]> git.saurik.com Git - wxWidgets.git/blame_incremental - docs/latex/wx/array.tex
Typos in sizer docs.
[wxWidgets.git] / docs / latex / wx / array.tex
... / ...
CommitLineData
1\section{\class{wxArray}}\label{wxarray}
2
3This section describes the so called {\it dynamic arrays}. This is a C
4array-like data structure i.e. the member access time is constant (and not
5linear according to the number of container elements as for linked lists). However, these
6arrays are dynamic in the sense that they will automatically allocate more
7memory if there is not enough of it for adding a new element. They also perform
8range checking on the index values but in debug mode only, so please be sure to
9compile your application in debug mode to use it (see \helpref{debugging overview}{debuggingoverview} for
10details). So, unlike the arrays in some other
11languages, attempt to access an element beyond the arrays bound doesn't
12automatically expand the array but provokes an assertion failure instead in
13debug build and does nothing (except possibly crashing your program) in the
14release build.
15
16The array classes were designed to be reasonably efficient, both in terms of
17run-time speed and memory consumption and the executable size. The speed of
18array item access is, of course, constant (independent of the number of elements)
19making them much more efficient than linked lists (\helpref{wxList}{wxlist}).
20Adding items to the arrays is also implemented in more or less constant time -
21but the price is preallocating the memory in advance. In the \helpref{memory management}{wxarraymemorymanagement} section
22you may find some useful hints about optimizing wxArray memory usage. As for executable size, all
23wxArray functions are inline, so they do not take {\it any space at all}.
24
25wxWindows has three different kinds of array. All of them derive from
26wxBaseArray class which works with untyped data and can not be used directly.
27The standard macros WX\_DEFINE\_ARRAY(), WX\_DEFINE\_SORTED\_ARRAY() and
28WX\_DEFINE\_OBJARRAY() are used to define a new class deriving from it. The
29classes declared will be called in this documentation wxArray, wxSortedArray and
30wxObjArray but you should keep in mind that no classes with such names actually
31exist, each time you use one of WX\_DEFINE\_XXXARRAY macro you define a class
32with a new name. In fact, these names are "template" names and each usage of one
33of the macros mentioned above creates a template specialization for the given
34element type.
35
36wxArray is suitable for storing integer types and pointers which it does not
37treat as objects in any way, i.e. the element pointed to by the pointer is not
38deleted when the element is removed from the array. It should be noted that
39all of wxArray's functions are inline, so it costs strictly nothing to define as
40many array types as you want (either in terms of the executable size or the
41speed) as long as at least one of them is defined and this is always the case
42because wxArrays are used by wxWindows internally. This class has one serious
43limitation: it can only be used for storing integral types (bool, char, short,
44int, long and their unsigned variants) or pointers (of any kind). An attempt
45to use with objects of sizeof() greater than sizeof(long) will provoke a
46runtime assertion failure, however declaring a wxArray of floats will not (on
47the machines where sizeof(float) <= sizeof(long)), yet it will {\bf not} work,
48please use wxObjArray for storing floats and doubles (NB: a more efficient
49wxArrayDouble class is scheduled for the next release of wxWindows).
50
51wxSortedArray is a wxArray variant which should be used when searching in the
52array is a frequently used operation. It requires you to define an additional
53function for comparing two elements of the array element type and always stores
54its items in the sorted order (according to this function). Thus, it's
55 \helpref{Index()}{wxarrayindex} function execution time is $O(log(N))$ instead of
56$O(N)$ for the usual arrays but the \helpref{Add()}{wxarrayadd} method is
57slower: it is $O(log(N))$ instead of constant time (neglecting time spent in
58memory allocation routine). However, in a usual situation elements are added to
59an array much less often than searched inside it, so wxSortedArray may lead to
60huge performance improvements compared to wxArray. Finally, it should be
61noticed that, as wxArray, wxSortedArray can be only used for storing integral
62types or pointers.
63
64wxObjArray class treats its elements like "objects". It may delete them when
65they are removed from the array (invoking the correct destructor) and copies
66them using the objects copy constructor. In order to implement this behaviour
67the definition of the wxObjArray arrays is split in two parts: first, you should
68declare the new wxObjArray class using WX\_DECLARE\_OBJARRAY() macro and then
69you must include the file defining the implementation of template type:
70<wx/arrimpl.cpp> and define the array class with WX\_DEFINE\_OBJARRAY() macro
71from a point where the full (as opposed to `forward') declaration of the array
72elements class is in scope. As it probably sounds very complicated here is an
73example:
74
75\begin{verbatim}
76#include <wx/dynarray.h>
77
78// we must forward declare the array because it's used inside the class
79// declaration
80class MyDirectory;
81class MyFile;
82
83// this defines two new types: ArrayOfDirectories and ArrayOfFiles which can be
84// now used as shown below
85WX_DECLARE_OBJARRAY(MyDirectory, ArrayOfDirectories);
86WX_DECLARE_OBJARRAY(MyFile, ArrayOfFiles);
87
88class MyDirectory
89{
90...
91 ArrayOfDirectories m_subdirectories; // all subdirectories
92 ArrayOfFiles m_files; // all files in this directory
93};
94
95...
96
97// now that we have MyDirectory declaration in scope we may finish the
98// definition of ArrayOfDirectories -- note that this expands into some C++
99// code and so should only be compiled once (i.e., don't put this in the
100// header, but into a source file or you will get linkin errors)
101#include <wx/arrimpl.cpp> // this is a magic incantation which must be done!
102WX_DEFINE_OBJARRAY(ArrayOfDirectories);
103
104// that's all!
105\end{verbatim}
106
107It is not as elegant as writing
108
109\begin{verbatim}
110typedef std::vector<MyDirectory> ArrayOfDirectories;
111\end{verbatim}
112
113but is not that complicated and allows the code to be compiled with any, however
114dumb, C++ compiler in the world.
115
116Things are much simpler for wxArray and wxSortedArray however: it is enough
117just to write
118
119\begin{verbatim}
120WX_DEFINE_ARRAY(MyDirectory *, ArrayOfDirectories);
121WX_DEFINE_SORTED_ARRAY(MyFile *, ArrayOfFiles);
122\end{verbatim}
123
124\wxheading{See also:}
125
126\helpref{Container classes overview}{wxcontaineroverview}, \helpref{wxList}{wxlist}
127
128\wxheading{Required headers:}
129
130<wx/dynarray.h> for wxArray and wxSortedArray and additionally <wx/arrimpl.cpp>
131for wxObjArray.
132
133\latexignore{\rtfignore{\wxheading{Function groups}}}
134
135\membersection{Macros for template array definition}
136
137To use an array you must first define the array class. This is done with the
138help of the macros in this section. The class of array elements must be (at
139least) forward declared for WX\_DEFINE\_ARRAY, WX\_DEFINE\_SORTED\_ARRAY and
140WX\_DECLARE\_OBJARRAY macros and must be fully declared before you use
141WX\_DEFINE\_OBJARRAY macro.
142
143\helpref{WX\_DEFINE\_ARRAY}{wxdefinearray}\\
144\helpref{WX\_DEFINE\_SORTED\_ARRAY}{wxdefinesortedarray}\\
145\helpref{WX\_DECLARE\_OBJARRAY}{wxdeclareobjarray}\\
146\helpref{WX\_DEFINE\_OBJARRAY}{wxdefineobjarray}
147
148\membersection{Constructors and destructors}
149
150Array classes are 100\% C++ objects and as such they have the appropriate copy
151constructors and assignment operators. Copying wxArray just copies the elements
152but copying wxObjArray copies the arrays items. However, for memory-efficiency
153sake, neither of these classes has virtual destructor. It is not very important
154for wxArray which has trivial destructor anyhow, but it does mean that you
155should avoid deleting wxObjArray through a wxBaseArray pointer (as you would
156never use wxBaseArray anyhow it shouldn't be a problem) and that you should not
157derive your own classes from the array classes.
158
159\helpref{wxArray default constructor}{wxarrayctordef}\\
160\helpref{wxArray copy constructors and assignment operators}{wxarrayctorcopy}\\
161\helpref{\destruct{wxArray}}{wxarraydtor}
162
163\membersection{Memory management}\label{wxarraymemorymanagement}
164
165Automatic array memory management is quite trivial: the array starts by
166preallocating some minimal amount of memory (defined by
167WX\_ARRAY\_DEFAULT\_INITIAL\_SIZE) and when further new items exhaust already
168allocated memory it reallocates it adding 50\% of the currently allocated
169amount, but no more than some maximal number which is defined by
170ARRAY\_MAXSIZE\_INCREMENT constant. Of course, this may lead to some memory
171being wasted (ARRAY\_MAXSIZE\_INCREMENT in the worst case, i.e. 4Kb in the
172current implementation), so the \helpref{Shrink()}{wxarrayshrink} function is
173provided to unallocate the extra memory. The \helpref{Alloc()}{wxarrayalloc}
174function can also be quite useful if you know in advance how many items you are
175going to put in the array and will prevent the array code from reallocating the
176memory more times than needed.
177
178\helpref{Alloc}{wxarrayalloc}\\
179\helpref{Shrink}{wxarrayshrink}
180
181\membersection{Number of elements and simple item access}
182
183Functions in this section return the total number of array elements and allow to
184retrieve them - possibly using just the C array indexing $[]$ operator which
185does exactly the same as \helpref{Item()}{wxarrayitem} method.
186
187\helpref{Count}{wxarraycount}\\
188\helpref{GetCount}{wxarraygetcount}\\
189\helpref{IsEmpty}{wxarrayisempty}\\
190\helpref{Item}{wxarrayitem}\\
191\helpref{Last}{wxarraylast}
192
193\membersection{Adding items}
194
195\helpref{Add}{wxarrayadd}\\
196\helpref{Insert}{wxarrayinsert}
197
198\membersection{Removing items}
199
200\helpref{WX\_CLEAR\_ARRAY}{wxcleararray}\\
201\helpref{Empty}{wxarrayempty}\\
202\helpref{Clear}{wxarrayclear}\\
203\helpref{RemoveAt}{wxarrayremoveat}\\
204\helpref{Remove}{wxarrayremove}
205
206\membersection{Searching and sorting}
207
208\helpref{Index}{wxarrayindex}\\
209\helpref{Sort}{wxarraysort}
210
211%%%%% MEMBERS HERE %%%%%
212\helponly{\insertatlevel{2}{
213
214\wxheading{Members}
215
216}}
217
218\membersection{WX\_DEFINE\_ARRAY}\label{wxdefinearray}
219
220\func{}{WX\_DEFINE\_ARRAY}{\param{}{T}, \param{}{name}}
221
222This macro defines a new array class named {\it name} and containing the
223elements of type {\it T}. Example:
224
225\begin{verbatim}
226WX_DEFINE_ARRAY(int, wxArrayInt);
227
228class MyClass;
229WX_DEFINE_ARRAY(MyClass *, wxArrayOfMyClass);
230\end{verbatim}
231
232Note that wxWindows predefines the following standard array classes: wxArrayInt,
233wxArrayLong and wxArrayPtrVoid.
234
235\membersection{WX\_DEFINE\_SORTED\_ARRAY}\label{wxdefinesortedarray}
236
237\func{}{WX\_DEFINE\_SORTED\_ARRAY}{\param{}{T}, \param{}{name}}
238
239This macro defines a new sorted array class named {\it name} and containing
240the elements of type {\it T}. Example:
241
242\begin{verbatim}
243WX_DEFINE_SORTED_ARRAY(int, wxSortedArrayInt);
244
245class MyClass;
246WX_DEFINE_SORTED_ARRAY(MyClass *, wxArrayOfMyClass);
247\end{verbatim}
248
249You will have to initialize the objects of this class by passing a comparaison
250function to the array object constructor like this:
251\begin{verbatim}
252int CompareInts(int n1, int n2)
253{
254 return n1 - n2;
255}
256
257wxSortedArrayInt sorted(CompareInts);
258
259int CompareMyClassObjects(MyClass *item1, MyClass *item2)
260{
261 // sort the items by their address...
262 return Stricmp(item1->GetAddress(), item2->GetAddress());
263}
264
265wxArrayOfMyClass another(CompareMyClassObjects);
266\end{verbatim}
267
268\membersection{WX\_DECLARE\_OBJARRAY}\label{wxdeclareobjarray}
269
270\func{}{WX\_DECLARE\_OBJARRAY}{\param{}{T}, \param{}{name}}
271
272This macro declares a new object array class named {\it name} and containing
273the elements of type {\it T}. Example:
274
275\begin{verbatim}
276class MyClass;
277WX_DEFINE_OBJARRAY(MyClass, wxArrayOfMyClass); // note: not "MyClass *"!
278\end{verbatim}
279
280You must use \helpref{WX\_DEFINE\_OBJARRAY()}{wxdefineobjarray} macro to define
281the array class - otherwise you would get link errors.
282
283\membersection{WX\_DEFINE\_OBJARRAY}\label{wxdefineobjarray}
284
285\func{}{WX\_DEFINE\_OBJARRAY}{\param{}{name}}
286
287This macro defines the methods of the array class {\it name} not defined by the
288\helpref{WX\_DECLARE\_OBJARRAY()}{wxdeclareobjarray} macro. You must include the
289file <wx/arrimpl.cpp> before using this macro and you must have the full
290declaration of the class of array elements in scope! If you forget to do the
291first, the error will be caught by the compiler, but, unfortunately, many
292compilers will not give any warnings if you forget to do the second - but the
293objects of the class will not be copied correctly and their real destructor will
294not be called.
295
296Example of usage:
297
298\begin{verbatim}
299// first declare the class!
300class MyClass
301{
302public:
303 MyClass(const MyClass&);
304
305 ...
306
307 virtual ~MyClass();
308};
309
310#include <wx/arrimpl.cpp>
311WX_DEFINE_OBJARRAY(wxArrayOfMyClass);
312\end{verbatim}
313
314\membersection{WX\_CLEAR\_ARRAY}\label{wxcleararray}
315
316\func{void}{WX\_CLEAR\_ARRAY}{\param{wxArray\& }{array}}
317
318This macro may be used to delete all elements of the array before emptying it.
319It can not be used with wxObjArrays - but they will delete their elements anyhow
320when you call Empty().
321
322\membersection{Default constructors}\label{wxarrayctordef}
323
324\func{}{wxArray}{\void}
325
326\func{}{wxObjArray}{\void}
327
328Default constructor initializes an empty array object.
329
330\func{}{wxSortedArray}{\param{int (*)(T first, T second)}{compareFunction}}
331
332There is no default constructor for wxSortedArray classes - you must initialize it
333with a function to use for item comparaison. It is a function which is passed
334two arguments of type {\it T} where {\it T} is the array element type and which
335should return a negative, zero or positive value according to whether the first
336element passed to it is less than, equal to or greater than the second one.
337
338\membersection{wxArray copy constructor and assignment operator}\label{wxarrayctorcopy}
339
340\func{}{wxArray}{\param{const wxArray\& }{array}}
341
342\func{}{wxSortedArray}{\param{const wxSortedArray\& }{array}}
343
344\func{}{wxObjArray}{\param{const wxObjArray\& }{array}}
345
346\func{wxArray\&}{operator$=$}{\param{const wxArray\& }{array}}
347
348\func{wxSortedArray\&}{operator$=$}{\param{const wxSortedArray\& }{array}}
349
350\func{wxObjArray\&}{operator$=$}{\param{const wxObjArray\& }{array}}
351
352The copy constructors and assignment operators perform a shallow array copy
353(i.e. they don't copy the objects pointed to even if the source array contains
354the items of pointer type) for wxArray and wxSortedArray and a deep copy (i.e.
355the array element are copied too) for wxObjArray.
356
357\membersection{wxArray::\destruct{wxArray}}\label{wxarraydtor}
358
359\func{}{\destruct{wxArray}}{\void}
360
361\func{}{\destruct{wxSortedArray}}{\void}
362
363\func{}{\destruct{wxObjArray}}{\void}
364
365The wxObjArray destructor deletes all the items owned by the array. This is not
366done by wxArray and wxSortedArray versions - you may use
367\helpref{WX\_CLEAR\_ARRAY}{wxcleararray} macro for this.
368
369\membersection{wxArray::Add}\label{wxarrayadd}
370
371\func{void}{Add}{\param{T }{item}}
372
373\func{void}{Add}{\param{T *}{item}}
374
375\func{void}{Add}{\param{T \&}{item}}
376
377Appends a new element to the array (where {\it T} is the type of the array
378elements.)
379
380The first version is used with wxArray and wxSortedArray. The second and the
381third are used with wxObjArray. There is an important difference between
382them: if you give a pointer to the array, it will take ownership of it, i.e.
383will delete it when the item is deleted from the array. If you give a reference
384to the array, however, the array will make a copy of the item and will not take
385ownership of the original item. Once again, it only makes sense for wxObjArrays
386because the other array types never take ownership of their elements.
387
388\membersection{wxArray::Alloc}\label{wxarrayalloc}
389
390\func{void}{Alloc}{\param{size\_t }{count}}
391
392Preallocates memory for a given number of array elements. It is worth calling
393when the number of items which are going to be added to the array is known in
394advance because it will save unneeded memory reallocation. If the array already
395has enough memory for the given number of items, nothing happens.
396
397\membersection{wxArray::Clear}\label{wxarrayclear}
398
399\func{void}{Clear}{\void}
400
401This function does the same as \helpref{Empty()}{wxarrayempty} and additionally
402frees the memory allocated to the array.
403
404\membersection{wxArray::Count}\label{wxarraycount}
405
406\constfunc{size\_t}{Count}{\void}
407
408Same as \helpref{GetCount()}{wxarraygetcount}. This function is deprecated -
409it exists only for compatibility.
410
411\membersection{wxObjArray::Detach}\label{wxobjarraydetach}
412
413\func{T *}{Detach}{\param{size\_t }{index}}
414
415Removes the element from the array, but, unlike,
416\helpref{Remove()}{wxarrayremove} doesn't delete it. The function returns the
417pointer to the removed element.
418
419\membersection{wxArray::Empty}\label{wxarrayempty}
420
421\func{void}{Empty}{\void}
422
423Empties the array. For wxObjArray classes, this destroys all of the array
424elements. For wxArray and wxSortedArray this does nothing except marking the
425array of being empty - this function does not free the allocated memory, use
426\helpref{Clear()}{wxarrayclear} for this.
427
428\membersection{wxArray::GetCount}\label{wxarraygetcount}
429
430\constfunc{size\_t}{GetCount}{\void}
431
432Return the number of items in the array.
433
434\membersection{wxArray::Index}\label{wxarrayindex}
435
436\func{int}{Index}{\param{T\& }{item}, \param{bool }{searchFromEnd = FALSE}}
437
438\func{int}{Index}{\param{T\& }{item}}
439
440The first version of the function is for wxArray and wxObjArray, the second is
441for wxSortedArray only.
442
443Searches the element in the array, starting from either beginning or the end
444depending on the value of {\it searchFromEnd} parameter. wxNOT\_FOUND is
445returned if the element is not found, otherwise the index of the element is
446returned.
447
448Linear search is used for the wxArray and wxObjArray classes but binary search
449in the sorted array is used for wxSortedArray (this is why searchFromEnd
450parameter doesn't make sense for it).
451
452\membersection{wxArray::Insert}\label{wxarrayinsert}
453
454\func{void}{Insert}{\param{T }{item}, \param{size\_t }{n}}
455
456\func{void}{Insert}{\param{T *}{item}, \param{size\_t }{n}}
457
458\func{void}{Insert}{\param{T \&}{item}, \param{size\_t }{n}}
459
460Insert a new item into the array before the item {\it n} - thus, {\it Insert(something, 0u)} will
461insert an item in such way that it will become the
462first array element.
463
464Please see \helpref{Add()}{wxarrayadd} for explanation of the differences
465between the overloaded versions of this function.
466
467\membersection{wxArray::IsEmpty}\label{wxarrayisempty}
468
469\constfunc{bool}{IsEmpty}{\void}
470
471Returns TRUE if the array is empty, FALSE otherwise.
472
473\membersection{wxArray::Item}\label{wxarrayitem}
474
475\constfunc{T\&}{Item}{\param{size\_t }{index}}
476
477Returns the item at the given position in the array. If {\it index} is out of
478bounds, an assert failure is raised in the debug builds but nothing special is
479done in the release build.
480
481The returned value is of type "reference to the array element type" for all of
482the array classes.
483
484\membersection{wxArray::Last}\label{wxarraylast}
485
486\constfunc{T\&}{Last}{\void}
487
488Returns the last element in the array, i.e. is the same as Item(GetCount() - 1).
489An assert failure is raised in the debug mode if the array is empty.
490
491The returned value is of type "reference to the array element type" for all of
492the array classes.
493
494\membersection{wxArray::Remove}\label{wxarrayremove}
495
496\func{\void}{Remove}{\param{T }{item}}
497
498Removes the element from the array either by value: the first item of the
499array equal to {\it item} is removed, an assert failure will result from an
500attempt to remove an item which doesn't exist in the array.
501
502When an element is removed from wxObjArray it is deleted by the array - use
503\helpref{Detach()}{wxobjarraydetach} if you don't want this to happen. On the
504other hand, when an object is removed from a wxArray nothing happens - you
505should delete the it manually if required:
506
507\begin{verbatim}
508T *item = array[n];
509delete item;
510array.Remove(n)
511\end{verbatim}
512
513See also \helpref{WX\_CLEAR\_ARRAY}{wxcleararray} macro which deletes all
514elements of a wxArray (supposed to contain pointers).
515
516\membersection{wxArray::RemoveAt}\label{wxarrayremoveat}
517
518\func{\void}{RemoveAt}{\param{size\_t }{index}}
519
520Removes the element from the array either by index. When an element
521is removed from wxObjArray it is deleted by the array - use
522\helpref{Detach()}{wxobjarraydetach} if you don't want this to happen. On the
523other hand, when an object is removed from a wxArray nothing happens - you
524should delete the it manually if required:
525
526\begin{verbatim}
527T *item = array[n];
528delete item;
529array.RemoveAt(n)
530\end{verbatim}
531
532See also \helpref{WX\_CLEAR\_ARRAY}{wxcleararray} macro which deletes all
533elements of a wxArray (supposed to contain pointers).
534
535\membersection{wxArray::Shrink}\label{wxarrayshrink}
536
537\func{void}{Shrink}{\void}
538
539Frees all memory unused by the array. If the program knows that no new items
540will be added to the array it may call Shrink() to reduce its memory usage.
541However, if a new item is added to the array, some extra memory will be
542allocated again.
543
544\membersection{wxArray::Sort}\label{wxarraysort}
545
546\func{void}{Sort}{\param{CMPFUNC<T> }{compareFunction}}
547
548The notation CMPFUNC<T> should be read as if we had the following declaration:
549
550\begin{verbatim}
551template int CMPFUNC(T *first, T *second);
552\end{verbatim}
553
554where {\it T} is the type of the array elements. I.e. it is a function returning
555{\it int} which is passed two arguments of type {\it T *}.
556
557Sorts the array using the specified compare function: this function should
558return a negative, zero or positive value according to whether the first element
559passed to it is less than, equal to or greater than the second one.
560
561wxSortedArray doesn't have this function because it is always sorted.
562