using a multi-level table | |
137 | lookup, in order to maximize the speed of decoding plus the speed of | |
138 | building the decoding tables. See the comments below that precede the | |
139 | lbits and dbits tuning parameters. | |
140 | ||
141 | GRR: return values(?) | |
142 | 0 OK | |
143 | 1 incomplete table | |
144 | 2 bad input | |
145 | 3 not enough memory | |
146 | */ | |
147 | ||
148 | ||
149 | /* | |
150 | Notes beyond the 1.93a appnote.txt: | |
151 | ||
152 | 1. Distance pointers never point before the beginning of the output | |
153 | stream. | |
154 | 2. Distance pointers can point back across blocks, up to 32k away. | |
155 | 3. There is an implied maximum of 7 bits for the bit length table and | |
156 | 15 bits for the actual data. | |
157 | 4. If only one code exists, then it is encoded using one bit. (Zero | |
158 | would be more efficient, but perhaps a little confusing.) If two | |
159 | codes exist, they are coded using one bit each (0 and 1). | |
160 | 5. There is no way of sending zero distance codes--a dummy must be | |
161 | sent if there are none. (History: a pre 2.0 version of PKZIP would | |
162 | store blocks with no distance codes, but this was discovered to be | |
163 | too harsh a criterion.) Valid only for 1.93a. 2.04c does allow | |
164 | zero distance codes, which is sent as one code of zero bits in | |
165 | length. | |
166 | 6. There are up to 286 literal/length codes. Code 256 represents the | |
167 | end-of-block. Note however that the static length tree defines | |
168 | 288 codes just to fill out the Huffman codes. Codes 286 and 287 | |
169 | cannot be used though, since there is no length base or extra bits | |
170 | defined for them. Similarily, there are up to 30 distance codes. | |
171 | However, static trees define 32 codes (all 5 bits) to fill out the | |
172 | Huffman codes, but the last two had better not show up in the data. | |
173 | 7. Unzip can check dynamic Huffman blocks for complete code sets. | |
174 | The exception is that a single code would not be complete (see #4). | |
175 | 8. The five bits following the block type is really the number of | |
176 | literal codes sent minus 257. | |
177 | 9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits | |
178 | (1+6+6). Therefore, to output three times the length, you output | |
179 | three codes (1+1+1), whereas to output four times the same length, | |
180 | you only need two codes (1+3). Hmm. | |
181 | 10. In the tree reconstruction algorithm, Code = Code + Increment | |
182 | only if BitLength(i) is not zero. (Pretty obvious.) | |
183 | 11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19) | |
184 | 12. Note: length code 284 can represent 227-258, but length code 285 | |
185 | really is 258. The last length deserves its own, short code | |
186 | since it gets used a lot in very redundant files. The length | |
187 | 258 is special since 258 - 3 (the min match length) is 255. | |
188 | 13. The literal/length and distance code bit lengths are read as a | |
189 | single stream of lengths. It is possible (and advantageous) for | |
190 | a repeat code (16, 17, or 18) to go across the boundary between | |
191 | the two sets of lengths. | |
192 | */ | |
193 | ||
194 | ||
195 | #define PKZIP_BUG_WORKAROUND /* PKZIP 1.93a problem--live with it */ | |
196 | ||
197 | /* | |
198 | inflate.h must supply the uch slide[WSIZE] array, the zvoid typedef | |
199 | (void if (void *) is accepted, else char) and the NEXTBYTE, | |
200 | FLUSH() and memzero macros. If the window size is not 32K, it | |
201 | should also define WSIZE. If INFMOD is defined, it can include | |
202 | compiled functions to support the NEXTBYTE and/or FLUSH() macros. | |
203 | There are defaults for NEXTBYTE and FLUSH() below for use as | |
204 | examples of what those functions need to do. Normally, you would | |
205 | also want FLUSH() to compute a crc on the data. inflate.h also | |
206 | needs to provide these typedefs: | |
207 | ||
208 | typedef unsigned char uch; | |
209 | typedef unsigned short ush; | |
210 | typedef unsigned long ulg; | |
211 | ||
212 | This module uses the external functions malloc() and free() (and | |
213 | probably memset() or bzero() in the memzero() macro). Their | |
214 | prototypes are normally found in <string.h> and <stdlib.h>. | |
215 | */ | |
216 | ||
217 | /* #define DEBUG */ | |
218 | #define INFMOD /* tell inflate.h to include code to be compiled */ | |
219 | #include "inflate.h" | |
220 | ||
221 | ||
222 | #ifndef WSIZE /* default is 32K */ | |
223 | # define WSIZE 0x8000 /* window size--must be a power of two, and at least */ | |
224 | #endif /* 32K for zip's deflate method */ | |
225 | ||
226 | #if (defined(DLL) && !defined(NO_SLIDE_REDIR)) | |
227 | # define wsize G._wsize /* wsize is a variable */ | |
228 | #else | |
229 | # define wsize WSIZE /* wsize is a constant */ | |
230 | #endif | |
231 | ||
232 | ||
233 | #ifndef NEXTBYTE /* default is to simply get a byte from stdin */ | |
234 | # define NEXTBYTE getchar() | |
235 | #endif | |
236 | ||
237 | #ifndef MESSAGE /* only used twice, for fixed strings--NOT general-purpose */ | |
238 | # define MESSAGE(str,len,flag) pipeit((char *)(str)) | |
239 | #endif | |
240 | ||
241 | #ifndef FLUSH /* default is to simply write the buffer to stdout */ | |
242 | # define FLUSH(n) fwrite(redirSlide, 1, n, stdout) /* return value not used */ | |
243 | #endif | |
244 | /* Warning: the fwrite above might not work on 16-bit compilers, since | |
245 | 0x8000 might be interpreted as -32,768 by the library function. */ | |
246 | ||
247 | #ifndef Trace | |
248 | # ifdef DEBUG | |
249 | # define Trace(x) fprintf x | |
250 | # else | |
251 | # define Trace(x) | |
252 | # endif | |
253 | #endif | |
254 | ||
255 | ||
256 | /*---------------------------------------------------------------------------*/ | |
257 | #ifdef USE_ZLIB | |
258 | ||
259 | ||
260 | /* | |
261 | GRR: return values for both original inflate() and UZinflate() | |
262 | 0 OK | |
263 | 1 incomplete table(?) | |
264 | 2 bad input | |
265 | 3 not enough memory | |
266 | */ | |
267 | ||
268 | /**************************/ | |
269 | /* Function UZinflate() */ | |
270 | /**************************/ | |
271 | ||
272 | int UZinflate(__G) /* decompress an inflated entry using the zlib routines */ | |
273 | __GDEF | |
274 | { | |
275 | int err=Z_OK; | |
276 | ||
277 | #if (defined(DLL) && !defined(NO_SLIDE_REDIR)) | |
278 | if (G.redirect_slide) | |
279 | wsize = G.redirect_size, redirSlide = G.redirect_buffer; | |
280 | else | |
281 | wsize = WSIZE, redirSlide = slide; | |
282 | #endif | |
283 | ||
284 | G.dstrm.next_out = redirSlide; | |
285 | G.dstrm.avail_out = wsize; | |
286 | ||
287 | G.dstrm.next_in = G.inptr; | |
288 | G.dstrm.avail_in = G.incnt; | |
289 | ||
290 | if (!G.inflInit) { | |
291 | unsigned i; | |
292 | int windowBits; | |
293 | ||
294 | /* only need to test this stuff once */ | |
295 | if (zlib_version[0] != ZLIB_VERSION[0]) { | |
296 | Info(slide, 0x21, ((char *)slide, | |
297 | "error: incompatible zlib version (expected %s, found %s)\n", | |
298 | ZLIB_VERSION, zlib_version)); | |
299 | return 3; | |
300 | } else if (strcmp(zlib_version, ZLIB_VERSION) != 0) | |
301 | Info(slide, 0x21, ((char *)slide, | |
302 | "warning: different zlib version (expected %s, using %s)\n", | |
303 | ZLIB_VERSION, zlib_version)); | |
304 | ||
305 | /* windowBits = log2(wsize) */ | |
306 | for (i = ((unsigned)wsize * 2 - 1), windowBits = 0; | |
307 | !(i & 1); i >>= 1, ++windowBits); | |
308 | if ((unsigned)windowBits > (unsigned)15) | |
309 | windowBits = 15; | |
310 | else if (windowBits < 8) | |
311 | windowBits = 8; | |
312 | ||
313 | G.dstrm.zalloc = (alloc_func)Z_NULL; | |
314 | G.dstrm.zfree = (free_func)Z_NULL; | |
315 | ||
316 | Trace((stderr, "initializing inflate()\n")); | |
317 | err = inflateInit2(&G.dstrm, -windowBits); | |
318 | ||
319 | if (err == Z_MEM_ERROR) | |
320 | return 3; | |
321 | else if (err != Z_OK) | |
322 | Trace((stderr, "oops! (inflateInit2() err = %d)\n", err)); | |
323 | G.inflInit = 1; | |
324 | } | |
325 | ||
326 | #ifdef FUNZIP | |
327 | while (err != Z_STREAM_END) { | |
328 | #else /* !FUNZIP */ | |
329 | while (G.csize > 0) { | |
330 | Trace((stderr, "first loop: G.csize = %ld\n", G.csize)); | |
331 | #endif /* ?FUNZIP */ | |
332 | while (G.dstrm.avail_out > 0) { | |
333 | err = inflate(&G.dstrm, Z_PARTIAL_FLUSH); | |
334 | ||
335 | if (err == Z_DATA_ERROR) | |
336 | return 2; | |
337 | else if (err == Z_MEM_ERROR) | |
338 | return 3; | |
339 | else if (err != Z_OK && err != Z_STREAM_END) | |
340 | Trace((stderr, "oops! (inflate(first loop) err = %d)\n", err)); | |
341 | ||
342 | #ifdef FUNZIP | |
343 | if (err == Z_STREAM_END) /* "END-of-entry-condition" ? */ | |
344 | #else /* !FUNZIP */ | |
345 | if (G.csize <= 0L) /* "END-of-entry-condition" ? */ | |
346 | #endif /* ?FUNZIP */ | |
347 | break; | |
348 | ||
349 | if (G.dstrm.avail_in <= 0) { | |
350 | if (fillinbuf(__G) == 0) | |
351 | return 2; /* no "END-condition" yet, but no more data */ | |
352 | ||
353 | G.dstrm.next_in = G.inptr; | |
354 | G.dstrm.avail_in = G.incnt; | |
355 | } | |
356 | Trace((stderr, " avail_in = %d\n", G.dstrm.avail_in)); | |
357 | } | |
358 | FLUSH(wsize - G.dstrm.avail_out); /* flush slide[] */ | |
359 | Trace((stderr, "inside loop: flushing %ld bytes (ptr diff = %ld)\n", | |
360 | (long)(wsize - G.dstrm.avail_out), | |
361 | (long)(G.dstrm.next_out-(Bytef *)redirSlide))); | |
362 | G.dstrm.next_out = redirSlide; | |
363 | G.dstrm.avail_out = wsize; | |
364 | } | |
365 | ||
366 | /* no more input, so loop until we have all output */ | |
367 | Trace((stderr, "beginning final loop: err = %d\n", err)); | |
368 | while (err != Z_STREAM_END) { | |
369 | err = inflate(&G.dstrm, Z_PARTIAL_FLUSH); | |
370 | if (err == Z_DATA_ERROR) | |
371 | return 2; | |
372 | else if (err == Z_MEM_ERROR) | |
373 | return 3; | |
374 | else if (err == Z_BUF_ERROR) { /* DEBUG */ | |
375 | Trace((stderr, "zlib inflate() did not detect stream end (%s, %s)\n" | |
376 | , G.zipfn, G.filename)); | |
377 | break; | |
378 | } else if (err != Z_OK && err != Z_STREAM_END) { | |
379 | Trace((stderr, "oops! (inflate(final loop) err = %d)\n", err)); | |
380 | DESTROYGLOBALS() | |
381 | EXIT(PK_MEM3); | |
382 | } | |
383 | FLUSH(wsize - G.dstrm.avail_out); /* final flush of slide[] */ | |
384 | Trace((stderr, "final loop: flushing %ld bytes (ptr diff = %ld)\n", | |
385 | (long)(wsize - G.dstrm.avail_out), | |
386 | (long)(G.dstrm.next_out-(Bytef *)redirSlide))); | |
387 | G.dstrm.next_out = redirSlide; | |
388 | G.dstrm.avail_out = wsize; | |
389 | } | |
390 | Trace((stderr, "total in = %ld, total out = %ld\n", G.dstrm.total_in, | |
391 | G.dstrm.total_out)); | |
392 | ||
393 | G.inptr = (uch *)G.dstrm.next_in; | |
394 | G.incnt = (G.inbuf + INBUFSIZ) - G.inptr; /* reset for other routines */ | |
395 | ||
396 | err = inflateReset(&G.dstrm); | |
397 | if (err != Z_OK) | |
398 | Trace((stderr, "oops! (inflateReset() err = %d)\n", err)); | |
399 | ||
400 | return 0; | |
401 | } | |
402 | ||
403 | ||
404 | /*---------------------------------------------------------------------------*/ | |
405 | #else /* !USE_ZLIB */ | |
406 | ||
407 | ||
408 | /* Function prototypes */ | |
409 | #ifndef OF | |
410 | # ifdef __STDC__ | |
411 | # define OF(a) a | |
412 | # else | |
413 | # define OF(a) () | |
414 | # endif | |
415 | #endif /* !OF */ | |
416 | int inflate_codes OF((__GPRO__ struct huft *tl, struct huft *td, | |
417 | int bl, int bd)); | |
418 | static int inflate_stored OF((__GPRO)); | |
419 | static int inflate_fixed OF((__GPRO)); | |
420 | static int inflate_dynamic OF((__GPRO)); | |
421 | static int inflate_block OF((__GPRO__ int *e)); | |
422 | ||
423 | ||
424 | /* The inflate algorithm uses a sliding 32K byte window on the uncompressed | |
425 | stream to find repeated byte strings. This is implemented here as a | |
426 | circular buffer. The index is updated simply by incrementing and then | |
427 | and'ing with 0x7fff (32K-1). */ | |
428 | /* It is left to other modules to supply the 32K area. It is assumed | |
429 | to be usable as if it were declared "uch slide[32768];" or as just | |
430 | "uch *slide;" and then malloc'ed in the latter case. The definition | |
431 | must be in unzip.h, included above. */ | |
432 | ||
433 | ||
434 | /* unsigned wp; moved to globals.h */ /* current position in slide */ | |
435 | ||
436 | ||
437 | /* Tables for deflate from PKZIP's appnote.txt. */ | |
438 | static ZCONST unsigned border[] = { /* Order of the bit length code lengths */ | |
439 | 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; | |
440 | static ZCONST ush cplens[] = { /* Copy lengths for literal codes 257..285 */ | |
441 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, | |
442 | 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; | |
443 | /* note: see note #13 above about the 258 in this list. */ | |
444 | static ZCONST ush cplext[] = { /* Extra bits for literal codes 257..285 */ | |
445 | 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, | |
446 | 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ | |
447 | static ZCONST ush cpdist[] = { /* Copy offsets for distance codes 0..29 */ | |
448 | 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, | |
449 | 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, | |
450 | 8193, 12289, 16385, 24577}; | |
451 | static ZCONST ush cpdext[] = { /* Extra bits for distance codes */ | |
452 | 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, | |
453 | 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, | |
454 | 12, 12, 13, 13}; | |
455 | ||
456 | ||
457 | /* moved to consts.h (included in unzip.c), resp. funzip.c */ | |
458 | #if 0 | |
459 | /* And'ing with mask_bits[n] masks the lower n bits */ | |
460 | ZCONST ush near mask_bits[] = { | |
461 | 0x0000, | |
462 | 0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, | |
463 | 0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff | |
464 | }; | |
465 | #endif /* 0 */ | |
466 | ||
467 | ||
468 | /* Macros for inflate() bit peeking and grabbing. | |
469 | The usage is: | |
470 | ||
471 | NEEDBITS(j) | |
472 | x = b & mask_bits[j]; | |
473 | DUMPBITS(j) | |
474 | ||
475 | where NEEDBITS makes sure that b has at least j bits in it, and | |
476 | DUMPBITS removes the bits from b. The macros use the variable k | |
477 | for the number of bits in b. Normally, b and k are register | |
478 | variables for speed and are initialized at the begining of a | |
479 | routine that uses these macros from a global bit buffer and count. | |
480 | ||
481 | In order to not ask for more bits than there are in the compressed | |
482 | stream, the Huffman tables are constructed to only ask for just | |
483 | enough bits to make up the end-of-block code (value 256). Then no | |
484 | bytes need to be "returned" to the buffer at the end of the last | |
485 | block. See the huft_build() routine. | |
486 | */ | |
487 | ||
488 | /* These have been moved to globals.h */ | |
489 | #if 0 | |
490 | ulg bb; /* bit buffer */ | |
491 | unsigned bk; /* bits in bit buffer */ | |
492 | #endif | |
493 | ||
494 | #ifndef CHECK_EOF | |
495 | # define CHECK_EOF /* default as of 5.13/5.2 */ | |
496 | #endif | |
497 | ||
498 | #ifndef CHECK_EOF | |
499 | # define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE)<<k;k+=8;}} | |
500 | #else | |
501 | # define NEEDBITS(n) {while(k<(n)){int c=NEXTBYTE;if(c==EOF)return 1;\ | |
502 | b|=((ulg)c)<<k;k+=8;}} | |
503 | #endif /* Piet Plomp: change "return 1" to "break" */ | |
504 | ||
505 | #define DUMPBITS(n) {b>>=(n);k-=(n);} | |
506 | ||
507 | ||
508 | /* | |
509 | Huffman code decoding is performed using a multi-level table lookup. | |
510 | The fastest way to decode is to simply build a lookup table whose | |
511 | size is determined by the longest code. However, the time it takes | |
512 | to build this table can also be a factor if the data being decoded | |
513 | are not very long. The most common codes are necessarily the | |
514 | shortest codes, so those codes dominate the decoding time, and hence | |
515 | the speed. The idea is you can have a shorter table that decodes the | |
516 | shorter, more probable codes, and then point to subsidiary tables for | |
517 | the longer codes. The time it costs to decode the longer codes is | |
518 | then traded against the time it takes to make longer tables. | |
519 | ||
520 | This results of this trade are in the variables lbits and dbits | |
521 | below. lbits is the number of bits the first level table for literal/ | |
522 | length codes can decode in one step, and dbits is the same thing for | |
523 | the distance codes. Subsequent tables are also less than or equal to | |
524 | those sizes. These values may be adjusted either when all of the | |
525 | codes are shorter than that, in which case the longest code length in | |
526 | bits is used, or when the shortest code is *longer* than the requested | |
527 | table size, in which case the length of the shortest code in bits is | |
528 | used. | |
529 | ||
530 | There are two different values for the two tables, since they code a | |
531 | different number of possibilities each. The literal/length table | |
532 | codes 286 possible values, or in a flat code, a little over eight | |
533 | bits. The distance table codes 30 possible values, or a little less | |
534 | than five bits, flat. The optimum values for speed end up being | |
535 | about one bit more than those, so lbits is 8+1 and dbits is 5+1. | |
536 | The optimum values may differ though from machine to machine, and | |
537 | possibly even between compilers. Your mileage may vary. | |
538 | */ | |
539 | ||
540 | ||
541 | static ZCONST int lbits = 9; /* bits in base literal/length lookup table */ | |
542 | static ZCONST int dbits = 6; /* bits in base distance lookup table */ | |
543 | ||
544 | ||
545 | #ifndef ASM_INFLATECODES | |
546 | ||
547 | int inflate_codes(__G__ tl, td, bl, bd) | |
548 | __GDEF | |
549 | struct huft *tl, *td; /* literal/length and distance decoder tables */ | |
550 | int bl, bd; /* number of bits decoded by tl[] and td[] */ | |
551 | /* inflate (decompress) the codes in a deflated (compressed) block. | |
552 | Return an error code or zero if it all goes ok. */ | |
553 | { | |
554 | register unsigned e; /* table entry flag/number of extra bits */ | |
555 | unsigned n, d; /* length and index for copy */ | |
556 | unsigned w; /* current window position */ | |
557 | struct huft *t; /* pointer to table entry */ | |
558 | unsigned ml, md; /* masks for bl and bd bits */ | |
559 | register ulg b; /* bit buffer */ | |
560 | register unsigned k; /* number of bits in bit buffer */ | |
561 | ||
562 | ||
563 | /* make local copies of globals */ | |
564 | b = G.bb; /* initialize bit buffer */ | |
565 | k = G.bk; | |
566 | w = G.wp; /* initialize window position */ | |
567 | ||
568 | ||
569 | /* inflate the coded data */ | |
570 | ml = mask_bits[bl]; /* precompute masks for speed */ | |
571 | md = mask_bits[bd]; | |
572 | while (1) /* do until end of block */ | |
573 | { | |
574 | NEEDBITS((unsigned)bl) | |
575 | if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) | |
576 | do { | |
577 | if (e == 99) | |
578 | return 1; | |
579 | DUMPBITS(t->b) | |
580 | e -= 16; | |
581 | NEEDBITS(e) | |
582 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); | |
583 | DUMPBITS(t->b) | |
584 | if (e == 16) /* then it's a literal */ | |
585 | { | |
586 | redirSlide[w++] = (uch)t->v.n; | |
587 | if (w == wsize) | |
588 | { | |
589 | FLUSH(w); | |
590 | w = 0; | |
591 | } | |
592 | } | |
593 | else /* it's an EOB or a length */ | |
594 | { | |
595 | /* exit if end of block */ | |
596 | if (e == 15) | |
597 | break; | |
598 | ||
599 | /* get length of block to copy */ | |
600 | NEEDBITS(e) | |
601 | n = t->v.n + ((unsigned)b & mask_bits[e]); | |
602 | DUMPBITS(e); | |
603 | ||
604 | /* decode distance of block to copy */ | |
605 | NEEDBITS((unsigned)bd) | |
606 | if ((e = (t = td + ((unsigned)b & md))->e) > 16) | |
607 | do { | |
608 | if (e == 99) | |
609 | return 1; | |
610 | DUMPBITS(t->b) | |
611 | e -= 16; | |
612 | NEEDBITS(e) | |
613 | } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); | |
614 | DUMPBITS(t->b) | |
615 | NEEDBITS(e) | |
616 | d = w - t->v.n - ((unsigned)b & mask_bits[e]); | |
617 | DUMPBITS(e) | |
618 | ||
619 | /* do the copy */ | |
620 | do { | |
621 | #if (defined(DLL) && !defined(NO_SLIDE_REDIR)) | |
622 | if (G.redirect_slide) {/* &= w/ wsize unnecessary & wrong if redirect */ | |
623 | if (d >= wsize) | |
624 | return 1; /* invalid compressed data */ | |
625 | n -= (e = (e = wsize - (d > w ? d : w)) > n ? n : e); | |
626 | } | |
627 | else | |
628 | #endif | |
629 | n -= (e = (e = wsize - ((d &= wsize-1) > w ? d : w)) > n ? n : e); | |
630 | #ifndef NOMEMCPY | |
631 | if (w - d >= e) /* (this test assumes unsigned comparison) */ | |
632 | { | |
633 | memcpy(redirSlide + w, redirSlide + d, e); | |
634 | w += e; | |
635 | d += e; | |
636 | } | |
637 | else /* do it slowly to avoid memcpy() overlap */ | |
638 | #endif /* !NOMEMCPY */ | |
639 | do { | |
640 | redirSlide[w++] = redirSlide[d++]; | |
641 | } while (--e); | |
642 | if (w == wsize) | |
643 | { | |
644 | FLUSH(w); | |
645 | w = 0; | |
646 | } | |
647 | } while (n); | |
648 | } | |
649 | } | |
650 | ||
651 | ||
652 | /* restore the globals from the locals */ | |
653 | G.wp = w; /* restore global window pointer */ | |
654 | G.bb = b; /* restore global bit buffer */ | |
655 | G.bk = k; | |
656 | ||
657 | ||
658 | /* done */ | |
659 | return 0; | |
660 | } | |
661 | ||
662 | #endif /* ASM_INFLATECODES */ | |
663 | ||
664 | ||
665 | ||
666 | static int inflate_stored(__G) | |
667 | __GDEF | |
668 | /* "decompress" an inflated type 0 (stored) block. */ | |
669 | { | |
670 | unsigned n; /* number of bytes in block */ | |
671 | unsigned w; /* current window position */ | |
672 | register ulg b; /* bit buffer */ | |
673 | register unsigned k; /* number of bits in bit buffer */ | |
674 | ||
675 | ||
676 | /* make local copies of globals */ | |
677 | Trace((stderr, "\nstored block")); | |
678 | b = G.bb; /* initialize bit buffer */ | |
679 | k = G.bk; | |
680 | w = G.wp; /* initialize window position */ | |
681 | ||
682 | ||
683 | /* go to byte boundary */ | |
684 | n = k & 7; | |
685 | DUMPBITS(n); | |
686 | ||
687 | ||
688 | /* get the length and its complement */ | |
689 | NEEDBITS(16) | |
690 | n = ((unsigned)b & 0xffff); | |
691 | DUMPBITS(16) | |
692 | NEEDBITS(16) | |
693 | if (n != (unsigned)((~b) & 0xffff)) | |
694 | return 1; /* error in compressed data */ | |
695 | DUMPBITS(16) | |
696 | ||
697 | ||
698 | /* read and output the compressed data */ | |
699 | while (n--) | |
700 | { | |
701 | NEEDBITS(8) | |
702 | redirSlide[w++] = (uch)b; | |
703 | if (w == wsize) | |
704 | { | |
705 | FLUSH(w); | |
706 | w = 0; | |
707 | } | |
708 | DUMPBITS(8) | |
709 | } | |
710 | ||
711 | ||
712 | /* restore the globals from the locals */ | |
713 | G.wp = w; /* restore global window pointer */ | |
714 | G.bb = b; /* restore global bit buffer */ | |
715 | G.bk = k; | |
716 | return 0; | |
717 | } | |
718 | ||
719 | ||
720 | /* Globals for literal tables (built once) */ | |
721 | /* Moved to globals.h */ | |
722 | #if 0 | |
723 | struct huft *fixed_tl = (struct huft *)NULL; | |
724 | struct huft *fixed_td; | |
725 | int fixed_bl, fixed_bd; | |
726 | #endif | |
727 | ||
728 | static int inflate_fixed(__G) | |
729 | __GDEF | |
730 | /* decompress an inflated type 1 (fixed Huffman codes) block. We should | |
731 | either replace this with a custom decoder, or at least precompute the | |
732 | Huffman tables. */ | |
733 | { | |
734 | /* if first time, set up tables for fixed blocks */ | |
735 | Trace((stderr, "\nliteral block")); | |
736 | if (G.fixed_tl == (struct huft *)NULL) | |
737 | { | |
738 | int i; /* temporary variable */ | |
739 | unsigned l[288]; /* length list for huft_build */ | |
740 | ||
741 | /* literal table */ | |
742 | for (i = 0; i < 144; i++) | |
743 | l[i] = 8; | |
744 | for (; i < 256; i++) | |
745 | l[i] = 9; | |
746 | for (; i < 280; i++) | |
747 | l[i] = 7; | |
748 | for (; i < 288; i++) /* make a complete, but wrong code set */ | |
749 | l[i] = 8; | |
750 | G.fixed_bl = 7; | |
751 | if ((i = huft_build(__G__ l, 288, 257, cplens, cplext, | |
752 | &G.fixed_tl, &G.fixed_bl)) != 0) | |
753 | { | |
754 | G.fixed_tl = (struct huft *)NULL; | |
755 | return i; | |
756 | } | |
757 | ||
758 | /* distance table */ | |
759 | for (i = 0; i < 30; i++) /* make an incomplete code set */ | |
760 | l[i] = 5; | |
761 | G.fixed_bd = 5; | |
762 | if ((i = huft_build(__G__ l, 30, 0, cpdist, cpdext, | |
763 | &G.fixed_td, &G.fixed_bd)) > 1) | |
764 | { | |
765 | huft_free(G.fixed_tl); | |
766 | G.fixed_tl = (struct huft *)NULL; | |
767 | return i; | |
768 | } | |
769 | } | |
770 | ||
771 | /* decompress until an end-of-block code */ | |
772 | return inflate_codes(__G__ G.fixed_tl, G.fixed_td, | |
773 | G.fixed_bl, G.fixed_bd) != 0; | |
774 | } | |
775 | ||
776 | ||
777 | ||
778 | static int inflate_dynamic(__G) | |
779 | __GDEF | |
780 | /* decompress an inflated type 2 (dynamic Huffman codes) block. */ | |
781 | { | |
782 | int i; /* temporary variables */ | |
783 | unsigned j; | |
784 | unsigned l; /* last length */ | |
785 | unsigned m; /* mask for bit lengths table */ | |
786 | unsigned n; /* number of lengths to get */ | |
787 | struct huft *tl; /* literal/length code table */ | |
788 | struct huft *td; /* distance code table */ | |
789 | int bl; /* lookup bits for tl */ | |
790 | int bd; /* lookup bits for td */ | |
791 | unsigned nb; /* number of bit length codes */ | |
792 | unsigned nl; /* number of literal/length codes */ | |
793 | unsigned nd; /* number of distance codes */ | |
794 | #ifdef PKZIP_BUG_WORKAROUND | |
795 | unsigned ll[288+32]; /* literal/length and distance code lengths */ | |
796 | #else | |
797 | unsigned ll[286+30]; /* literal/length and distance code lengths */ | |
798 | #endif | |
799 | register ulg b; /* bit buffer */ | |
800 | register unsigned k; /* number of bits in bit buffer */ | |
801 | ||
802 | ||
803 | /* make local bit buffer */ | |
804 | Trace((stderr, "\ndynamic block")); | |
805 | b = G.bb; | |
806 | k = G.bk; | |
807 | ||
808 | ||
809 | /* read in table lengths */ | |
810 | NEEDBITS(5) | |
811 | nl = 257 + ((unsigned)b & 0x1f); /* number of literal/length codes */ | |
812 | DUMPBITS(5) | |
813 | NEEDBITS(5) | |
814 | nd = 1 + ((unsigned)b & 0x1f); /* number of distance codes */ | |
815 | DUMPBITS(5) | |
816 | NEEDBITS(4) | |
817 | nb = 4 + ((unsigned)b & 0xf); /* number of bit length codes */ | |
818 | DUMPBITS(4) | |
819 | #ifdef PKZIP_BUG_WORKAROUND | |
820 | if (nl > 288 || nd > 32) | |
821 | #else | |
822 | if (nl > 286 || nd > 30) | |
823 | #endif | |
824 | return 1; /* bad lengths */ | |
825 | ||
826 | ||
827 | /* read in bit-length-code lengths */ | |
828 | for (j = 0; j < nb; j++) | |
829 | { | |
830 | NEEDBITS(3) | |
831 | ll[border[j]] = (unsigned)b & 7; | |
832 | DUMPBITS(3) | |
833 | } | |
834 | for (; j < 19; j++) | |
835 | ll[border[j]] = 0; | |
836 | ||
837 | ||
838 | /* build decoding table for trees--single level, 7 bit lookup */ | |
839 | bl = 7; | |
840 | i = huft_build(__G__ ll, 19, 19, NULL, NULL, &tl, &bl); | |
841 | if (bl == 0) /* no bit lengths */ | |
842 | i = 1; | |
843 | if (i) | |
844 | { | |
845 | if (i == 1) | |
846 | huft_free(tl); | |
847 | return i; /* incomplete code set */ | |
848 | } | |
849 | ||
850 | ||
851 | /* read in literal and distance code lengths */ | |
852 | n = nl + nd; | |
853 | m = mask_bits[bl]; | |
854 | i = l = 0; | |
855 | while ((unsigned)i < n) | |
856 | { | |
857 | NEEDBITS((unsigned)bl) | |
858 | j = (td = tl + ((unsigned)b & m))->b; | |
859 | DUMPBITS(j) | |
860 | j = td->v.n; | |
861 | if (j < 16) /* length of code in bits (0..15) */ | |
862 | ll[i++] = l = j; /* save last length in l */ | |
863 | else if (j == 16) /* repeat last length 3 to 6 times */ | |
864 | { | |
865 | NEEDBITS(2) | |
866 | j = 3 + ((unsigned)b & 3); | |
867 | DUMPBITS(2) | |
868 | if ((unsigned)i + j > n) | |
869 | return 1; | |
870 | while (j--) | |
871 | ll[i++] = l; | |
872 | } | |
873 | else if (j == 17) /* 3 to 10 zero length codes */ | |
874 | { | |
875 | NEEDBITS(3) | |
876 | j = 3 + ((unsigned)b & 7); | |
877 | DUMPBITS(3) | |
878 | if ((unsigned)i + j > n) | |
879 | return 1; | |
880 | while (j--) | |
881 | ll[i++] = 0; | |
882 | l = 0; | |
883 | } | |
884 | else /* j == 18: 11 to 138 zero length codes */ | |
885 | { | |
886 | NEEDBITS(7) | |
887 | j = 11 + ((unsigned)b & 0x7f); | |
888 | DUMPBITS(7) | |
889 | if ((unsigned)i + j > n) | |
890 | return 1; | |
891 | while (j--) | |
892 | ll[i++] = 0; | |
893 | l = 0; | |
894 | } | |
895 | } | |
896 | ||
897 | ||
898 | /* free decoding table for trees */ | |
899 | huft_free(tl); | |
900 | ||
901 | ||
902 | /* restore the global bit buffer */ | |
903 | G.bb = b; | |
904 | G.bk = k; | |
905 | ||
906 | ||
907 | /* build the decoding tables for literal/length and distance codes */ | |
908 | bl = lbits; | |
909 | i = huft_build(__G__ ll, nl, 257, cplens, cplext, &tl, &bl); | |
910 | if (bl == 0) /* no literals or lengths */ | |
911 | i = 1; | |
912 | if (i) | |
913 | { | |
914 | if (i == 1) { | |
915 | if (!uO.qflag) | |
916 | MESSAGE((uch *)"(incomplete l-tree) ", 21L, 1); | |
917 | huft_free(tl); | |
918 | } | |
919 | return i; /* incomplete code set */ | |
920 | } | |
921 | bd = dbits; | |
922 | i = huft_build(__G__ ll + nl, nd, 0, cpdist, cpdext, &td, &bd); | |
923 | if (bd == 0 && nl > 257) /* lengths but no distances */ | |
924 | { | |
925 | if (!uO.qflag) | |
926 | MESSAGE((uch *)"(incomplete d-tree) ", 21L, 1); | |
927 | huft_free(tl); | |
928 | return 1; | |
929 | } | |
930 | if (i == 1) { | |
931 | #ifdef PKZIP_BUG_WORKAROUND | |
932 | i = 0; | |
933 | #else | |
934 | if (!uO.qflag) | |
935 | MESSAGE((uch *)"(incomplete d-tree) ", 21L, 1); | |
936 | huft_free(td); | |
937 | #endif | |
938 | } | |
939 | if (i) | |
940 | { | |
941 | huft_free(tl); | |
942 | return i; | |
943 | } | |
944 | ||
945 | ||
946 | /* decompress until an end-of-block code */ | |
947 | if (inflate_codes(__G__ tl, td, bl, bd)) | |
948 | return 1; | |
949 | ||
950 | ||
951 | /* free the decoding tables, return */ | |
952 | huft_free(tl); | |
953 | huft_free(td); | |
954 | return 0; | |
955 | } | |
956 | ||
957 | ||
958 | ||
959 | static int inflate_block(__G__ e) | |
960 | __GDEF | |
961 | int *e; /* last block flag */ | |
962 | /* decompress an inflated block */ | |
963 | { | |
964 | unsigned t; /* block type */ | |
965 | register ulg b; /* bit buffer */ | |
966 | register unsigned k; /* number of bits in bit buffer */ | |
967 | ||
968 | ||
969 | /* make local bit buffer */ | |
970 | b = G.bb; | |
971 | k = G.bk; | |
972 | ||
973 | ||
974 | /* read in last block bit */ | |
975 | NEEDBITS(1) | |
976 | *e = (int)b & 1; | |
977 | DUMPBITS(1) | |
978 | ||
979 | ||
980 | /* read in block type */ | |
981 | NEEDBITS(2) | |
982 | t = (unsigned)b & 3; | |
983 | DUMPBITS(2) | |
984 | ||
985 | ||
986 | /* restore the global bit buffer */ | |
987 | G.bb = b; | |
988 | G.bk = k; | |
989 | ||
990 | ||
991 | /* inflate that block type */ | |
992 | if (t == 2) | |
993 | return inflate_dynamic(__G); | |
994 | if (t == 0) | |
995 | return inflate_stored(__G); | |
996 | if (t == 1) | |
997 | return inflate_fixed(__G); | |
998 | ||
999 | ||
1000 | /* bad block type */ | |
1001 | return 2; | |
1002 | } | |
1003 | ||
1004 | ||
1005 | ||
1006 | int inflate(__G) | |
1007 | __GDEF | |
1008 | /* decompress an inflated entry */ | |
1009 | { | |
1010 | int e; /* last block flag */ | |
1011 | int r; /* result code */ | |
1012 | #ifdef DEBUG | |
1013 | unsigned h = 0; /* maximum struct huft's malloc'ed */ | |
1014 | #endif | |
1015 | ||
1016 | #if (defined(DLL) && !defined(NO_SLIDE_REDIR)) | |
1017 | if (G.redirect_slide) | |
1018 | wsize = G.redirect_size, redirSlide = G.redirect_buffer; | |
1019 | else | |
1020 | wsize = WSIZE, redirSlide = slide; /* how they're #defined if !DLL */ | |
1021 | #endif | |
1022 | ||
1023 | /* initialize window, bit buffer */ | |
1024 | G.wp = 0; | |
1025 | G.bk = 0; | |
1026 | G.bb = 0; | |
1027 | ||
1028 | ||
1029 | /* decompress until the last block */ | |
1030 | do { | |
1031 | #ifdef DEBUG | |
1032 | G.hufts = 0; | |
1033 | #endif | |
1034 | if ((r = inflate_block(__G__ &e)) != 0) | |
1035 | return r; | |
1036 | #ifdef DEBUG | |
1037 | if (G.hufts > h) | |
1038 | h = G.hufts; | |
1039 | #endif | |
1040 | } while (!e); | |
1041 | ||
1042 | ||
1043 | /* flush out redirSlide */ | |
1044 | FLUSH(G.wp); | |
1045 | ||
1046 | ||
1047 | /* return success */ | |
1048 | Trace((stderr, "\n%u bytes in Huffman tables (%d/entry)\n", | |
1049 | h * sizeof(struct huft), sizeof(struct huft))); | |
1050 | return 0; | |
1051 | } | |
1052 | ||
1053 | ||
1054 | ||
1055 | int inflate_free(__G) | |
1056 | __GDEF | |
1057 | { | |
1058 | if (G.fixed_tl != (struct huft *)NULL) | |
1059 | { | |
1060 | huft_free(G.fixed_td); | |
1061 | huft_free(G.fixed_tl); | |
1062 | G.fixed_td = G.fixed_tl = (struct huft *)NULL; | |
1063 | } | |
1064 | return 0; | |
1065 | } | |
1066 | ||
1067 | #endif /* ?USE_ZLIB */ | |
1068 | ||
1069 | ||
1070 | /* | |
1071 | * GRR: moved huft_build() and huft_free() down here; used by explode() | |
1072 | * and fUnZip regardless of whether USE_ZLIB defined or not | |
1073 | */ | |
1074 | ||
1075 | ||
1076 | /* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ | |
1077 | #define BMAX 16 /* maximum bit length of any code (16 for explode) */ | |
1078 | #define N_MAX 288 /* maximum number of codes in any set */ | |
1079 | ||
1080 | ||
1081 | int huft_build(__G__ b, n, s, d, e, t, m) | |
1082 | __GDEF | |
1083 | ZCONST unsigned *b; /* code lengths in bits (all assumed <= BMAX) */ | |
1084 | unsigned n; /* number of codes (assumed <= N_MAX) */ | |
1085 | unsigned s; /* number of simple-valued codes (0..s-1) */ | |
1086 | ZCONST ush *d; /* list of base values for non-simple codes */ | |
1087 | ZCONST ush *e; /* list of extra bits for non-simple codes */ | |
1088 | struct huft **t; /* result: starting table */ | |
1089 | int *m; /* maximum lookup bits, returns actual */ | |
1090 | /* Given a list of code lengths and a maximum table size, make a set of | |
1091 | tables to decode that set of codes. Return zero on success, one if | |
1092 | the given code set is incomplete (the tables are still built in this | |
1093 | case), two if the input is invalid (all zero length codes or an | |
1094 | oversubscribed set of lengths), and three if not enough memory. | |
1095 | The code with value 256 is special, and the tables are constructed | |
1096 | so that no bits beyond that code are fetched when that code is | |
1097 | decoded. */ | |
1098 | { | |
1099 | unsigned a; /* counter for codes of length k */ | |
1100 | unsigned c[BMAX+1]; /* bit length count table */ | |
1101 | unsigned el; /* length of EOB code (value 256) */ | |
1102 | unsigned f; /* i repeats in table every f entries */ | |
1103 | int g; /* maximum code length */ | |
1104 | int h; /* table level */ | |
1105 | register unsigned i; /* counter, current code */ | |
1106 | register unsigned j; /* counter */ | |
1107 | register int k; /* number of bits in current code */ | |
1108 | int lx[BMAX+1]; /* memory for l[-1..BMAX-1] */ | |
1109 | int *l = lx+1; /* stack of bits per table */ | |
1110 | register unsigned *p; /* pointer into c[], b[], or v[] */ | |
1111 | register struct huft *q; /* points to current table */ | |
1112 | struct huft r; /* table entry for structure assignment */ | |
1113 | struct huft *u[BMAX]; /* table stack */ | |
1114 | unsigned v[N_MAX]; /* values in order of bit length */ | |
1115 | register int w; /* bits before this table == (l * h) */ | |
1116 | unsigned x[BMAX+1]; /* bit offsets, then code stack */ | |
1117 | unsigned *xp; /* pointer into x */ | |
1118 | int y; /* number of dummy codes added */ | |
1119 | unsigned z; /* number of entries in current table */ | |
1120 | ||
1121 | ||
1122 | /* Generate counts for each bit length */ | |
1123 | el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */ | |
1124 | memzero((char *)c, sizeof(c)); | |
1125 | p = (unsigned *)b; i = n; | |
1126 | do { | |
1127 | c[*p]++; p++; /* assume all entries <= BMAX */ | |
1128 | } while (--i); | |
1129 | if (c[0] == n) /* null input--all zero length codes */ | |
1130 | { | |
1131 | *t = (struct huft *)NULL; | |
1132 | *m = 0; | |
1133 | return 0; | |
1134 | } | |
1135 | ||
1136 | ||
1137 | /* Find minimum and maximum length, bound *m by those */ | |
1138 | for (j = 1; j <= BMAX; j++) | |
1139 | if (c[j]) | |
1140 | break; | |
1141 | k = j; /* minimum code length */ | |
1142 | if ((unsigned)*m < j) | |
1143 | *m = j; | |
1144 | for (i = BMAX; i; i--) | |
1145 | if (c[i]) | |
1146 | break; | |
1147 | g = i; /* maximum code length */ | |
1148 | if ((unsigned)*m > i) | |
1149 | *m = i; | |
1150 | ||
1151 | ||
1152 | /* Adjust last length count to fill out codes, if needed */ | |
1153 | for (y = 1 << j; j < i; j++, y <<= 1) | |
1154 | if ((y -= c[j]) < 0) | |
1155 | return 2; /* bad input: more codes than bits */ | |
1156 | if ((y -= c[i]) < 0) | |
1157 | return 2; | |
1158 | c[i] += y; | |
1159 | ||
1160 | ||
1161 | /* Generate starting offsets into the value table for each length */ | |
1162 | x[1] = j = 0; | |
1163 | p = c + 1; xp = x + 2; | |
1164 | while (--i) { /* note that i == g from above */ | |
1165 | *xp++ = (j += *p++); | |
1166 | } | |
1167 | ||
1168 | ||
1169 | /* Make a table of values in order of bit lengths */ | |
1170 | memzero((char *)v, sizeof(v)); | |
1171 | p = (unsigned *)b; i = 0; | |
1172 | do { | |
1173 | if ((j = *p++) != 0) | |
1174 | v[x[j]++] = i; | |
1175 | } while (++i < n); | |
1176 | n = x[g]; /* set n to length of v */ | |
1177 | ||
1178 | ||
1179 | /* Generate the Huffman codes and for each, make the table entries */ | |
1180 | x[0] = i = 0; /* first Huffman code is zero */ | |
1181 | p = v; /* grab values in bit order */ | |
1182 | h = -1; /* no tables yet--level -1 */ | |
1183 | w = l[-1] = 0; /* no bits decoded yet */ | |
1184 | u[0] = (struct huft *)NULL; /* just to keep compilers happy */ | |
1185 | q = (struct huft *)NULL; /* ditto */ | |
1186 | z = 0; /* ditto */ | |
1187 | ||
1188 | /* go through the bit lengths (k already is bits in shortest code) */ | |
1189 | for (; k <= g; k++) | |
1190 | { | |
1191 | a = c[k]; | |
1192 | while (a--) | |
1193 | { | |
1194 | /* here i is the Huffman code of length k bits for value *p */ | |
1195 | /* make tables up to required level */ | |
1196 | while (k > w + l[h]) | |
1197 | { | |
1198 | w += l[h++]; /* add bits already decoded */ | |
1199 | ||
1200 | /* compute minimum size table less than or equal to *m bits */ | |
1201 | z = (z = g - w) > (unsigned)*m ? *m : z; /* upper limit */ | |
1202 | if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ | |
1203 | { /* too few codes for k-w bit table */ | |
1204 | f -= a + 1; /* deduct codes from patterns left */ | |
1205 | xp = c + k; | |
1206 | while (++j < z) /* try smaller tables up to z bits */ | |
1207 | { | |
1208 | if ((f <<= 1) <= *++xp) | |
1209 | break; /* enough codes to use up j bits */ | |
1210 | f -= *xp; /* else deduct codes from patterns */ | |
1211 | } | |
1212 | } | |
1213 | if ((unsigned)w + j > el && (unsigned)w < el) | |
1214 | j = el - w; /* make EOB code end at table */ | |
1215 | z = 1 << j; /* table entries for j-bit table */ | |
1216 | l[h] = j; /* set table size in stack */ | |
1217 | ||
1218 | /* allocate and link in new table */ | |
1219 | if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) == | |
1220 | (struct huft *)NULL) | |
1221 | { | |
1222 | if (h) | |
1223 | huft_free(u[0]); | |
1224 | return 3; /* not enough memory */ | |
1225 | } | |
1226 | #ifdef DEBUG | |
1227 | G.hufts += z + 1; /* track memory usage */ | |
1228 | #endif | |
1229 | *t = q + 1; /* link to list for huft_free() */ | |
1230 | *(t = &(q->v.t)) = (struct huft *)NULL; | |
1231 | u[h] = ++q; /* table starts after link */ | |
1232 | ||
1233 | /* connect to last table, if there is one */ | |
1234 | if (h) | |
1235 | { | |
1236 | x[h] = i; /* save pattern for backing up */ | |
1237 | r.b = (uch)l[h-1]; /* bits to dump before this table */ | |
1238 | r.e = (uch)(16 + j); /* bits in this table */ | |
1239 | r.v.t = q; /* pointer to this table */ | |
1240 | j = (i & ((1 << w) - 1)) >> (w - l[h-1]); | |
1241 | u[h-1][j] = r; /* connect to last table */ | |
1242 | } | |
1243 | } | |
1244 | ||
1245 | /* set up table entry in r */ | |
1246 | r.b = (uch)(k - w); | |
1247 | if (p >= v + n) | |
1248 | r.e = 99; /* out of values--invalid code */ | |
1249 | else if (*p < s) | |
1250 | { | |
1251 | r.e = (uch)(*p < 256 ? 16 : 15); /* 256 is end-of-block code */ | |
1252 | r.v.n = (ush)*p++; /* simple code is just the value */ | |
1253 | } | |
1254 | else | |
1255 | { | |
1256 | r.e = (uch)e[*p - s]; /* non-simple--look up in lists */ | |
1257 | r.v.n = d[*p++ - s]; | |
1258 | } | |
1259 | ||
1260 | /* fill code-like entries with r */ | |
1261 | f = 1 << (k - w); | |
1262 | for (j = i >> w; j < z; j += f) | |
1263 | q[j] = r; | |
1264 | ||
1265 | /* backwards increment the k-bit code i */ | |
1266 | for (j = 1 << (k - 1); i & j; j >>= 1) | |
1267 | i ^= j; | |
1268 | i ^= j; | |
1269 | ||
1270 | /* backup over finished tables */ | |
1271 | while ((i & ((1 << w) - 1)) != x[h]) | |
1272 | w -= l[--h]; /* don't need to update q */ | |
1273 | } | |
1274 | } | |
1275 | ||
1276 | ||
1277 | /* return actual size of base table */ | |
1278 | *m = l[0]; | |
1279 | ||
1280 | ||
1281 | /* Return true (1) if we were given an incomplete table */ | |
1282 | return y != 0 && g != 1; | |
1283 | } | |
1284 | ||
1285 | ||
1286 | ||
1287 | int huft_free(t) | |
1288 | struct huft *t; /* table to free */ | |
1289 | /* Free the malloc'ed tables built by huft_build(), which makes a linked | |
1290 | list of the tables it made, with the links in a dummy first entry of | |
1291 | each table. */ | |
1292 | { | |
1293 | register struct huft *p, *q; | |
1294 | ||
1295 | ||
1296 | /* Go through linked list, freeing from the malloced (t[-1]) address. */ | |
1297 | p = t; | |
1298 | while (p != (struct huft *)NULL) | |
1299 | { | |
1300 | q = (--p)->v.t; | |
1301 | free((zvoid *)p); | |
1302 | p = q; | |
1303 | } | |
1304 | return 0; | |
1305 | } |