]>
Commit | Line | Data |
---|---|---|
1 | /////////////////////////////////////////////////////////////////////////////// | |
2 | // Name: matrix.cpp | |
3 | // Purpose: wxTransformMatrix class | |
4 | // Author: Chris Breeze, Julian Smart | |
5 | // Modified by: Klaas Holwerda | |
6 | // Created: 01/02/97 | |
7 | // RCS-ID: $Id$ | |
8 | // Copyright: (c) Julian Smart | |
9 | // Licence: wxWindows licence | |
10 | /////////////////////////////////////////////////////////////////////////////// | |
11 | ||
12 | // Note: this is intended to be used in wxDC at some point to replace | |
13 | // the current system of scaling/translation. It is not yet used. | |
14 | ||
15 | // For compilers that support precompilation, includes "wx.h". | |
16 | #include "wx/wxprec.h" | |
17 | ||
18 | #ifdef __BORLANDC__ | |
19 | #pragma hdrstop | |
20 | #endif | |
21 | ||
22 | #ifndef WX_PRECOMP | |
23 | #include "wx/defs.h" | |
24 | #include "wx/math.h" | |
25 | #endif | |
26 | ||
27 | #include "wx/matrix.h" | |
28 | ||
29 | static const double pi = M_PI; | |
30 | ||
31 | wxTransformMatrix::wxTransformMatrix(void) | |
32 | { | |
33 | m_isIdentity = false; | |
34 | ||
35 | Identity(); | |
36 | } | |
37 | ||
38 | wxTransformMatrix::wxTransformMatrix(const wxTransformMatrix& mat) | |
39 | : wxObject() | |
40 | { | |
41 | (*this) = mat; | |
42 | } | |
43 | ||
44 | double wxTransformMatrix::GetValue(int col, int row) const | |
45 | { | |
46 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
47 | return 0.0; | |
48 | ||
49 | return m_matrix[col][row]; | |
50 | } | |
51 | ||
52 | void wxTransformMatrix::SetValue(int col, int row, double value) | |
53 | { | |
54 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
55 | return; | |
56 | ||
57 | m_matrix[col][row] = value; | |
58 | m_isIdentity = IsIdentity1(); | |
59 | } | |
60 | ||
61 | void wxTransformMatrix::operator = (const wxTransformMatrix& mat) | |
62 | { | |
63 | int i, j; | |
64 | for (i = 0; i < 3; i++) | |
65 | { | |
66 | for (j = 0; j < 3; j++) | |
67 | { | |
68 | m_matrix[i][j] = mat.m_matrix[i][j]; | |
69 | } | |
70 | } | |
71 | m_isIdentity = mat.m_isIdentity; | |
72 | } | |
73 | ||
74 | bool wxTransformMatrix::operator == (const wxTransformMatrix& mat) const | |
75 | { | |
76 | if (m_isIdentity && mat.m_isIdentity) | |
77 | return true; | |
78 | ||
79 | int i, j; | |
80 | for (i = 0; i < 3; i++) | |
81 | { | |
82 | for (j = 0; j < 3; j++) | |
83 | { | |
84 | if (m_matrix[i][j] != mat.m_matrix[i][j]) | |
85 | return false; | |
86 | } | |
87 | } | |
88 | return true; | |
89 | } | |
90 | ||
91 | bool wxTransformMatrix::operator != (const wxTransformMatrix& mat) const | |
92 | { | |
93 | return (! ((*this) == mat)); | |
94 | } | |
95 | ||
96 | double& wxTransformMatrix::operator()(int col, int row) | |
97 | { | |
98 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
99 | return m_matrix[0][0]; | |
100 | ||
101 | return m_matrix[col][row]; | |
102 | } | |
103 | ||
104 | double wxTransformMatrix::operator()(int col, int row) const | |
105 | { | |
106 | if (row < 0 || row > 2 || col < 0 || col > 2) | |
107 | return 0.0; | |
108 | ||
109 | return m_matrix[col][row]; | |
110 | } | |
111 | ||
112 | // Invert matrix | |
113 | bool wxTransformMatrix::Invert(void) | |
114 | { | |
115 | double inverseMatrix[3][3]; | |
116 | ||
117 | // calculate the adjoint | |
118 | inverseMatrix[0][0] = wxCalculateDet(m_matrix[1][1],m_matrix[2][1],m_matrix[1][2],m_matrix[2][2]); | |
119 | inverseMatrix[0][1] = -wxCalculateDet(m_matrix[0][1],m_matrix[2][1],m_matrix[0][2],m_matrix[2][2]); | |
120 | inverseMatrix[0][2] = wxCalculateDet(m_matrix[0][1],m_matrix[1][1],m_matrix[0][2],m_matrix[1][2]); | |
121 | ||
122 | inverseMatrix[1][0] = -wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][2],m_matrix[2][2]); | |
123 | inverseMatrix[1][1] = wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][2],m_matrix[2][2]); | |
124 | inverseMatrix[1][2] = -wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][2],m_matrix[1][2]); | |
125 | ||
126 | inverseMatrix[2][0] = wxCalculateDet(m_matrix[1][0],m_matrix[2][0],m_matrix[1][1],m_matrix[2][1]); | |
127 | inverseMatrix[2][1] = -wxCalculateDet(m_matrix[0][0],m_matrix[2][0],m_matrix[0][1],m_matrix[2][1]); | |
128 | inverseMatrix[2][2] = wxCalculateDet(m_matrix[0][0],m_matrix[1][0],m_matrix[0][1],m_matrix[1][1]); | |
129 | ||
130 | // now divide by the determinant | |
131 | double det = m_matrix[0][0] * inverseMatrix[0][0] + m_matrix[0][1] * inverseMatrix[1][0] + m_matrix[0][2] * inverseMatrix[2][0]; | |
132 | if (det != 0.0) | |
133 | { | |
134 | inverseMatrix[0][0] /= det; inverseMatrix[1][0] /= det; inverseMatrix[2][0] /= det; | |
135 | inverseMatrix[0][1] /= det; inverseMatrix[1][1] /= det; inverseMatrix[2][1] /= det; | |
136 | inverseMatrix[0][2] /= det; inverseMatrix[1][2] /= det; inverseMatrix[2][2] /= det; | |
137 | ||
138 | int i, j; | |
139 | for (i = 0; i < 3; i++) | |
140 | { | |
141 | for (j = 0; j < 3; j++) | |
142 | { | |
143 | m_matrix[i][j] = inverseMatrix[i][j]; | |
144 | } | |
145 | } | |
146 | m_isIdentity = IsIdentity1(); | |
147 | return true; | |
148 | } | |
149 | else | |
150 | { | |
151 | return false; | |
152 | } | |
153 | } | |
154 | ||
155 | // Make into identity matrix | |
156 | bool wxTransformMatrix::Identity(void) | |
157 | { | |
158 | m_matrix[0][0] = m_matrix[1][1] = m_matrix[2][2] = 1.0; | |
159 | m_matrix[1][0] = m_matrix[2][0] = m_matrix[0][1] = m_matrix[2][1] = m_matrix[0][2] = m_matrix[1][2] = 0.0; | |
160 | m_isIdentity = true; | |
161 | ||
162 | return true; | |
163 | } | |
164 | ||
165 | // Scale by scale (isotropic scaling i.e. the same in x and y): | |
166 | // | scale 0 0 | | |
167 | // matrix' = | 0 scale 0 | x matrix | |
168 | // | 0 0 scale | | |
169 | // | |
170 | bool wxTransformMatrix::Scale(double scale) | |
171 | { | |
172 | int i, j; | |
173 | for (i = 0; i < 3; i++) | |
174 | { | |
175 | for (j = 0; j < 3; j++) | |
176 | { | |
177 | m_matrix[i][j] *= scale; | |
178 | } | |
179 | } | |
180 | m_isIdentity = IsIdentity1(); | |
181 | ||
182 | return true; | |
183 | } | |
184 | ||
185 | ||
186 | // scale a matrix in 2D | |
187 | // | |
188 | // xs 0 xc(1-xs) | |
189 | // 0 ys yc(1-ys) | |
190 | // 0 0 1 | |
191 | // | |
192 | wxTransformMatrix& wxTransformMatrix::Scale(const double &xs, const double &ys,const double &xc, const double &yc) | |
193 | { | |
194 | double r00,r10,r20,r01,r11,r21; | |
195 | ||
196 | if (m_isIdentity) | |
197 | { | |
198 | double tx =xc*(1-xs); | |
199 | double ty =yc*(1-ys); | |
200 | r00 = xs; | |
201 | r10 = 0; | |
202 | r20 = tx; | |
203 | r01 = 0; | |
204 | r11 = ys; | |
205 | r21 = ty; | |
206 | } | |
207 | else if (xc!=0 || yc!=0) | |
208 | { | |
209 | double tx =xc*(1-xs); | |
210 | double ty =yc*(1-ys); | |
211 | r00 = xs * m_matrix[0][0]; | |
212 | r10 = xs * m_matrix[1][0]; | |
213 | r20 = xs * m_matrix[2][0] + tx; | |
214 | r01 = ys * m_matrix[0][1]; | |
215 | r11 = ys * m_matrix[1][1]; | |
216 | r21 = ys * m_matrix[2][1] + ty; | |
217 | } | |
218 | else | |
219 | { | |
220 | r00 = xs * m_matrix[0][0]; | |
221 | r10 = xs * m_matrix[1][0]; | |
222 | r20 = xs * m_matrix[2][0]; | |
223 | r01 = ys * m_matrix[0][1]; | |
224 | r11 = ys * m_matrix[1][1]; | |
225 | r21 = ys * m_matrix[2][1]; | |
226 | } | |
227 | ||
228 | m_matrix[0][0] = r00; | |
229 | m_matrix[1][0] = r10; | |
230 | m_matrix[2][0] = r20; | |
231 | m_matrix[0][1] = r01; | |
232 | m_matrix[1][1] = r11; | |
233 | m_matrix[2][1] = r21; | |
234 | ||
235 | /* or like this | |
236 | // first translate to origin O | |
237 | (*this).Translate(-x_cen, -y_cen); | |
238 | ||
239 | // now do the scaling | |
240 | wxTransformMatrix scale; | |
241 | scale.m_matrix[0][0] = x_fac; | |
242 | scale.m_matrix[1][1] = y_fac; | |
243 | scale.m_isIdentity = IsIdentity1(); | |
244 | ||
245 | *this = scale * (*this); | |
246 | ||
247 | // translate back from origin to x_cen, y_cen | |
248 | (*this).Translate(x_cen, y_cen); | |
249 | */ | |
250 | ||
251 | m_isIdentity = IsIdentity1(); | |
252 | ||
253 | return *this; | |
254 | } | |
255 | ||
256 | ||
257 | // mirror a matrix in x, y | |
258 | // | |
259 | // -1 0 0 Y-mirror | |
260 | // 0 -1 0 X-mirror | |
261 | // 0 0 -1 Z-mirror | |
262 | wxTransformMatrix& wxTransformMatrix::Mirror(bool x, bool y) | |
263 | { | |
264 | wxTransformMatrix temp; | |
265 | if (x) | |
266 | { | |
267 | temp.m_matrix[1][1] = -1; | |
268 | temp.m_isIdentity=false; | |
269 | } | |
270 | if (y) | |
271 | { | |
272 | temp.m_matrix[0][0] = -1; | |
273 | temp.m_isIdentity=false; | |
274 | } | |
275 | ||
276 | *this = temp * (*this); | |
277 | m_isIdentity = IsIdentity1(); | |
278 | return *this; | |
279 | } | |
280 | ||
281 | // Translate by dx, dy: | |
282 | // | 1 0 dx | | |
283 | // matrix' = | 0 1 dy | x matrix | |
284 | // | 0 0 1 | | |
285 | // | |
286 | bool wxTransformMatrix::Translate(double dx, double dy) | |
287 | { | |
288 | int i; | |
289 | for (i = 0; i < 3; i++) | |
290 | m_matrix[i][0] += dx * m_matrix[i][2]; | |
291 | for (i = 0; i < 3; i++) | |
292 | m_matrix[i][1] += dy * m_matrix[i][2]; | |
293 | ||
294 | m_isIdentity = IsIdentity1(); | |
295 | ||
296 | return true; | |
297 | } | |
298 | ||
299 | // Rotate clockwise by the given number of degrees: | |
300 | // | cos sin 0 | | |
301 | // matrix' = | -sin cos 0 | x matrix | |
302 | // | 0 0 1 | | |
303 | bool wxTransformMatrix::Rotate(double degrees) | |
304 | { | |
305 | Rotate(-degrees,0,0); | |
306 | return true; | |
307 | } | |
308 | ||
309 | // counter clockwise rotate around a point | |
310 | // | |
311 | // cos(r) -sin(r) x(1-cos(r))+y(sin(r) | |
312 | // sin(r) cos(r) y(1-cos(r))-x(sin(r) | |
313 | // 0 0 1 | |
314 | wxTransformMatrix& wxTransformMatrix::Rotate(const double °rees, const double &x, const double &y) | |
315 | { | |
316 | double angle = degrees * pi / 180.0; | |
317 | double c = cos(angle); | |
318 | double s = sin(angle); | |
319 | double r00,r10,r20,r01,r11,r21; | |
320 | ||
321 | if (m_isIdentity) | |
322 | { | |
323 | double tx = x*(1-c)+y*s; | |
324 | double ty = y*(1-c)-x*s; | |
325 | r00 = c ; | |
326 | r10 = -s; | |
327 | r20 = tx; | |
328 | r01 = s; | |
329 | r11 = c; | |
330 | r21 = ty; | |
331 | } | |
332 | else if (x!=0 || y!=0) | |
333 | { | |
334 | double tx = x*(1-c)+y*s; | |
335 | double ty = y*(1-c)-x*s; | |
336 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1] + tx * m_matrix[0][2]; | |
337 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1] + tx * m_matrix[1][2]; | |
338 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1] + tx;// * m_matrix[2][2]; | |
339 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0] + ty * m_matrix[0][2]; | |
340 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0] + ty * m_matrix[1][2]; | |
341 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0] + ty;// * m_matrix[2][2]; | |
342 | } | |
343 | else | |
344 | { | |
345 | r00 = c * m_matrix[0][0] - s * m_matrix[0][1]; | |
346 | r10 = c * m_matrix[1][0] - s * m_matrix[1][1]; | |
347 | r20 = c * m_matrix[2][0] - s * m_matrix[2][1]; | |
348 | r01 = c * m_matrix[0][1] + s * m_matrix[0][0]; | |
349 | r11 = c * m_matrix[1][1] + s * m_matrix[1][0]; | |
350 | r21 = c * m_matrix[2][1] + s * m_matrix[2][0]; | |
351 | } | |
352 | ||
353 | m_matrix[0][0] = r00; | |
354 | m_matrix[1][0] = r10; | |
355 | m_matrix[2][0] = r20; | |
356 | m_matrix[0][1] = r01; | |
357 | m_matrix[1][1] = r11; | |
358 | m_matrix[2][1] = r21; | |
359 | ||
360 | /* or like this | |
361 | wxTransformMatrix rotate; | |
362 | rotate.m_matrix[2][0] = tx; | |
363 | rotate.m_matrix[2][1] = ty; | |
364 | ||
365 | rotate.m_matrix[0][0] = c; | |
366 | rotate.m_matrix[0][1] = s; | |
367 | ||
368 | rotate.m_matrix[1][0] = -s; | |
369 | rotate.m_matrix[1][1] = c; | |
370 | ||
371 | rotate.m_isIdentity=false; | |
372 | *this = rotate * (*this); | |
373 | */ | |
374 | m_isIdentity = IsIdentity1(); | |
375 | ||
376 | return *this; | |
377 | } | |
378 | ||
379 | // Transform a point from logical to device coordinates | |
380 | bool wxTransformMatrix::TransformPoint(double x, double y, double& tx, double& ty) const | |
381 | { | |
382 | if (IsIdentity()) | |
383 | { | |
384 | tx = x; ty = y; return true; | |
385 | } | |
386 | ||
387 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]; | |
388 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]; | |
389 | ||
390 | return true; | |
391 | } | |
392 | ||
393 | // Transform a point from device to logical coordinates. | |
394 | ||
395 | // Example of use: | |
396 | // wxTransformMatrix mat = dc.GetTransformation(); | |
397 | // mat.Invert(); | |
398 | // mat.InverseTransformPoint(x, y, x1, y1); | |
399 | // OR (shorthand:) | |
400 | // dc.LogicalToDevice(x, y, x1, y1); | |
401 | // The latter is slightly less efficient if we're doing several | |
402 | // conversions, since the matrix is inverted several times. | |
403 | bool wxTransformMatrix::InverseTransformPoint(double x, double y, double& tx, double& ty) const | |
404 | { | |
405 | if (IsIdentity()) | |
406 | { | |
407 | tx = x; ty = y; return true; | |
408 | } | |
409 | ||
410 | double z = (1.0 - m_matrix[0][2] * x - m_matrix[1][2] * y) / m_matrix[2][2]; | |
411 | if (z == 0.0) | |
412 | { | |
413 | // z = 0.0000001; | |
414 | return false; | |
415 | } | |
416 | tx = x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0]; | |
417 | ty = x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1]; | |
418 | return true; | |
419 | } | |
420 | ||
421 | wxTransformMatrix& wxTransformMatrix::operator*=(const double& t) | |
422 | { | |
423 | for (int i = 0; i < 3; i++) | |
424 | for (int j = 0; j < 3; j++) | |
425 | m_matrix[i][j]*= t; | |
426 | m_isIdentity = IsIdentity1(); | |
427 | return *this; | |
428 | } | |
429 | ||
430 | wxTransformMatrix& wxTransformMatrix::operator/=(const double& t) | |
431 | { | |
432 | for (int i = 0; i < 3; i++) | |
433 | for (int j = 0; j < 3; j++) | |
434 | m_matrix[i][j]/= t; | |
435 | m_isIdentity = IsIdentity1(); | |
436 | return *this; | |
437 | } | |
438 | ||
439 | wxTransformMatrix& wxTransformMatrix::operator+=(const wxTransformMatrix& mat) | |
440 | { | |
441 | for (int i = 0; i < 3; i++) | |
442 | for (int j = 0; j < 3; j++) | |
443 | m_matrix[i][j] += mat.m_matrix[i][j]; | |
444 | m_isIdentity = IsIdentity1(); | |
445 | return *this; | |
446 | } | |
447 | ||
448 | wxTransformMatrix& wxTransformMatrix::operator-=(const wxTransformMatrix& mat) | |
449 | { | |
450 | for (int i = 0; i < 3; i++) | |
451 | for (int j = 0; j < 3; j++) | |
452 | m_matrix[i][j] -= mat.m_matrix[i][j]; | |
453 | m_isIdentity = IsIdentity1(); | |
454 | return *this; | |
455 | } | |
456 | ||
457 | wxTransformMatrix& wxTransformMatrix::operator*=(const wxTransformMatrix& mat) | |
458 | { | |
459 | ||
460 | if (mat.m_isIdentity) | |
461 | return *this; | |
462 | if (m_isIdentity) | |
463 | { | |
464 | *this = mat; | |
465 | return *this; | |
466 | } | |
467 | else | |
468 | { | |
469 | wxTransformMatrix result; | |
470 | for (int i = 0; i < 3; i++) | |
471 | { | |
472 | for (int j = 0; j < 3; j++) | |
473 | { | |
474 | double sum = 0; | |
475 | for (int k = 0; k < 3; k++) | |
476 | sum += m_matrix[k][i] * mat.m_matrix[j][k]; | |
477 | result.m_matrix[j][i] = sum; | |
478 | } | |
479 | } | |
480 | *this = result; | |
481 | } | |
482 | ||
483 | m_isIdentity = IsIdentity1(); | |
484 | return *this; | |
485 | } | |
486 | ||
487 | ||
488 | // constant operators | |
489 | wxTransformMatrix wxTransformMatrix::operator*(const double& t) const | |
490 | { | |
491 | wxTransformMatrix result = *this; | |
492 | result *= t; | |
493 | result.m_isIdentity = result.IsIdentity1(); | |
494 | return result; | |
495 | } | |
496 | ||
497 | wxTransformMatrix wxTransformMatrix::operator/(const double& t) const | |
498 | { | |
499 | wxTransformMatrix result = *this; | |
500 | // wxASSERT(t!=0); | |
501 | result /= t; | |
502 | result.m_isIdentity = result.IsIdentity1(); | |
503 | return result; | |
504 | } | |
505 | ||
506 | wxTransformMatrix wxTransformMatrix::operator+(const wxTransformMatrix& m) const | |
507 | { | |
508 | wxTransformMatrix result = *this; | |
509 | result += m; | |
510 | result.m_isIdentity = result.IsIdentity1(); | |
511 | return result; | |
512 | } | |
513 | ||
514 | wxTransformMatrix wxTransformMatrix::operator-(const wxTransformMatrix& m) const | |
515 | { | |
516 | wxTransformMatrix result = *this; | |
517 | result -= m; | |
518 | result.m_isIdentity = result.IsIdentity1(); | |
519 | return result; | |
520 | } | |
521 | ||
522 | ||
523 | wxTransformMatrix wxTransformMatrix::operator*(const wxTransformMatrix& m) const | |
524 | { | |
525 | wxTransformMatrix result = *this; | |
526 | result *= m; | |
527 | result.m_isIdentity = result.IsIdentity1(); | |
528 | return result; | |
529 | } | |
530 | ||
531 | ||
532 | wxTransformMatrix wxTransformMatrix::operator-() const | |
533 | { | |
534 | wxTransformMatrix result = *this; | |
535 | for (int i = 0; i < 3; i++) | |
536 | for (int j = 0; j < 3; j++) | |
537 | result.m_matrix[i][j] = -(this->m_matrix[i][j]); | |
538 | result.m_isIdentity = result.IsIdentity1(); | |
539 | return result; | |
540 | } | |
541 | ||
542 | static double CheckInt(double getal) | |
543 | { | |
544 | // check if the number is very close to an integer | |
545 | if ( (ceil(getal) - getal) < 0.0001) | |
546 | return ceil(getal); | |
547 | ||
548 | else if ( (getal - floor(getal)) < 0.0001) | |
549 | return floor(getal); | |
550 | ||
551 | return getal; | |
552 | ||
553 | } | |
554 | ||
555 | double wxTransformMatrix::Get_scaleX() | |
556 | { | |
557 | double scale_factor; | |
558 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
559 | if (rot_angle != 90 && rot_angle != -90) | |
560 | scale_factor = m_matrix[0][0]/cos((rot_angle/180)*pi); | |
561 | else | |
562 | scale_factor = m_matrix[0][0]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
563 | ||
564 | scale_factor = CheckInt(scale_factor); | |
565 | if (scale_factor < 0) | |
566 | scale_factor = -scale_factor; | |
567 | ||
568 | return scale_factor; | |
569 | } | |
570 | ||
571 | double wxTransformMatrix::Get_scaleY() | |
572 | { | |
573 | double scale_factor; | |
574 | double rot_angle = CheckInt(atan2(m_matrix[1][0],m_matrix[0][0])*180/pi); | |
575 | if (rot_angle != 90 && rot_angle != -90) | |
576 | scale_factor = m_matrix[1][1]/cos((rot_angle/180)*pi); | |
577 | else | |
578 | scale_factor = m_matrix[1][1]/sin((rot_angle/180)*pi); // er kan nl. niet door 0 gedeeld worden ! | |
579 | ||
580 | scale_factor = CheckInt(scale_factor); | |
581 | if (scale_factor < 0) | |
582 | ||
583 | scale_factor = -scale_factor; | |
584 | ||
585 | return scale_factor; | |
586 | ||
587 | } | |
588 | ||
589 | double wxTransformMatrix::GetRotation() | |
590 | { | |
591 | double temp1 = GetValue(0,0); // for angle calculation | |
592 | double temp2 = GetValue(0,1); // | |
593 | ||
594 | // Rotation | |
595 | double rot_angle = atan2(temp2,temp1)*180/pi; | |
596 | ||
597 | rot_angle = CheckInt(rot_angle); | |
598 | return rot_angle; | |
599 | } | |
600 | ||
601 | void wxTransformMatrix::SetRotation(double rotation) | |
602 | { | |
603 | double x=GetValue(2,0); | |
604 | double y=GetValue(2,1); | |
605 | Rotate(-GetRotation(), x, y); | |
606 | Rotate(rotation, x, y); | |
607 | } | |
608 |