]>
Commit | Line | Data |
---|---|---|
1 | /* | |
2 | * jccoefct.c | |
3 | * | |
4 | * Copyright (C) 1994-1997, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains the coefficient buffer controller for compression. | |
9 | * This controller is the top level of the JPEG compressor proper. | |
10 | * The coefficient buffer lies between forward-DCT and entropy encoding steps. | |
11 | */ | |
12 | ||
13 | #define JPEG_INTERNALS | |
14 | #include "jinclude.h" | |
15 | #include "jpeglib.h" | |
16 | ||
17 | ||
18 | /* We use a full-image coefficient buffer when doing Huffman optimization, | |
19 | * and also for writing multiple-scan JPEG files. In all cases, the DCT | |
20 | * step is run during the first pass, and subsequent passes need only read | |
21 | * the buffered coefficients. | |
22 | */ | |
23 | #ifdef ENTROPY_OPT_SUPPORTED | |
24 | #define FULL_COEF_BUFFER_SUPPORTED | |
25 | #else | |
26 | #ifdef C_MULTISCAN_FILES_SUPPORTED | |
27 | #define FULL_COEF_BUFFER_SUPPORTED | |
28 | #endif | |
29 | #endif | |
30 | ||
31 | ||
32 | /* Private buffer controller object */ | |
33 | ||
34 | typedef struct { | |
35 | struct jpeg_c_coef_controller pub; /* public fields */ | |
36 | ||
37 | JDIMENSION iMCU_row_num; /* iMCU row # within image */ | |
38 | JDIMENSION mcu_ctr; /* counts MCUs processed in current row */ | |
39 | int MCU_vert_offset; /* counts MCU rows within iMCU row */ | |
40 | int MCU_rows_per_iMCU_row; /* number of such rows needed */ | |
41 | ||
42 | /* For single-pass compression, it's sufficient to buffer just one MCU | |
43 | * (although this may prove a bit slow in practice). We allocate a | |
44 | * workspace of C_MAX_BLOCKS_IN_MCU coefficient blocks, and reuse it for each | |
45 | * MCU constructed and sent. (On 80x86, the workspace is FAR even though | |
46 | * it's not really very big; this is to keep the module interfaces unchanged | |
47 | * when a large coefficient buffer is necessary.) | |
48 | * In multi-pass modes, this array points to the current MCU's blocks | |
49 | * within the virtual arrays. | |
50 | */ | |
51 | JBLOCKROW MCU_buffer[C_MAX_BLOCKS_IN_MCU]; | |
52 | ||
53 | /* In multi-pass modes, we need a virtual block array for each component. */ | |
54 | jvirt_barray_ptr whole_image[MAX_COMPONENTS]; | |
55 | } my_coef_controller; | |
56 | ||
57 | typedef my_coef_controller * my_coef_ptr; | |
58 | ||
59 | ||
60 | /* Forward declarations */ | |
61 | METHODDEF(boolean) compress_data | |
62 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | |
63 | #ifdef FULL_COEF_BUFFER_SUPPORTED | |
64 | METHODDEF(boolean) compress_first_pass | |
65 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | |
66 | METHODDEF(boolean) compress_output | |
67 | JPP((j_compress_ptr cinfo, JSAMPIMAGE input_buf)); | |
68 | #endif | |
69 | ||
70 | ||
71 | LOCAL(void) | |
72 | start_iMCU_row (j_compress_ptr cinfo) | |
73 | /* Reset within-iMCU-row counters for a new row */ | |
74 | { | |
75 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
76 | ||
77 | /* In an interleaved scan, an MCU row is the same as an iMCU row. | |
78 | * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows. | |
79 | * But at the bottom of the image, process only what's left. | |
80 | */ | |
81 | if (cinfo->comps_in_scan > 1) { | |
82 | coef->MCU_rows_per_iMCU_row = 1; | |
83 | } else { | |
84 | if (coef->iMCU_row_num < (cinfo->total_iMCU_rows-1)) | |
85 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor; | |
86 | else | |
87 | coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height; | |
88 | } | |
89 | ||
90 | coef->mcu_ctr = 0; | |
91 | coef->MCU_vert_offset = 0; | |
92 | } | |
93 | ||
94 | ||
95 | /* | |
96 | * Initialize for a processing pass. | |
97 | */ | |
98 | ||
99 | METHODDEF(void) | |
100 | start_pass_coef (j_compress_ptr cinfo, J_BUF_MODE pass_mode) | |
101 | { | |
102 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
103 | ||
104 | coef->iMCU_row_num = 0; | |
105 | start_iMCU_row(cinfo); | |
106 | ||
107 | switch (pass_mode) { | |
108 | case JBUF_PASS_THRU: | |
109 | if (coef->whole_image[0] != NULL) | |
110 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
111 | coef->pub.compress_data = compress_data; | |
112 | break; | |
113 | #ifdef FULL_COEF_BUFFER_SUPPORTED | |
114 | case JBUF_SAVE_AND_PASS: | |
115 | if (coef->whole_image[0] == NULL) | |
116 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
117 | coef->pub.compress_data = compress_first_pass; | |
118 | break; | |
119 | case JBUF_CRANK_DEST: | |
120 | if (coef->whole_image[0] == NULL) | |
121 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
122 | coef->pub.compress_data = compress_output; | |
123 | break; | |
124 | #endif | |
125 | default: | |
126 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
127 | break; | |
128 | } | |
129 | } | |
130 | ||
131 | ||
132 | /* | |
133 | * Process some data in the single-pass case. | |
134 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |
135 | * per call, ie, v_samp_factor block rows for each component in the image. | |
136 | * Returns TRUE if the iMCU row is completed, FALSE if suspended. | |
137 | * | |
138 | * NB: input_buf contains a plane for each component in image, | |
139 | * which we index according to the component's SOF position. | |
140 | */ | |
141 | ||
142 | METHODDEF(boolean) | |
143 | compress_data (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |
144 | { | |
145 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
146 | JDIMENSION MCU_col_num; /* index of current MCU within row */ | |
147 | JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1; | |
148 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |
149 | int blkn, bi, ci, yindex, yoffset, blockcnt; | |
150 | JDIMENSION ypos, xpos; | |
151 | jpeg_component_info *compptr; | |
152 | ||
153 | /* Loop to write as much as one whole iMCU row */ | |
154 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |
155 | yoffset++) { | |
156 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num <= last_MCU_col; | |
157 | MCU_col_num++) { | |
158 | /* Determine where data comes from in input_buf and do the DCT thing. | |
159 | * Each call on forward_DCT processes a horizontal row of DCT blocks | |
160 | * as wide as an MCU; we rely on having allocated the MCU_buffer[] blocks | |
161 | * sequentially. Dummy blocks at the right or bottom edge are filled in | |
162 | * specially. The data in them does not matter for image reconstruction, | |
163 | * so we fill them with values that will encode to the smallest amount of | |
164 | * data, viz: all zeroes in the AC entries, DC entries equal to previous | |
165 | * block's DC value. (Thanks to Thomas Kinsman for this idea.) | |
166 | */ | |
167 | blkn = 0; | |
168 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
169 | compptr = cinfo->cur_comp_info[ci]; | |
170 | blockcnt = (MCU_col_num < last_MCU_col) ? compptr->MCU_width | |
171 | : compptr->last_col_width; | |
172 | xpos = MCU_col_num * compptr->MCU_sample_width; | |
173 | ypos = yoffset * DCTSIZE; /* ypos == (yoffset+yindex) * DCTSIZE */ | |
174 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |
175 | if (coef->iMCU_row_num < last_iMCU_row || | |
176 | yoffset+yindex < compptr->last_row_height) { | |
177 | (*cinfo->fdct->forward_DCT) (cinfo, compptr, | |
178 | input_buf[compptr->component_index], | |
179 | coef->MCU_buffer[blkn], | |
180 | ypos, xpos, (JDIMENSION) blockcnt); | |
181 | if (blockcnt < compptr->MCU_width) { | |
182 | /* Create some dummy blocks at the right edge of the image. */ | |
183 | jzero_far((void FAR *) coef->MCU_buffer[blkn + blockcnt], | |
184 | (compptr->MCU_width - blockcnt) * SIZEOF(JBLOCK)); | |
185 | for (bi = blockcnt; bi < compptr->MCU_width; bi++) { | |
186 | coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn+bi-1][0][0]; | |
187 | } | |
188 | } | |
189 | } else { | |
190 | /* Create a row of dummy blocks at the bottom of the image. */ | |
191 | jzero_far((void FAR *) coef->MCU_buffer[blkn], | |
192 | compptr->MCU_width * SIZEOF(JBLOCK)); | |
193 | for (bi = 0; bi < compptr->MCU_width; bi++) { | |
194 | coef->MCU_buffer[blkn+bi][0][0] = coef->MCU_buffer[blkn-1][0][0]; | |
195 | } | |
196 | } | |
197 | blkn += compptr->MCU_width; | |
198 | ypos += DCTSIZE; | |
199 | } | |
200 | } | |
201 | /* Try to write the MCU. In event of a suspension failure, we will | |
202 | * re-DCT the MCU on restart (a bit inefficient, could be fixed...) | |
203 | */ | |
204 | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | |
205 | /* Suspension forced; update state counters and exit */ | |
206 | coef->MCU_vert_offset = yoffset; | |
207 | coef->mcu_ctr = MCU_col_num; | |
208 | return FALSE; | |
209 | } | |
210 | } | |
211 | /* Completed an MCU row, but perhaps not an iMCU row */ | |
212 | coef->mcu_ctr = 0; | |
213 | } | |
214 | /* Completed the iMCU row, advance counters for next one */ | |
215 | coef->iMCU_row_num++; | |
216 | start_iMCU_row(cinfo); | |
217 | return TRUE; | |
218 | } | |
219 | ||
220 | ||
221 | #ifdef FULL_COEF_BUFFER_SUPPORTED | |
222 | ||
223 | /* | |
224 | * Process some data in the first pass of a multi-pass case. | |
225 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |
226 | * per call, ie, v_samp_factor block rows for each component in the image. | |
227 | * This amount of data is read from the source buffer, DCT'd and quantized, | |
228 | * and saved into the virtual arrays. We also generate suitable dummy blocks | |
229 | * as needed at the right and lower edges. (The dummy blocks are constructed | |
230 | * in the virtual arrays, which have been padded appropriately.) This makes | |
231 | * it possible for subsequent passes not to worry about real vs. dummy blocks. | |
232 | * | |
233 | * We must also emit the data to the entropy encoder. This is conveniently | |
234 | * done by calling compress_output() after we've loaded the current strip | |
235 | * of the virtual arrays. | |
236 | * | |
237 | * NB: input_buf contains a plane for each component in image. All | |
238 | * components are DCT'd and loaded into the virtual arrays in this pass. | |
239 | * However, it may be that only a subset of the components are emitted to | |
240 | * the entropy encoder during this first pass; be careful about looking | |
241 | * at the scan-dependent variables (MCU dimensions, etc). | |
242 | */ | |
243 | ||
244 | METHODDEF(boolean) | |
245 | compress_first_pass (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |
246 | { | |
247 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
248 | JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1; | |
249 | JDIMENSION blocks_across, MCUs_across, MCUindex; | |
250 | int bi, ci, h_samp_factor, block_row, block_rows, ndummy; | |
251 | JCOEF lastDC; | |
252 | jpeg_component_info *compptr; | |
253 | JBLOCKARRAY buffer; | |
254 | JBLOCKROW thisblockrow, lastblockrow; | |
255 | ||
256 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
257 | ci++, compptr++) { | |
258 | /* Align the virtual buffer for this component. */ | |
259 | buffer = (*cinfo->mem->access_virt_barray) | |
260 | ((j_common_ptr) cinfo, coef->whole_image[ci], | |
261 | coef->iMCU_row_num * compptr->v_samp_factor, | |
262 | (JDIMENSION) compptr->v_samp_factor, TRUE); | |
263 | /* Count non-dummy DCT block rows in this iMCU row. */ | |
264 | if (coef->iMCU_row_num < last_iMCU_row) | |
265 | block_rows = compptr->v_samp_factor; | |
266 | else { | |
267 | /* NB: can't use last_row_height here, since may not be set! */ | |
268 | block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor); | |
269 | if (block_rows == 0) block_rows = compptr->v_samp_factor; | |
270 | } | |
271 | blocks_across = compptr->width_in_blocks; | |
272 | h_samp_factor = compptr->h_samp_factor; | |
273 | /* Count number of dummy blocks to be added at the right margin. */ | |
274 | ndummy = (int) (blocks_across % h_samp_factor); | |
275 | if (ndummy > 0) | |
276 | ndummy = h_samp_factor - ndummy; | |
277 | /* Perform DCT for all non-dummy blocks in this iMCU row. Each call | |
278 | * on forward_DCT processes a complete horizontal row of DCT blocks. | |
279 | */ | |
280 | for (block_row = 0; block_row < block_rows; block_row++) { | |
281 | thisblockrow = buffer[block_row]; | |
282 | (*cinfo->fdct->forward_DCT) (cinfo, compptr, | |
283 | input_buf[ci], thisblockrow, | |
284 | (JDIMENSION) (block_row * DCTSIZE), | |
285 | (JDIMENSION) 0, blocks_across); | |
286 | if (ndummy > 0) { | |
287 | /* Create dummy blocks at the right edge of the image. */ | |
288 | thisblockrow += blocks_across; /* => first dummy block */ | |
289 | jzero_far((void FAR *) thisblockrow, ndummy * SIZEOF(JBLOCK)); | |
290 | lastDC = thisblockrow[-1][0]; | |
291 | for (bi = 0; bi < ndummy; bi++) { | |
292 | thisblockrow[bi][0] = lastDC; | |
293 | } | |
294 | } | |
295 | } | |
296 | /* If at end of image, create dummy block rows as needed. | |
297 | * The tricky part here is that within each MCU, we want the DC values | |
298 | * of the dummy blocks to match the last real block's DC value. | |
299 | * This squeezes a few more bytes out of the resulting file... | |
300 | */ | |
301 | if (coef->iMCU_row_num == last_iMCU_row) { | |
302 | blocks_across += ndummy; /* include lower right corner */ | |
303 | MCUs_across = blocks_across / h_samp_factor; | |
304 | for (block_row = block_rows; block_row < compptr->v_samp_factor; | |
305 | block_row++) { | |
306 | thisblockrow = buffer[block_row]; | |
307 | lastblockrow = buffer[block_row-1]; | |
308 | jzero_far((void FAR *) thisblockrow, | |
309 | (size_t) (blocks_across * SIZEOF(JBLOCK))); | |
310 | for (MCUindex = 0; MCUindex < MCUs_across; MCUindex++) { | |
311 | lastDC = lastblockrow[h_samp_factor-1][0]; | |
312 | for (bi = 0; bi < h_samp_factor; bi++) { | |
313 | thisblockrow[bi][0] = lastDC; | |
314 | } | |
315 | thisblockrow += h_samp_factor; /* advance to next MCU in row */ | |
316 | lastblockrow += h_samp_factor; | |
317 | } | |
318 | } | |
319 | } | |
320 | } | |
321 | /* NB: compress_output will increment iMCU_row_num if successful. | |
322 | * A suspension return will result in redoing all the work above next time. | |
323 | */ | |
324 | ||
325 | /* Emit data to the entropy encoder, sharing code with subsequent passes */ | |
326 | return compress_output(cinfo, input_buf); | |
327 | } | |
328 | ||
329 | ||
330 | /* | |
331 | * Process some data in subsequent passes of a multi-pass case. | |
332 | * We process the equivalent of one fully interleaved MCU row ("iMCU" row) | |
333 | * per call, ie, v_samp_factor block rows for each component in the scan. | |
334 | * The data is obtained from the virtual arrays and fed to the entropy coder. | |
335 | * Returns TRUE if the iMCU row is completed, FALSE if suspended. | |
336 | * | |
337 | * NB: input_buf is ignored; it is likely to be a NULL pointer. | |
338 | */ | |
339 | ||
340 | METHODDEF(boolean) | |
341 | compress_output (j_compress_ptr cinfo, JSAMPIMAGE input_buf) | |
342 | { | |
343 | my_coef_ptr coef = (my_coef_ptr) cinfo->coef; | |
344 | JDIMENSION MCU_col_num; /* index of current MCU within row */ | |
345 | int blkn, ci, xindex, yindex, yoffset; | |
346 | JDIMENSION start_col; | |
347 | JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN]; | |
348 | JBLOCKROW buffer_ptr; | |
349 | jpeg_component_info *compptr; | |
350 | ||
351 | /* Align the virtual buffers for the components used in this scan. | |
352 | * NB: during first pass, this is safe only because the buffers will | |
353 | * already be aligned properly, so jmemmgr.c won't need to do any I/O. | |
354 | */ | |
355 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
356 | compptr = cinfo->cur_comp_info[ci]; | |
357 | buffer[ci] = (*cinfo->mem->access_virt_barray) | |
358 | ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index], | |
359 | coef->iMCU_row_num * compptr->v_samp_factor, | |
360 | (JDIMENSION) compptr->v_samp_factor, FALSE); | |
361 | } | |
362 | ||
363 | /* Loop to process one whole iMCU row */ | |
364 | for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row; | |
365 | yoffset++) { | |
366 | for (MCU_col_num = coef->mcu_ctr; MCU_col_num < cinfo->MCUs_per_row; | |
367 | MCU_col_num++) { | |
368 | /* Construct list of pointers to DCT blocks belonging to this MCU */ | |
369 | blkn = 0; /* index of current DCT block within MCU */ | |
370 | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | |
371 | compptr = cinfo->cur_comp_info[ci]; | |
372 | start_col = MCU_col_num * compptr->MCU_width; | |
373 | for (yindex = 0; yindex < compptr->MCU_height; yindex++) { | |
374 | buffer_ptr = buffer[ci][yindex+yoffset] + start_col; | |
375 | for (xindex = 0; xindex < compptr->MCU_width; xindex++) { | |
376 | coef->MCU_buffer[blkn++] = buffer_ptr++; | |
377 | } | |
378 | } | |
379 | } | |
380 | /* Try to write the MCU. */ | |
381 | if (! (*cinfo->entropy->encode_mcu) (cinfo, coef->MCU_buffer)) { | |
382 | /* Suspension forced; update state counters and exit */ | |
383 | coef->MCU_vert_offset = yoffset; | |
384 | coef->mcu_ctr = MCU_col_num; | |
385 | return FALSE; | |
386 | } | |
387 | } | |
388 | /* Completed an MCU row, but perhaps not an iMCU row */ | |
389 | coef->mcu_ctr = 0; | |
390 | } | |
391 | /* Completed the iMCU row, advance counters for next one */ | |
392 | coef->iMCU_row_num++; | |
393 | start_iMCU_row(cinfo); | |
394 | return TRUE; | |
395 | } | |
396 | ||
397 | #endif /* FULL_COEF_BUFFER_SUPPORTED */ | |
398 | ||
399 | ||
400 | /* | |
401 | * Initialize coefficient buffer controller. | |
402 | */ | |
403 | ||
404 | GLOBAL(void) | |
405 | jinit_c_coef_controller (j_compress_ptr cinfo, boolean need_full_buffer) | |
406 | { | |
407 | my_coef_ptr coef; | |
408 | ||
409 | coef = (my_coef_ptr) | |
410 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
411 | SIZEOF(my_coef_controller)); | |
412 | cinfo->coef = (struct jpeg_c_coef_controller *) coef; | |
413 | coef->pub.start_pass = start_pass_coef; | |
414 | ||
415 | /* Create the coefficient buffer. */ | |
416 | if (need_full_buffer) { | |
417 | #ifdef FULL_COEF_BUFFER_SUPPORTED | |
418 | /* Allocate a full-image virtual array for each component, */ | |
419 | /* padded to a multiple of samp_factor DCT blocks in each direction. */ | |
420 | int ci; | |
421 | jpeg_component_info *compptr; | |
422 | ||
423 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
424 | ci++, compptr++) { | |
425 | coef->whole_image[ci] = (*cinfo->mem->request_virt_barray) | |
426 | ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE, | |
427 | (JDIMENSION) jround_up((long) compptr->width_in_blocks, | |
428 | (long) compptr->h_samp_factor), | |
429 | (JDIMENSION) jround_up((long) compptr->height_in_blocks, | |
430 | (long) compptr->v_samp_factor), | |
431 | (JDIMENSION) compptr->v_samp_factor); | |
432 | } | |
433 | #else | |
434 | ERREXIT(cinfo, JERR_BAD_BUFFER_MODE); | |
435 | #endif | |
436 | } else { | |
437 | /* We only need a single-MCU buffer. */ | |
438 | JBLOCKROW buffer; | |
439 | int i; | |
440 | ||
441 | buffer = (JBLOCKROW) | |
442 | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
443 | C_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)); | |
444 | for (i = 0; i < C_MAX_BLOCKS_IN_MCU; i++) { | |
445 | coef->MCU_buffer[i] = buffer + i; | |
446 | } | |
447 | coef->whole_image[0] = NULL; /* flag for no virtual arrays */ | |
448 | } | |
449 | } |