]>
Commit | Line | Data |
---|---|---|
0272a10d VZ |
1 | |
2 | /* png.c - location for general purpose libpng functions | |
3 | * | |
9c0d9ce3 DS |
4 | * Last changed in libpng 1.5.6 [November 3, 2011] |
5 | * Copyright (c) 1998-2011 Glenn Randers-Pehrson | |
0272a10d VZ |
6 | * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger) |
7 | * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.) | |
b61cc19c PC |
8 | * |
9 | * This code is released under the libpng license. | |
10 | * For conditions of distribution and use, see the disclaimer | |
11 | * and license in png.h | |
0272a10d VZ |
12 | */ |
13 | ||
b61cc19c | 14 | #include "pngpriv.h" |
0272a10d VZ |
15 | |
16 | /* Generate a compiler error if there is an old png.h in the search path. */ | |
9c0d9ce3 | 17 | typedef png_libpng_version_1_5_6 Your_png_h_is_not_version_1_5_6; |
0272a10d VZ |
18 | |
19 | /* Tells libpng that we have already handled the first "num_bytes" bytes | |
20 | * of the PNG file signature. If the PNG data is embedded into another | |
21 | * stream we can set num_bytes = 8 so that libpng will not attempt to read | |
22 | * or write any of the magic bytes before it starts on the IHDR. | |
23 | */ | |
24 | ||
25 | #ifdef PNG_READ_SUPPORTED | |
26 | void PNGAPI | |
27 | png_set_sig_bytes(png_structp png_ptr, int num_bytes) | |
28 | { | |
970f6abe | 29 | png_debug(1, "in png_set_sig_bytes"); |
b61cc19c PC |
30 | |
31 | if (png_ptr == NULL) | |
32 | return; | |
33 | ||
0272a10d | 34 | if (num_bytes > 8) |
b61cc19c | 35 | png_error(png_ptr, "Too many bytes for PNG signature"); |
0272a10d VZ |
36 | |
37 | png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes); | |
38 | } | |
39 | ||
40 | /* Checks whether the supplied bytes match the PNG signature. We allow | |
41 | * checking less than the full 8-byte signature so that those apps that | |
42 | * already read the first few bytes of a file to determine the file type | |
43 | * can simply check the remaining bytes for extra assurance. Returns | |
44 | * an integer less than, equal to, or greater than zero if sig is found, | |
45 | * respectively, to be less than, to match, or be greater than the correct | |
9c0d9ce3 | 46 | * PNG signature (this is the same behavior as strcmp, memcmp, etc). |
0272a10d VZ |
47 | */ |
48 | int PNGAPI | |
9c0d9ce3 | 49 | png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check) |
0272a10d VZ |
50 | { |
51 | png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10}; | |
9c0d9ce3 | 52 | |
0272a10d VZ |
53 | if (num_to_check > 8) |
54 | num_to_check = 8; | |
9c0d9ce3 | 55 | |
0272a10d VZ |
56 | else if (num_to_check < 1) |
57 | return (-1); | |
58 | ||
59 | if (start > 7) | |
60 | return (-1); | |
61 | ||
62 | if (start + num_to_check > 8) | |
63 | num_to_check = 8 - start; | |
64 | ||
65 | return ((int)(png_memcmp(&sig[start], &png_signature[start], num_to_check))); | |
66 | } | |
67 | ||
0272a10d VZ |
68 | #endif /* PNG_READ_SUPPORTED */ |
69 | ||
70 | #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) | |
9c0d9ce3 DS |
71 | /* Function to allocate memory for zlib */ |
72 | PNG_FUNCTION(voidpf /* PRIVATE */, | |
73 | png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED) | |
0272a10d VZ |
74 | { |
75 | png_voidp ptr; | |
76 | png_structp p=(png_structp)png_ptr; | |
77 | png_uint_32 save_flags=p->flags; | |
b61cc19c | 78 | png_alloc_size_t num_bytes; |
0272a10d | 79 | |
b61cc19c PC |
80 | if (png_ptr == NULL) |
81 | return (NULL); | |
9c0d9ce3 | 82 | |
0272a10d VZ |
83 | if (items > PNG_UINT_32_MAX/size) |
84 | { | |
85 | png_warning (p, "Potential overflow in png_zalloc()"); | |
86 | return (NULL); | |
87 | } | |
b61cc19c | 88 | num_bytes = (png_alloc_size_t)items * size; |
0272a10d VZ |
89 | |
90 | p->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK; | |
91 | ptr = (png_voidp)png_malloc((png_structp)png_ptr, num_bytes); | |
92 | p->flags=save_flags; | |
93 | ||
0272a10d VZ |
94 | return ((voidpf)ptr); |
95 | } | |
96 | ||
b61cc19c PC |
97 | /* Function to free memory for zlib */ |
98 | void /* PRIVATE */ | |
0272a10d VZ |
99 | png_zfree(voidpf png_ptr, voidpf ptr) |
100 | { | |
101 | png_free((png_structp)png_ptr, (png_voidp)ptr); | |
102 | } | |
103 | ||
104 | /* Reset the CRC variable to 32 bits of 1's. Care must be taken | |
105 | * in case CRC is > 32 bits to leave the top bits 0. | |
106 | */ | |
107 | void /* PRIVATE */ | |
108 | png_reset_crc(png_structp png_ptr) | |
109 | { | |
9c0d9ce3 DS |
110 | /* The cast is safe because the crc is a 32 bit value. */ |
111 | png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0); | |
0272a10d VZ |
112 | } |
113 | ||
114 | /* Calculate the CRC over a section of data. We can only pass as | |
115 | * much data to this routine as the largest single buffer size. We | |
116 | * also check that this data will actually be used before going to the | |
117 | * trouble of calculating it. | |
118 | */ | |
119 | void /* PRIVATE */ | |
9c0d9ce3 | 120 | png_calculate_crc(png_structp png_ptr, png_const_bytep ptr, png_size_t length) |
0272a10d VZ |
121 | { |
122 | int need_crc = 1; | |
123 | ||
9c0d9ce3 | 124 | if (PNG_CHUNK_ANCILLIARY(png_ptr->chunk_name)) |
0272a10d VZ |
125 | { |
126 | if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) == | |
127 | (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN)) | |
128 | need_crc = 0; | |
129 | } | |
9c0d9ce3 DS |
130 | |
131 | else /* critical */ | |
0272a10d VZ |
132 | { |
133 | if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE) | |
134 | need_crc = 0; | |
135 | } | |
136 | ||
9c0d9ce3 DS |
137 | /* 'uLong' is defined as unsigned long, this means that on some systems it is |
138 | * a 64 bit value. crc32, however, returns 32 bits so the following cast is | |
139 | * safe. 'uInt' may be no more than 16 bits, so it is necessary to perform a | |
140 | * loop here. | |
141 | */ | |
142 | if (need_crc && length > 0) | |
143 | { | |
144 | uLong crc = png_ptr->crc; /* Should never issue a warning */ | |
145 | ||
146 | do | |
147 | { | |
148 | uInt safeLength = (uInt)length; | |
149 | if (safeLength == 0) | |
150 | safeLength = (uInt)-1; /* evil, but safe */ | |
151 | ||
152 | crc = crc32(crc, ptr, safeLength); | |
153 | ||
154 | /* The following should never issue compiler warnings, if they do the | |
155 | * target system has characteristics that will probably violate other | |
156 | * assumptions within the libpng code. | |
157 | */ | |
158 | ptr += safeLength; | |
159 | length -= safeLength; | |
160 | } | |
161 | while (length > 0); | |
162 | ||
163 | /* And the following is always safe because the crc is only 32 bits. */ | |
164 | png_ptr->crc = (png_uint_32)crc; | |
165 | } | |
166 | } | |
167 | ||
168 | /* Check a user supplied version number, called from both read and write | |
169 | * functions that create a png_struct | |
170 | */ | |
171 | int | |
172 | png_user_version_check(png_structp png_ptr, png_const_charp user_png_ver) | |
173 | { | |
174 | if (user_png_ver) | |
175 | { | |
176 | int i = 0; | |
177 | ||
178 | do | |
179 | { | |
180 | if (user_png_ver[i] != png_libpng_ver[i]) | |
181 | png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; | |
182 | } while (png_libpng_ver[i++]); | |
183 | } | |
184 | ||
185 | else | |
186 | png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH; | |
187 | ||
188 | if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH) | |
189 | { | |
190 | /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so | |
191 | * we must recompile any applications that use any older library version. | |
192 | * For versions after libpng 1.0, we will be compatible, so we need | |
193 | * only check the first digit. | |
194 | */ | |
195 | if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] || | |
196 | (user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) || | |
197 | (user_png_ver[0] == '0' && user_png_ver[2] < '9')) | |
198 | { | |
199 | #ifdef PNG_WARNINGS_SUPPORTED | |
200 | size_t pos = 0; | |
201 | char m[128]; | |
202 | ||
203 | pos = png_safecat(m, sizeof m, pos, "Application built with libpng-"); | |
204 | pos = png_safecat(m, sizeof m, pos, user_png_ver); | |
205 | pos = png_safecat(m, sizeof m, pos, " but running with "); | |
206 | pos = png_safecat(m, sizeof m, pos, png_libpng_ver); | |
207 | ||
208 | png_warning(png_ptr, m); | |
209 | #endif | |
210 | ||
211 | #ifdef PNG_ERROR_NUMBERS_SUPPORTED | |
212 | png_ptr->flags = 0; | |
213 | #endif | |
214 | ||
215 | return 0; | |
216 | } | |
217 | } | |
218 | ||
219 | /* Success return. */ | |
220 | return 1; | |
0272a10d VZ |
221 | } |
222 | ||
223 | /* Allocate the memory for an info_struct for the application. We don't | |
224 | * really need the png_ptr, but it could potentially be useful in the | |
225 | * future. This should be used in favour of malloc(png_sizeof(png_info)) | |
226 | * and png_info_init() so that applications that want to use a shared | |
227 | * libpng don't have to be recompiled if png_info changes size. | |
228 | */ | |
9c0d9ce3 DS |
229 | PNG_FUNCTION(png_infop,PNGAPI |
230 | png_create_info_struct,(png_structp png_ptr),PNG_ALLOCATED) | |
0272a10d VZ |
231 | { |
232 | png_infop info_ptr; | |
233 | ||
970f6abe | 234 | png_debug(1, "in png_create_info_struct"); |
b61cc19c PC |
235 | |
236 | if (png_ptr == NULL) | |
237 | return (NULL); | |
238 | ||
0272a10d VZ |
239 | #ifdef PNG_USER_MEM_SUPPORTED |
240 | info_ptr = (png_infop)png_create_struct_2(PNG_STRUCT_INFO, | |
241 | png_ptr->malloc_fn, png_ptr->mem_ptr); | |
242 | #else | |
243 | info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO); | |
244 | #endif | |
245 | if (info_ptr != NULL) | |
246 | png_info_init_3(&info_ptr, png_sizeof(png_info)); | |
247 | ||
248 | return (info_ptr); | |
249 | } | |
250 | ||
251 | /* This function frees the memory associated with a single info struct. | |
252 | * Normally, one would use either png_destroy_read_struct() or | |
253 | * png_destroy_write_struct() to free an info struct, but this may be | |
254 | * useful for some applications. | |
255 | */ | |
256 | void PNGAPI | |
257 | png_destroy_info_struct(png_structp png_ptr, png_infopp info_ptr_ptr) | |
258 | { | |
259 | png_infop info_ptr = NULL; | |
0272a10d | 260 | |
970f6abe | 261 | png_debug(1, "in png_destroy_info_struct"); |
b61cc19c PC |
262 | |
263 | if (png_ptr == NULL) | |
264 | return; | |
265 | ||
0272a10d VZ |
266 | if (info_ptr_ptr != NULL) |
267 | info_ptr = *info_ptr_ptr; | |
268 | ||
269 | if (info_ptr != NULL) | |
270 | { | |
271 | png_info_destroy(png_ptr, info_ptr); | |
272 | ||
273 | #ifdef PNG_USER_MEM_SUPPORTED | |
274 | png_destroy_struct_2((png_voidp)info_ptr, png_ptr->free_fn, | |
275 | png_ptr->mem_ptr); | |
276 | #else | |
277 | png_destroy_struct((png_voidp)info_ptr); | |
278 | #endif | |
279 | *info_ptr_ptr = NULL; | |
280 | } | |
281 | } | |
282 | ||
283 | /* Initialize the info structure. This is now an internal function (0.89) | |
284 | * and applications using it are urged to use png_create_info_struct() | |
285 | * instead. | |
286 | */ | |
0272a10d VZ |
287 | |
288 | void PNGAPI | |
289 | png_info_init_3(png_infopp ptr_ptr, png_size_t png_info_struct_size) | |
290 | { | |
291 | png_infop info_ptr = *ptr_ptr; | |
292 | ||
970f6abe | 293 | png_debug(1, "in png_info_init_3"); |
0272a10d | 294 | |
b61cc19c PC |
295 | if (info_ptr == NULL) |
296 | return; | |
297 | ||
970f6abe | 298 | if (png_sizeof(png_info) > png_info_struct_size) |
b61cc19c PC |
299 | { |
300 | png_destroy_struct(info_ptr); | |
301 | info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO); | |
302 | *ptr_ptr = info_ptr; | |
303 | } | |
0272a10d | 304 | |
b61cc19c | 305 | /* Set everything to 0 */ |
970f6abe | 306 | png_memset(info_ptr, 0, png_sizeof(png_info)); |
0272a10d VZ |
307 | } |
308 | ||
0272a10d VZ |
309 | void PNGAPI |
310 | png_data_freer(png_structp png_ptr, png_infop info_ptr, | |
311 | int freer, png_uint_32 mask) | |
312 | { | |
970f6abe | 313 | png_debug(1, "in png_data_freer"); |
b61cc19c | 314 | |
0272a10d VZ |
315 | if (png_ptr == NULL || info_ptr == NULL) |
316 | return; | |
b61cc19c | 317 | |
970f6abe | 318 | if (freer == PNG_DESTROY_WILL_FREE_DATA) |
0272a10d | 319 | info_ptr->free_me |= mask; |
9c0d9ce3 | 320 | |
970f6abe | 321 | else if (freer == PNG_USER_WILL_FREE_DATA) |
0272a10d | 322 | info_ptr->free_me &= ~mask; |
9c0d9ce3 | 323 | |
0272a10d VZ |
324 | else |
325 | png_warning(png_ptr, | |
b61cc19c | 326 | "Unknown freer parameter in png_data_freer"); |
0272a10d | 327 | } |
0272a10d VZ |
328 | |
329 | void PNGAPI | |
330 | png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask, | |
331 | int num) | |
332 | { | |
970f6abe | 333 | png_debug(1, "in png_free_data"); |
b61cc19c | 334 | |
0272a10d VZ |
335 | if (png_ptr == NULL || info_ptr == NULL) |
336 | return; | |
337 | ||
b61cc19c PC |
338 | #ifdef PNG_TEXT_SUPPORTED |
339 | /* Free text item num or (if num == -1) all text items */ | |
340 | if ((mask & PNG_FREE_TEXT) & info_ptr->free_me) | |
0272a10d | 341 | { |
b61cc19c PC |
342 | if (num != -1) |
343 | { | |
344 | if (info_ptr->text && info_ptr->text[num].key) | |
345 | { | |
346 | png_free(png_ptr, info_ptr->text[num].key); | |
347 | info_ptr->text[num].key = NULL; | |
348 | } | |
349 | } | |
9c0d9ce3 | 350 | |
b61cc19c PC |
351 | else |
352 | { | |
353 | int i; | |
354 | for (i = 0; i < info_ptr->num_text; i++) | |
355 | png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i); | |
356 | png_free(png_ptr, info_ptr->text); | |
357 | info_ptr->text = NULL; | |
358 | info_ptr->num_text=0; | |
359 | } | |
0272a10d | 360 | } |
0272a10d VZ |
361 | #endif |
362 | ||
b61cc19c PC |
363 | #ifdef PNG_tRNS_SUPPORTED |
364 | /* Free any tRNS entry */ | |
365 | if ((mask & PNG_FREE_TRNS) & info_ptr->free_me) | |
366 | { | |
367 | png_free(png_ptr, info_ptr->trans_alpha); | |
368 | info_ptr->trans_alpha = NULL; | |
369 | info_ptr->valid &= ~PNG_INFO_tRNS; | |
370 | } | |
0272a10d VZ |
371 | #endif |
372 | ||
b61cc19c PC |
373 | #ifdef PNG_sCAL_SUPPORTED |
374 | /* Free any sCAL entry */ | |
375 | if ((mask & PNG_FREE_SCAL) & info_ptr->free_me) | |
376 | { | |
b61cc19c PC |
377 | png_free(png_ptr, info_ptr->scal_s_width); |
378 | png_free(png_ptr, info_ptr->scal_s_height); | |
379 | info_ptr->scal_s_width = NULL; | |
380 | info_ptr->scal_s_height = NULL; | |
b61cc19c PC |
381 | info_ptr->valid &= ~PNG_INFO_sCAL; |
382 | } | |
0272a10d VZ |
383 | #endif |
384 | ||
b61cc19c PC |
385 | #ifdef PNG_pCAL_SUPPORTED |
386 | /* Free any pCAL entry */ | |
387 | if ((mask & PNG_FREE_PCAL) & info_ptr->free_me) | |
388 | { | |
389 | png_free(png_ptr, info_ptr->pcal_purpose); | |
390 | png_free(png_ptr, info_ptr->pcal_units); | |
391 | info_ptr->pcal_purpose = NULL; | |
392 | info_ptr->pcal_units = NULL; | |
393 | if (info_ptr->pcal_params != NULL) | |
394 | { | |
395 | int i; | |
396 | for (i = 0; i < (int)info_ptr->pcal_nparams; i++) | |
397 | { | |
398 | png_free(png_ptr, info_ptr->pcal_params[i]); | |
399 | info_ptr->pcal_params[i] = NULL; | |
400 | } | |
401 | png_free(png_ptr, info_ptr->pcal_params); | |
402 | info_ptr->pcal_params = NULL; | |
403 | } | |
404 | info_ptr->valid &= ~PNG_INFO_pCAL; | |
405 | } | |
0272a10d VZ |
406 | #endif |
407 | ||
b61cc19c PC |
408 | #ifdef PNG_iCCP_SUPPORTED |
409 | /* Free any iCCP entry */ | |
410 | if ((mask & PNG_FREE_ICCP) & info_ptr->free_me) | |
411 | { | |
412 | png_free(png_ptr, info_ptr->iccp_name); | |
413 | png_free(png_ptr, info_ptr->iccp_profile); | |
414 | info_ptr->iccp_name = NULL; | |
415 | info_ptr->iccp_profile = NULL; | |
416 | info_ptr->valid &= ~PNG_INFO_iCCP; | |
417 | } | |
0272a10d VZ |
418 | #endif |
419 | ||
b61cc19c PC |
420 | #ifdef PNG_sPLT_SUPPORTED |
421 | /* Free a given sPLT entry, or (if num == -1) all sPLT entries */ | |
422 | if ((mask & PNG_FREE_SPLT) & info_ptr->free_me) | |
0272a10d | 423 | { |
b61cc19c | 424 | if (num != -1) |
0272a10d | 425 | { |
b61cc19c PC |
426 | if (info_ptr->splt_palettes) |
427 | { | |
428 | png_free(png_ptr, info_ptr->splt_palettes[num].name); | |
429 | png_free(png_ptr, info_ptr->splt_palettes[num].entries); | |
430 | info_ptr->splt_palettes[num].name = NULL; | |
431 | info_ptr->splt_palettes[num].entries = NULL; | |
432 | } | |
433 | } | |
9c0d9ce3 | 434 | |
b61cc19c PC |
435 | else |
436 | { | |
437 | if (info_ptr->splt_palettes_num) | |
438 | { | |
439 | int i; | |
440 | for (i = 0; i < (int)info_ptr->splt_palettes_num; i++) | |
441 | png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, i); | |
442 | ||
443 | png_free(png_ptr, info_ptr->splt_palettes); | |
444 | info_ptr->splt_palettes = NULL; | |
445 | info_ptr->splt_palettes_num = 0; | |
446 | } | |
447 | info_ptr->valid &= ~PNG_INFO_sPLT; | |
0272a10d VZ |
448 | } |
449 | } | |
0272a10d VZ |
450 | #endif |
451 | ||
b61cc19c PC |
452 | #ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED |
453 | if (png_ptr->unknown_chunk.data) | |
0272a10d | 454 | { |
b61cc19c PC |
455 | png_free(png_ptr, png_ptr->unknown_chunk.data); |
456 | png_ptr->unknown_chunk.data = NULL; | |
0272a10d | 457 | } |
b61cc19c PC |
458 | |
459 | if ((mask & PNG_FREE_UNKN) & info_ptr->free_me) | |
0272a10d | 460 | { |
b61cc19c PC |
461 | if (num != -1) |
462 | { | |
463 | if (info_ptr->unknown_chunks) | |
464 | { | |
465 | png_free(png_ptr, info_ptr->unknown_chunks[num].data); | |
466 | info_ptr->unknown_chunks[num].data = NULL; | |
467 | } | |
468 | } | |
9c0d9ce3 | 469 | |
b61cc19c PC |
470 | else |
471 | { | |
472 | int i; | |
0272a10d | 473 | |
b61cc19c PC |
474 | if (info_ptr->unknown_chunks_num) |
475 | { | |
9c0d9ce3 | 476 | for (i = 0; i < info_ptr->unknown_chunks_num; i++) |
b61cc19c | 477 | png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, i); |
0272a10d | 478 | |
b61cc19c PC |
479 | png_free(png_ptr, info_ptr->unknown_chunks); |
480 | info_ptr->unknown_chunks = NULL; | |
481 | info_ptr->unknown_chunks_num = 0; | |
482 | } | |
483 | } | |
0272a10d | 484 | } |
0272a10d VZ |
485 | #endif |
486 | ||
b61cc19c PC |
487 | #ifdef PNG_hIST_SUPPORTED |
488 | /* Free any hIST entry */ | |
489 | if ((mask & PNG_FREE_HIST) & info_ptr->free_me) | |
490 | { | |
491 | png_free(png_ptr, info_ptr->hist); | |
492 | info_ptr->hist = NULL; | |
493 | info_ptr->valid &= ~PNG_INFO_hIST; | |
494 | } | |
0272a10d VZ |
495 | #endif |
496 | ||
b61cc19c PC |
497 | /* Free any PLTE entry that was internally allocated */ |
498 | if ((mask & PNG_FREE_PLTE) & info_ptr->free_me) | |
499 | { | |
500 | png_zfree(png_ptr, info_ptr->palette); | |
501 | info_ptr->palette = NULL; | |
502 | info_ptr->valid &= ~PNG_INFO_PLTE; | |
503 | info_ptr->num_palette = 0; | |
504 | } | |
0272a10d | 505 | |
b61cc19c PC |
506 | #ifdef PNG_INFO_IMAGE_SUPPORTED |
507 | /* Free any image bits attached to the info structure */ | |
508 | if ((mask & PNG_FREE_ROWS) & info_ptr->free_me) | |
509 | { | |
510 | if (info_ptr->row_pointers) | |
511 | { | |
512 | int row; | |
513 | for (row = 0; row < (int)info_ptr->height; row++) | |
514 | { | |
515 | png_free(png_ptr, info_ptr->row_pointers[row]); | |
516 | info_ptr->row_pointers[row] = NULL; | |
517 | } | |
518 | png_free(png_ptr, info_ptr->row_pointers); | |
519 | info_ptr->row_pointers = NULL; | |
520 | } | |
521 | info_ptr->valid &= ~PNG_INFO_IDAT; | |
522 | } | |
0272a10d VZ |
523 | #endif |
524 | ||
9c0d9ce3 DS |
525 | if (num != -1) |
526 | mask &= ~PNG_FREE_MUL; | |
527 | ||
528 | info_ptr->free_me &= ~mask; | |
0272a10d VZ |
529 | } |
530 | ||
531 | /* This is an internal routine to free any memory that the info struct is | |
532 | * pointing to before re-using it or freeing the struct itself. Recall | |
533 | * that png_free() checks for NULL pointers for us. | |
534 | */ | |
535 | void /* PRIVATE */ | |
536 | png_info_destroy(png_structp png_ptr, png_infop info_ptr) | |
537 | { | |
970f6abe | 538 | png_debug(1, "in png_info_destroy"); |
0272a10d VZ |
539 | |
540 | png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1); | |
541 | ||
b61cc19c | 542 | #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED |
0272a10d VZ |
543 | if (png_ptr->num_chunk_list) |
544 | { | |
b61cc19c PC |
545 | png_free(png_ptr, png_ptr->chunk_list); |
546 | png_ptr->chunk_list = NULL; | |
547 | png_ptr->num_chunk_list = 0; | |
0272a10d VZ |
548 | } |
549 | #endif | |
550 | ||
551 | png_info_init_3(&info_ptr, png_sizeof(png_info)); | |
552 | } | |
553 | #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ | |
554 | ||
555 | /* This function returns a pointer to the io_ptr associated with the user | |
556 | * functions. The application should free any memory associated with this | |
557 | * pointer before png_write_destroy() or png_read_destroy() are called. | |
558 | */ | |
559 | png_voidp PNGAPI | |
560 | png_get_io_ptr(png_structp png_ptr) | |
561 | { | |
b61cc19c PC |
562 | if (png_ptr == NULL) |
563 | return (NULL); | |
9c0d9ce3 | 564 | |
0272a10d VZ |
565 | return (png_ptr->io_ptr); |
566 | } | |
567 | ||
568 | #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) | |
9c0d9ce3 | 569 | # ifdef PNG_STDIO_SUPPORTED |
0272a10d VZ |
570 | /* Initialize the default input/output functions for the PNG file. If you |
571 | * use your own read or write routines, you can call either png_set_read_fn() | |
572 | * or png_set_write_fn() instead of png_init_io(). If you have defined | |
9c0d9ce3 DS |
573 | * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a |
574 | * function of your own because "FILE *" isn't necessarily available. | |
0272a10d VZ |
575 | */ |
576 | void PNGAPI | |
577 | png_init_io(png_structp png_ptr, png_FILE_p fp) | |
578 | { | |
970f6abe | 579 | png_debug(1, "in png_init_io"); |
b61cc19c PC |
580 | |
581 | if (png_ptr == NULL) | |
582 | return; | |
583 | ||
0272a10d VZ |
584 | png_ptr->io_ptr = (png_voidp)fp; |
585 | } | |
9c0d9ce3 | 586 | # endif |
0272a10d | 587 | |
9c0d9ce3 | 588 | # ifdef PNG_TIME_RFC1123_SUPPORTED |
0272a10d VZ |
589 | /* Convert the supplied time into an RFC 1123 string suitable for use in |
590 | * a "Creation Time" or other text-based time string. | |
591 | */ | |
9c0d9ce3 DS |
592 | png_const_charp PNGAPI |
593 | png_convert_to_rfc1123(png_structp png_ptr, png_const_timep ptime) | |
0272a10d VZ |
594 | { |
595 | static PNG_CONST char short_months[12][4] = | |
596 | {"Jan", "Feb", "Mar", "Apr", "May", "Jun", | |
597 | "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"}; | |
598 | ||
b61cc19c PC |
599 | if (png_ptr == NULL) |
600 | return (NULL); | |
0272a10d | 601 | |
0272a10d | 602 | { |
9c0d9ce3 DS |
603 | size_t pos = 0; |
604 | char number_buf[5]; /* enough for a four digit year */ | |
605 | ||
606 | # define APPEND_STRING(string)\ | |
607 | pos = png_safecat(png_ptr->time_buffer, sizeof png_ptr->time_buffer,\ | |
608 | pos, (string)) | |
609 | # define APPEND_NUMBER(format, value)\ | |
610 | APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value))) | |
611 | # define APPEND(ch)\ | |
612 | if (pos < (sizeof png_ptr->time_buffer)-1)\ | |
613 | png_ptr->time_buffer[pos++] = (ch) | |
614 | ||
615 | APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day % 32); | |
616 | APPEND(' '); | |
617 | APPEND_STRING(short_months[(ptime->month - 1) % 12]); | |
618 | APPEND(' '); | |
619 | APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year); | |
620 | APPEND(' '); | |
621 | APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour % 24); | |
622 | APPEND(':'); | |
623 | APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute % 60); | |
624 | APPEND(':'); | |
625 | APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second % 61); | |
626 | APPEND_STRING(" +0000"); /* This reliably terminates the buffer */ | |
627 | ||
628 | # undef APPEND | |
629 | # undef APPEND_NUMBER | |
630 | # undef APPEND_STRING | |
0272a10d | 631 | } |
9c0d9ce3 DS |
632 | |
633 | return png_ptr->time_buffer; | |
0272a10d | 634 | } |
9c0d9ce3 | 635 | # endif /* PNG_TIME_RFC1123_SUPPORTED */ |
0272a10d VZ |
636 | |
637 | #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ | |
638 | ||
9c0d9ce3 DS |
639 | png_const_charp PNGAPI |
640 | png_get_copyright(png_const_structp png_ptr) | |
0272a10d | 641 | { |
9c0d9ce3 | 642 | PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ |
b61cc19c | 643 | #ifdef PNG_STRING_COPYRIGHT |
9c0d9ce3 | 644 | return PNG_STRING_COPYRIGHT |
b61cc19c | 645 | #else |
9c0d9ce3 DS |
646 | # ifdef __STDC__ |
647 | return PNG_STRING_NEWLINE \ | |
648 | "libpng version 1.5.6 - November 3, 2011" PNG_STRING_NEWLINE \ | |
649 | "Copyright (c) 1998-2011 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \ | |
b61cc19c PC |
650 | "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \ |
651 | "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \ | |
9c0d9ce3 DS |
652 | PNG_STRING_NEWLINE; |
653 | # else | |
654 | return "libpng version 1.5.6 - November 3, 2011\ | |
655 | Copyright (c) 1998-2011 Glenn Randers-Pehrson\ | |
b61cc19c | 656 | Copyright (c) 1996-1997 Andreas Dilger\ |
9c0d9ce3 DS |
657 | Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc."; |
658 | # endif | |
b61cc19c | 659 | #endif |
0272a10d VZ |
660 | } |
661 | ||
662 | /* The following return the library version as a short string in the | |
663 | * format 1.0.0 through 99.99.99zz. To get the version of *.h files | |
664 | * used with your application, print out PNG_LIBPNG_VER_STRING, which | |
665 | * is defined in png.h. | |
666 | * Note: now there is no difference between png_get_libpng_ver() and | |
667 | * png_get_header_ver(). Due to the version_nn_nn_nn typedef guard, | |
668 | * it is guaranteed that png.c uses the correct version of png.h. | |
669 | */ | |
9c0d9ce3 DS |
670 | png_const_charp PNGAPI |
671 | png_get_libpng_ver(png_const_structp png_ptr) | |
0272a10d VZ |
672 | { |
673 | /* Version of *.c files used when building libpng */ | |
9c0d9ce3 | 674 | return png_get_header_ver(png_ptr); |
0272a10d VZ |
675 | } |
676 | ||
9c0d9ce3 DS |
677 | png_const_charp PNGAPI |
678 | png_get_header_ver(png_const_structp png_ptr) | |
0272a10d VZ |
679 | { |
680 | /* Version of *.h files used when building libpng */ | |
9c0d9ce3 DS |
681 | PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ |
682 | return PNG_LIBPNG_VER_STRING; | |
0272a10d VZ |
683 | } |
684 | ||
9c0d9ce3 DS |
685 | png_const_charp PNGAPI |
686 | png_get_header_version(png_const_structp png_ptr) | |
0272a10d VZ |
687 | { |
688 | /* Returns longer string containing both version and date */ | |
9c0d9ce3 | 689 | PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */ |
b61cc19c | 690 | #ifdef __STDC__ |
9c0d9ce3 DS |
691 | return PNG_HEADER_VERSION_STRING |
692 | # ifndef PNG_READ_SUPPORTED | |
0272a10d | 693 | " (NO READ SUPPORT)" |
9c0d9ce3 DS |
694 | # endif |
695 | PNG_STRING_NEWLINE; | |
b61cc19c | 696 | #else |
9c0d9ce3 | 697 | return PNG_HEADER_VERSION_STRING; |
b61cc19c | 698 | #endif |
0272a10d VZ |
699 | } |
700 | ||
0272a10d VZ |
701 | #ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED |
702 | int PNGAPI | |
9c0d9ce3 | 703 | png_handle_as_unknown(png_structp png_ptr, png_const_bytep chunk_name) |
0272a10d | 704 | { |
b61cc19c | 705 | /* Check chunk_name and return "keep" value if it's on the list, else 0 */ |
9c0d9ce3 DS |
706 | png_const_bytep p, p_end; |
707 | ||
708 | if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list <= 0) | |
709 | return PNG_HANDLE_CHUNK_AS_DEFAULT; | |
710 | ||
711 | p_end = png_ptr->chunk_list; | |
712 | p = p_end + png_ptr->num_chunk_list*5; /* beyond end */ | |
713 | ||
714 | /* The code is the fifth byte after each four byte string. Historically this | |
715 | * code was always searched from the end of the list, so it should continue | |
716 | * to do so in case there are duplicated entries. | |
717 | */ | |
718 | do /* num_chunk_list > 0, so at least one */ | |
719 | { | |
720 | p -= 5; | |
0272a10d | 721 | if (!png_memcmp(chunk_name, p, 4)) |
9c0d9ce3 DS |
722 | return p[4]; |
723 | } | |
724 | while (p > p_end); | |
725 | ||
726 | return PNG_HANDLE_CHUNK_AS_DEFAULT; | |
727 | } | |
728 | ||
729 | int /* PRIVATE */ | |
730 | png_chunk_unknown_handling(png_structp png_ptr, png_uint_32 chunk_name) | |
731 | { | |
732 | png_byte chunk_string[5]; | |
733 | ||
734 | PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name); | |
735 | return png_handle_as_unknown(png_ptr, chunk_string); | |
0272a10d VZ |
736 | } |
737 | #endif | |
738 | ||
b61cc19c | 739 | #ifdef PNG_READ_SUPPORTED |
0272a10d VZ |
740 | /* This function, added to libpng-1.0.6g, is untested. */ |
741 | int PNGAPI | |
742 | png_reset_zstream(png_structp png_ptr) | |
743 | { | |
b61cc19c PC |
744 | if (png_ptr == NULL) |
745 | return Z_STREAM_ERROR; | |
9c0d9ce3 | 746 | |
0272a10d VZ |
747 | return (inflateReset(&png_ptr->zstream)); |
748 | } | |
b61cc19c | 749 | #endif /* PNG_READ_SUPPORTED */ |
0272a10d VZ |
750 | |
751 | /* This function was added to libpng-1.0.7 */ | |
752 | png_uint_32 PNGAPI | |
753 | png_access_version_number(void) | |
754 | { | |
755 | /* Version of *.c files used when building libpng */ | |
9c0d9ce3 | 756 | return((png_uint_32)PNG_LIBPNG_VER); |
0272a10d VZ |
757 | } |
758 | ||
759 | ||
0272a10d VZ |
760 | |
761 | #if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) | |
9c0d9ce3 DS |
762 | /* png_convert_size: a PNGAPI but no longer in png.h, so deleted |
763 | * at libpng 1.5.5! | |
764 | */ | |
970f6abe VZ |
765 | |
766 | /* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */ | |
9c0d9ce3 | 767 | # ifdef PNG_CHECK_cHRM_SUPPORTED |
b61cc19c PC |
768 | |
769 | int /* PRIVATE */ | |
970f6abe VZ |
770 | png_check_cHRM_fixed(png_structp png_ptr, |
771 | png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x, | |
772 | png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y, | |
773 | png_fixed_point blue_x, png_fixed_point blue_y) | |
774 | { | |
775 | int ret = 1; | |
776 | unsigned long xy_hi,xy_lo,yx_hi,yx_lo; | |
777 | ||
778 | png_debug(1, "in function png_check_cHRM_fixed"); | |
b61cc19c | 779 | |
970f6abe VZ |
780 | if (png_ptr == NULL) |
781 | return 0; | |
782 | ||
9c0d9ce3 DS |
783 | /* (x,y,z) values are first limited to 0..100000 (PNG_FP_1), the white |
784 | * y must also be greater than 0. To test for the upper limit calculate | |
785 | * (PNG_FP_1-y) - x must be <= to this for z to be >= 0 (and the expression | |
786 | * cannot overflow.) At this point we know x and y are >= 0 and (x+y) is | |
787 | * <= PNG_FP_1. The previous test on PNG_MAX_UINT_31 is removed because it | |
788 | * pointless (and it produces compiler warnings!) | |
789 | */ | |
970f6abe VZ |
790 | if (white_x < 0 || white_y <= 0 || |
791 | red_x < 0 || red_y < 0 || | |
792 | green_x < 0 || green_y < 0 || | |
793 | blue_x < 0 || blue_y < 0) | |
794 | { | |
795 | png_warning(png_ptr, | |
796 | "Ignoring attempt to set negative chromaticity value"); | |
797 | ret = 0; | |
798 | } | |
9c0d9ce3 DS |
799 | /* And (x+y) must be <= PNG_FP_1 (so z is >= 0) */ |
800 | if (white_x > PNG_FP_1 - white_y) | |
970f6abe VZ |
801 | { |
802 | png_warning(png_ptr, "Invalid cHRM white point"); | |
803 | ret = 0; | |
804 | } | |
9c0d9ce3 DS |
805 | |
806 | if (red_x > PNG_FP_1 - red_y) | |
970f6abe VZ |
807 | { |
808 | png_warning(png_ptr, "Invalid cHRM red point"); | |
809 | ret = 0; | |
810 | } | |
9c0d9ce3 DS |
811 | |
812 | if (green_x > PNG_FP_1 - green_y) | |
970f6abe VZ |
813 | { |
814 | png_warning(png_ptr, "Invalid cHRM green point"); | |
815 | ret = 0; | |
816 | } | |
9c0d9ce3 DS |
817 | |
818 | if (blue_x > PNG_FP_1 - blue_y) | |
970f6abe VZ |
819 | { |
820 | png_warning(png_ptr, "Invalid cHRM blue point"); | |
821 | ret = 0; | |
822 | } | |
823 | ||
824 | png_64bit_product(green_x - red_x, blue_y - red_y, &xy_hi, &xy_lo); | |
825 | png_64bit_product(green_y - red_y, blue_x - red_x, &yx_hi, &yx_lo); | |
826 | ||
827 | if (xy_hi == yx_hi && xy_lo == yx_lo) | |
828 | { | |
829 | png_warning(png_ptr, | |
830 | "Ignoring attempt to set cHRM RGB triangle with zero area"); | |
831 | ret = 0; | |
832 | } | |
833 | ||
834 | return ret; | |
835 | } | |
9c0d9ce3 DS |
836 | # endif /* PNG_CHECK_cHRM_SUPPORTED */ |
837 | ||
838 | #ifdef PNG_cHRM_SUPPORTED | |
839 | /* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for | |
840 | * cHRM, as opposed to using chromaticities. These internal APIs return | |
841 | * non-zero on a parameter error. The X, Y and Z values are required to be | |
842 | * positive and less than 1.0. | |
843 | */ | |
844 | int png_xy_from_XYZ(png_xy *xy, png_XYZ XYZ) | |
845 | { | |
846 | png_int_32 d, dwhite, whiteX, whiteY; | |
847 | ||
848 | d = XYZ.redX + XYZ.redY + XYZ.redZ; | |
849 | if (!png_muldiv(&xy->redx, XYZ.redX, PNG_FP_1, d)) return 1; | |
850 | if (!png_muldiv(&xy->redy, XYZ.redY, PNG_FP_1, d)) return 1; | |
851 | dwhite = d; | |
852 | whiteX = XYZ.redX; | |
853 | whiteY = XYZ.redY; | |
854 | ||
855 | d = XYZ.greenX + XYZ.greenY + XYZ.greenZ; | |
856 | if (!png_muldiv(&xy->greenx, XYZ.greenX, PNG_FP_1, d)) return 1; | |
857 | if (!png_muldiv(&xy->greeny, XYZ.greenY, PNG_FP_1, d)) return 1; | |
858 | dwhite += d; | |
859 | whiteX += XYZ.greenX; | |
860 | whiteY += XYZ.greenY; | |
861 | ||
862 | d = XYZ.blueX + XYZ.blueY + XYZ.blueZ; | |
863 | if (!png_muldiv(&xy->bluex, XYZ.blueX, PNG_FP_1, d)) return 1; | |
864 | if (!png_muldiv(&xy->bluey, XYZ.blueY, PNG_FP_1, d)) return 1; | |
865 | dwhite += d; | |
866 | whiteX += XYZ.blueX; | |
867 | whiteY += XYZ.blueY; | |
868 | ||
869 | /* The reference white is simply the same of the end-point (X,Y,Z) vectors, | |
870 | * thus: | |
871 | */ | |
872 | if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1; | |
873 | if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1; | |
874 | ||
875 | return 0; | |
876 | } | |
877 | ||
878 | int png_XYZ_from_xy(png_XYZ *XYZ, png_xy xy) | |
879 | { | |
880 | png_fixed_point red_inverse, green_inverse, blue_scale; | |
881 | png_fixed_point left, right, denominator; | |
882 | ||
883 | /* Check xy and, implicitly, z. Note that wide gamut color spaces typically | |
884 | * have end points with 0 tristimulus values (these are impossible end | |
885 | * points, but they are used to cover the possible colors.) | |
886 | */ | |
887 | if (xy.redx < 0 || xy.redx > PNG_FP_1) return 1; | |
888 | if (xy.redy < 0 || xy.redy > PNG_FP_1-xy.redx) return 1; | |
889 | if (xy.greenx < 0 || xy.greenx > PNG_FP_1) return 1; | |
890 | if (xy.greeny < 0 || xy.greeny > PNG_FP_1-xy.greenx) return 1; | |
891 | if (xy.bluex < 0 || xy.bluex > PNG_FP_1) return 1; | |
892 | if (xy.bluey < 0 || xy.bluey > PNG_FP_1-xy.bluex) return 1; | |
893 | if (xy.whitex < 0 || xy.whitex > PNG_FP_1) return 1; | |
894 | if (xy.whitey < 0 || xy.whitey > PNG_FP_1-xy.whitex) return 1; | |
895 | ||
896 | /* The reverse calculation is more difficult because the original tristimulus | |
897 | * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8 | |
898 | * derived values were recorded in the cHRM chunk; | |
899 | * (red,green,blue,white)x(x,y). This loses one degree of freedom and | |
900 | * therefore an arbitrary ninth value has to be introduced to undo the | |
901 | * original transformations. | |
902 | * | |
903 | * Think of the original end-points as points in (X,Y,Z) space. The | |
904 | * chromaticity values (c) have the property: | |
905 | * | |
906 | * C | |
907 | * c = --------- | |
908 | * X + Y + Z | |
909 | * | |
910 | * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the | |
911 | * three chromaticity values (x,y,z) for each end-point obey the | |
912 | * relationship: | |
913 | * | |
914 | * x + y + z = 1 | |
915 | * | |
916 | * This describes the plane in (X,Y,Z) space that intersects each axis at the | |
917 | * value 1.0; call this the chromaticity plane. Thus the chromaticity | |
918 | * calculation has scaled each end-point so that it is on the x+y+z=1 plane | |
919 | * and chromaticity is the intersection of the vector from the origin to the | |
920 | * (X,Y,Z) value with the chromaticity plane. | |
921 | * | |
922 | * To fully invert the chromaticity calculation we would need the three | |
923 | * end-point scale factors, (red-scale, green-scale, blue-scale), but these | |
924 | * were not recorded. Instead we calculated the reference white (X,Y,Z) and | |
925 | * recorded the chromaticity of this. The reference white (X,Y,Z) would have | |
926 | * given all three of the scale factors since: | |
927 | * | |
928 | * color-C = color-c * color-scale | |
929 | * white-C = red-C + green-C + blue-C | |
930 | * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale | |
931 | * | |
932 | * But cHRM records only white-x and white-y, so we have lost the white scale | |
933 | * factor: | |
934 | * | |
935 | * white-C = white-c*white-scale | |
936 | * | |
937 | * To handle this the inverse transformation makes an arbitrary assumption | |
938 | * about white-scale: | |
939 | * | |
940 | * Assume: white-Y = 1.0 | |
941 | * Hence: white-scale = 1/white-y | |
942 | * Or: red-Y + green-Y + blue-Y = 1.0 | |
943 | * | |
944 | * Notice the last statement of the assumption gives an equation in three of | |
945 | * the nine values we want to calculate. 8 more equations come from the | |
946 | * above routine as summarised at the top above (the chromaticity | |
947 | * calculation): | |
948 | * | |
949 | * Given: color-x = color-X / (color-X + color-Y + color-Z) | |
950 | * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0 | |
951 | * | |
952 | * This is 9 simultaneous equations in the 9 variables "color-C" and can be | |
953 | * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix | |
954 | * determinants, however this is not as bad as it seems because only 28 of | |
955 | * the total of 90 terms in the various matrices are non-zero. Nevertheless | |
956 | * Cramer's rule is notoriously numerically unstable because the determinant | |
957 | * calculation involves the difference of large, but similar, numbers. It is | |
958 | * difficult to be sure that the calculation is stable for real world values | |
959 | * and it is certain that it becomes unstable where the end points are close | |
960 | * together. | |
961 | * | |
962 | * So this code uses the perhaps slighly less optimal but more understandable | |
963 | * and totally obvious approach of calculating color-scale. | |
964 | * | |
965 | * This algorithm depends on the precision in white-scale and that is | |
966 | * (1/white-y), so we can immediately see that as white-y approaches 0 the | |
967 | * accuracy inherent in the cHRM chunk drops off substantially. | |
968 | * | |
969 | * libpng arithmetic: a simple invertion of the above equations | |
970 | * ------------------------------------------------------------ | |
971 | * | |
972 | * white_scale = 1/white-y | |
973 | * white-X = white-x * white-scale | |
974 | * white-Y = 1.0 | |
975 | * white-Z = (1 - white-x - white-y) * white_scale | |
976 | * | |
977 | * white-C = red-C + green-C + blue-C | |
978 | * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale | |
979 | * | |
980 | * This gives us three equations in (red-scale,green-scale,blue-scale) where | |
981 | * all the coefficients are now known: | |
982 | * | |
983 | * red-x*red-scale + green-x*green-scale + blue-x*blue-scale | |
984 | * = white-x/white-y | |
985 | * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1 | |
986 | * red-z*red-scale + green-z*green-scale + blue-z*blue-scale | |
987 | * = (1 - white-x - white-y)/white-y | |
988 | * | |
989 | * In the last equation color-z is (1 - color-x - color-y) so we can add all | |
990 | * three equations together to get an alternative third: | |
991 | * | |
992 | * red-scale + green-scale + blue-scale = 1/white-y = white-scale | |
993 | * | |
994 | * So now we have a Cramer's rule solution where the determinants are just | |
995 | * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve | |
996 | * multiplication of three coefficients so we can't guarantee to avoid | |
997 | * overflow in the libpng fixed point representation. Using Cramer's rule in | |
998 | * floating point is probably a good choice here, but it's not an option for | |
999 | * fixed point. Instead proceed to simplify the first two equations by | |
1000 | * eliminating what is likely to be the largest value, blue-scale: | |
1001 | * | |
1002 | * blue-scale = white-scale - red-scale - green-scale | |
1003 | * | |
1004 | * Hence: | |
1005 | * | |
1006 | * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale = | |
1007 | * (white-x - blue-x)*white-scale | |
1008 | * | |
1009 | * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale = | |
1010 | * 1 - blue-y*white-scale | |
1011 | * | |
1012 | * And now we can trivially solve for (red-scale,green-scale): | |
1013 | * | |
1014 | * green-scale = | |
1015 | * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale | |
1016 | * ----------------------------------------------------------- | |
1017 | * green-x - blue-x | |
1018 | * | |
1019 | * red-scale = | |
1020 | * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale | |
1021 | * --------------------------------------------------------- | |
1022 | * red-y - blue-y | |
1023 | * | |
1024 | * Hence: | |
1025 | * | |
1026 | * red-scale = | |
1027 | * ( (green-x - blue-x) * (white-y - blue-y) - | |
1028 | * (green-y - blue-y) * (white-x - blue-x) ) / white-y | |
1029 | * ------------------------------------------------------------------------- | |
1030 | * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) | |
1031 | * | |
1032 | * green-scale = | |
1033 | * ( (red-y - blue-y) * (white-x - blue-x) - | |
1034 | * (red-x - blue-x) * (white-y - blue-y) ) / white-y | |
1035 | * ------------------------------------------------------------------------- | |
1036 | * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x) | |
1037 | * | |
1038 | * Accuracy: | |
1039 | * The input values have 5 decimal digits of accuracy. The values are all in | |
1040 | * the range 0 < value < 1, so simple products are in the same range but may | |
1041 | * need up to 10 decimal digits to preserve the original precision and avoid | |
1042 | * underflow. Because we are using a 32-bit signed representation we cannot | |
1043 | * match this; the best is a little over 9 decimal digits, less than 10. | |
1044 | * | |
1045 | * The approach used here is to preserve the maximum precision within the | |
1046 | * signed representation. Because the red-scale calculation above uses the | |
1047 | * difference between two products of values that must be in the range -1..+1 | |
1048 | * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The | |
1049 | * factor is irrelevant in the calculation because it is applied to both | |
1050 | * numerator and denominator. | |
1051 | * | |
1052 | * Note that the values of the differences of the products of the | |
1053 | * chromaticities in the above equations tend to be small, for example for | |
1054 | * the sRGB chromaticities they are: | |
1055 | * | |
1056 | * red numerator: -0.04751 | |
1057 | * green numerator: -0.08788 | |
1058 | * denominator: -0.2241 (without white-y multiplication) | |
1059 | * | |
1060 | * The resultant Y coefficients from the chromaticities of some widely used | |
1061 | * color space definitions are (to 15 decimal places): | |
1062 | * | |
1063 | * sRGB | |
1064 | * 0.212639005871510 0.715168678767756 0.072192315360734 | |
1065 | * Kodak ProPhoto | |
1066 | * 0.288071128229293 0.711843217810102 0.000085653960605 | |
1067 | * Adobe RGB | |
1068 | * 0.297344975250536 0.627363566255466 0.075291458493998 | |
1069 | * Adobe Wide Gamut RGB | |
1070 | * 0.258728243040113 0.724682314948566 0.016589442011321 | |
1071 | */ | |
1072 | /* By the argument, above overflow should be impossible here. The return | |
1073 | * value of 2 indicates an internal error to the caller. | |
1074 | */ | |
1075 | if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.redy - xy.bluey, 7)) return 2; | |
1076 | if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.redx - xy.bluex, 7)) return 2; | |
1077 | denominator = left - right; | |
1078 | ||
1079 | /* Now find the red numerator. */ | |
1080 | if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2; | |
1081 | if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.whitex-xy.bluex, 7)) return 2; | |
1082 | ||
1083 | /* Overflow is possible here and it indicates an extreme set of PNG cHRM | |
1084 | * chunk values. This calculation actually returns the reciprocal of the | |
1085 | * scale value because this allows us to delay the multiplication of white-y | |
1086 | * into the denominator, which tends to produce a small number. | |
1087 | */ | |
1088 | if (!png_muldiv(&red_inverse, xy.whitey, denominator, left-right) || | |
1089 | red_inverse <= xy.whitey /* r+g+b scales = white scale */) | |
1090 | return 1; | |
1091 | ||
1092 | /* Similarly for green_inverse: */ | |
1093 | if (!png_muldiv(&left, xy.redy-xy.bluey, xy.whitex-xy.bluex, 7)) return 2; | |
1094 | if (!png_muldiv(&right, xy.redx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2; | |
1095 | if (!png_muldiv(&green_inverse, xy.whitey, denominator, left-right) || | |
1096 | green_inverse <= xy.whitey) | |
1097 | return 1; | |
1098 | ||
1099 | /* And the blue scale, the checks above guarantee this can't overflow but it | |
1100 | * can still produce 0 for extreme cHRM values. | |
1101 | */ | |
1102 | blue_scale = png_reciprocal(xy.whitey) - png_reciprocal(red_inverse) - | |
1103 | png_reciprocal(green_inverse); | |
1104 | if (blue_scale <= 0) return 1; | |
1105 | ||
1106 | ||
1107 | /* And fill in the png_XYZ: */ | |
1108 | if (!png_muldiv(&XYZ->redX, xy.redx, PNG_FP_1, red_inverse)) return 1; | |
1109 | if (!png_muldiv(&XYZ->redY, xy.redy, PNG_FP_1, red_inverse)) return 1; | |
1110 | if (!png_muldiv(&XYZ->redZ, PNG_FP_1 - xy.redx - xy.redy, PNG_FP_1, | |
1111 | red_inverse)) | |
1112 | return 1; | |
1113 | ||
1114 | if (!png_muldiv(&XYZ->greenX, xy.greenx, PNG_FP_1, green_inverse)) return 1; | |
1115 | if (!png_muldiv(&XYZ->greenY, xy.greeny, PNG_FP_1, green_inverse)) return 1; | |
1116 | if (!png_muldiv(&XYZ->greenZ, PNG_FP_1 - xy.greenx - xy.greeny, PNG_FP_1, | |
1117 | green_inverse)) | |
1118 | return 1; | |
1119 | ||
1120 | if (!png_muldiv(&XYZ->blueX, xy.bluex, blue_scale, PNG_FP_1)) return 1; | |
1121 | if (!png_muldiv(&XYZ->blueY, xy.bluey, blue_scale, PNG_FP_1)) return 1; | |
1122 | if (!png_muldiv(&XYZ->blueZ, PNG_FP_1 - xy.bluex - xy.bluey, blue_scale, | |
1123 | PNG_FP_1)) | |
1124 | return 1; | |
1125 | ||
1126 | return 0; /*success*/ | |
1127 | } | |
1128 | ||
1129 | int png_XYZ_from_xy_checked(png_structp png_ptr, png_XYZ *XYZ, png_xy xy) | |
1130 | { | |
1131 | switch (png_XYZ_from_xy(XYZ, xy)) | |
1132 | { | |
1133 | case 0: /* success */ | |
1134 | return 1; | |
1135 | ||
1136 | case 1: | |
1137 | /* The chunk may be technically valid, but we got png_fixed_point | |
1138 | * overflow while trying to get XYZ values out of it. This is | |
1139 | * entirely benign - the cHRM chunk is pretty extreme. | |
1140 | */ | |
1141 | png_warning(png_ptr, | |
1142 | "extreme cHRM chunk cannot be converted to tristimulus values"); | |
1143 | break; | |
1144 | ||
1145 | default: | |
1146 | /* libpng is broken; this should be a warning but if it happens we | |
1147 | * want error reports so for the moment it is an error. | |
1148 | */ | |
1149 | png_error(png_ptr, "internal error in png_XYZ_from_xy"); | |
1150 | break; | |
1151 | } | |
1152 | ||
1153 | /* ERROR RETURN */ | |
1154 | return 0; | |
1155 | } | |
1156 | #endif | |
b61cc19c PC |
1157 | |
1158 | void /* PRIVATE */ | |
1159 | png_check_IHDR(png_structp png_ptr, | |
1160 | png_uint_32 width, png_uint_32 height, int bit_depth, | |
1161 | int color_type, int interlace_type, int compression_type, | |
1162 | int filter_type) | |
1163 | { | |
1164 | int error = 0; | |
1165 | ||
1166 | /* Check for width and height valid values */ | |
1167 | if (width == 0) | |
1168 | { | |
1169 | png_warning(png_ptr, "Image width is zero in IHDR"); | |
1170 | error = 1; | |
1171 | } | |
1172 | ||
1173 | if (height == 0) | |
1174 | { | |
1175 | png_warning(png_ptr, "Image height is zero in IHDR"); | |
1176 | error = 1; | |
1177 | } | |
1178 | ||
9c0d9ce3 DS |
1179 | # ifdef PNG_SET_USER_LIMITS_SUPPORTED |
1180 | if (width > png_ptr->user_width_max) | |
1181 | ||
1182 | # else | |
b61cc19c | 1183 | if (width > PNG_USER_WIDTH_MAX) |
9c0d9ce3 | 1184 | # endif |
b61cc19c PC |
1185 | { |
1186 | png_warning(png_ptr, "Image width exceeds user limit in IHDR"); | |
1187 | error = 1; | |
1188 | } | |
1189 | ||
9c0d9ce3 DS |
1190 | # ifdef PNG_SET_USER_LIMITS_SUPPORTED |
1191 | if (height > png_ptr->user_height_max) | |
1192 | # else | |
b61cc19c | 1193 | if (height > PNG_USER_HEIGHT_MAX) |
9c0d9ce3 | 1194 | # endif |
b61cc19c PC |
1195 | { |
1196 | png_warning(png_ptr, "Image height exceeds user limit in IHDR"); | |
1197 | error = 1; | |
1198 | } | |
1199 | ||
1200 | if (width > PNG_UINT_31_MAX) | |
1201 | { | |
1202 | png_warning(png_ptr, "Invalid image width in IHDR"); | |
1203 | error = 1; | |
1204 | } | |
1205 | ||
9c0d9ce3 | 1206 | if (height > PNG_UINT_31_MAX) |
b61cc19c PC |
1207 | { |
1208 | png_warning(png_ptr, "Invalid image height in IHDR"); | |
1209 | error = 1; | |
1210 | } | |
1211 | ||
9c0d9ce3 | 1212 | if (width > (PNG_UINT_32_MAX |
b61cc19c | 1213 | >> 3) /* 8-byte RGBA pixels */ |
9c0d9ce3 | 1214 | - 48 /* bigrowbuf hack */ |
b61cc19c PC |
1215 | - 1 /* filter byte */ |
1216 | - 7*8 /* rounding of width to multiple of 8 pixels */ | |
1217 | - 8) /* extra max_pixel_depth pad */ | |
1218 | png_warning(png_ptr, "Width is too large for libpng to process pixels"); | |
1219 | ||
1220 | /* Check other values */ | |
1221 | if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 && | |
1222 | bit_depth != 8 && bit_depth != 16) | |
1223 | { | |
1224 | png_warning(png_ptr, "Invalid bit depth in IHDR"); | |
1225 | error = 1; | |
1226 | } | |
1227 | ||
1228 | if (color_type < 0 || color_type == 1 || | |
1229 | color_type == 5 || color_type > 6) | |
1230 | { | |
1231 | png_warning(png_ptr, "Invalid color type in IHDR"); | |
1232 | error = 1; | |
1233 | } | |
1234 | ||
1235 | if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) || | |
1236 | ((color_type == PNG_COLOR_TYPE_RGB || | |
1237 | color_type == PNG_COLOR_TYPE_GRAY_ALPHA || | |
1238 | color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8)) | |
1239 | { | |
1240 | png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR"); | |
1241 | error = 1; | |
1242 | } | |
1243 | ||
1244 | if (interlace_type >= PNG_INTERLACE_LAST) | |
1245 | { | |
1246 | png_warning(png_ptr, "Unknown interlace method in IHDR"); | |
1247 | error = 1; | |
1248 | } | |
1249 | ||
1250 | if (compression_type != PNG_COMPRESSION_TYPE_BASE) | |
1251 | { | |
1252 | png_warning(png_ptr, "Unknown compression method in IHDR"); | |
1253 | error = 1; | |
1254 | } | |
1255 | ||
9c0d9ce3 | 1256 | # ifdef PNG_MNG_FEATURES_SUPPORTED |
b61cc19c PC |
1257 | /* Accept filter_method 64 (intrapixel differencing) only if |
1258 | * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and | |
1259 | * 2. Libpng did not read a PNG signature (this filter_method is only | |
1260 | * used in PNG datastreams that are embedded in MNG datastreams) and | |
1261 | * 3. The application called png_permit_mng_features with a mask that | |
1262 | * included PNG_FLAG_MNG_FILTER_64 and | |
1263 | * 4. The filter_method is 64 and | |
1264 | * 5. The color_type is RGB or RGBA | |
1265 | */ | |
1266 | if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) && | |
1267 | png_ptr->mng_features_permitted) | |
1268 | png_warning(png_ptr, "MNG features are not allowed in a PNG datastream"); | |
1269 | ||
1270 | if (filter_type != PNG_FILTER_TYPE_BASE) | |
1271 | { | |
1272 | if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) && | |
9c0d9ce3 DS |
1273 | (filter_type == PNG_INTRAPIXEL_DIFFERENCING) && |
1274 | ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) && | |
1275 | (color_type == PNG_COLOR_TYPE_RGB || | |
1276 | color_type == PNG_COLOR_TYPE_RGB_ALPHA))) | |
b61cc19c PC |
1277 | { |
1278 | png_warning(png_ptr, "Unknown filter method in IHDR"); | |
1279 | error = 1; | |
1280 | } | |
1281 | ||
1282 | if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) | |
1283 | { | |
1284 | png_warning(png_ptr, "Invalid filter method in IHDR"); | |
1285 | error = 1; | |
1286 | } | |
1287 | } | |
1288 | ||
9c0d9ce3 | 1289 | # else |
b61cc19c PC |
1290 | if (filter_type != PNG_FILTER_TYPE_BASE) |
1291 | { | |
1292 | png_warning(png_ptr, "Unknown filter method in IHDR"); | |
1293 | error = 1; | |
1294 | } | |
9c0d9ce3 | 1295 | # endif |
b61cc19c PC |
1296 | |
1297 | if (error == 1) | |
1298 | png_error(png_ptr, "Invalid IHDR data"); | |
1299 | } | |
9c0d9ce3 DS |
1300 | |
1301 | #if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED) | |
1302 | /* ASCII to fp functions */ | |
1303 | /* Check an ASCII formated floating point value, see the more detailed | |
1304 | * comments in pngpriv.h | |
1305 | */ | |
1306 | /* The following is used internally to preserve the sticky flags */ | |
1307 | #define png_fp_add(state, flags) ((state) |= (flags)) | |
1308 | #define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY)) | |
1309 | ||
1310 | int /* PRIVATE */ | |
1311 | png_check_fp_number(png_const_charp string, png_size_t size, int *statep, | |
1312 | png_size_tp whereami) | |
1313 | { | |
1314 | int state = *statep; | |
1315 | png_size_t i = *whereami; | |
1316 | ||
1317 | while (i < size) | |
1318 | { | |
1319 | int type; | |
1320 | /* First find the type of the next character */ | |
1321 | switch (string[i]) | |
1322 | { | |
1323 | case 43: type = PNG_FP_SAW_SIGN; break; | |
1324 | case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break; | |
1325 | case 46: type = PNG_FP_SAW_DOT; break; | |
1326 | case 48: type = PNG_FP_SAW_DIGIT; break; | |
1327 | case 49: case 50: case 51: case 52: | |
1328 | case 53: case 54: case 55: case 56: | |
1329 | case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break; | |
1330 | case 69: | |
1331 | case 101: type = PNG_FP_SAW_E; break; | |
1332 | default: goto PNG_FP_End; | |
1333 | } | |
1334 | ||
1335 | /* Now deal with this type according to the current | |
1336 | * state, the type is arranged to not overlap the | |
1337 | * bits of the PNG_FP_STATE. | |
1338 | */ | |
1339 | switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY)) | |
1340 | { | |
1341 | case PNG_FP_INTEGER + PNG_FP_SAW_SIGN: | |
1342 | if (state & PNG_FP_SAW_ANY) | |
1343 | goto PNG_FP_End; /* not a part of the number */ | |
1344 | ||
1345 | png_fp_add(state, type); | |
1346 | break; | |
1347 | ||
1348 | case PNG_FP_INTEGER + PNG_FP_SAW_DOT: | |
1349 | /* Ok as trailer, ok as lead of fraction. */ | |
1350 | if (state & PNG_FP_SAW_DOT) /* two dots */ | |
1351 | goto PNG_FP_End; | |
1352 | ||
1353 | else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */ | |
1354 | png_fp_add(state, type); | |
1355 | ||
1356 | else | |
1357 | png_fp_set(state, PNG_FP_FRACTION | type); | |
1358 | ||
1359 | break; | |
1360 | ||
1361 | case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT: | |
1362 | if (state & PNG_FP_SAW_DOT) /* delayed fraction */ | |
1363 | png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT); | |
1364 | ||
1365 | png_fp_add(state, type | PNG_FP_WAS_VALID); | |
1366 | ||
1367 | break; | |
1368 | ||
1369 | case PNG_FP_INTEGER + PNG_FP_SAW_E: | |
1370 | if ((state & PNG_FP_SAW_DIGIT) == 0) | |
1371 | goto PNG_FP_End; | |
1372 | ||
1373 | png_fp_set(state, PNG_FP_EXPONENT); | |
1374 | ||
1375 | break; | |
1376 | ||
1377 | /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN: | |
1378 | goto PNG_FP_End; ** no sign in fraction */ | |
1379 | ||
1380 | /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT: | |
1381 | goto PNG_FP_End; ** Because SAW_DOT is always set */ | |
1382 | ||
1383 | case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT: | |
1384 | png_fp_add(state, type | PNG_FP_WAS_VALID); | |
1385 | break; | |
1386 | ||
1387 | case PNG_FP_FRACTION + PNG_FP_SAW_E: | |
1388 | /* This is correct because the trailing '.' on an | |
1389 | * integer is handled above - so we can only get here | |
1390 | * with the sequence ".E" (with no preceding digits). | |
1391 | */ | |
1392 | if ((state & PNG_FP_SAW_DIGIT) == 0) | |
1393 | goto PNG_FP_End; | |
1394 | ||
1395 | png_fp_set(state, PNG_FP_EXPONENT); | |
1396 | ||
1397 | break; | |
1398 | ||
1399 | case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN: | |
1400 | if (state & PNG_FP_SAW_ANY) | |
1401 | goto PNG_FP_End; /* not a part of the number */ | |
1402 | ||
1403 | png_fp_add(state, PNG_FP_SAW_SIGN); | |
1404 | ||
1405 | break; | |
1406 | ||
1407 | /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT: | |
1408 | goto PNG_FP_End; */ | |
1409 | ||
1410 | case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT: | |
1411 | png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID); | |
1412 | ||
1413 | break; | |
1414 | ||
1415 | /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E: | |
1416 | goto PNG_FP_End; */ | |
1417 | ||
1418 | default: goto PNG_FP_End; /* I.e. break 2 */ | |
1419 | } | |
1420 | ||
1421 | /* The character seems ok, continue. */ | |
1422 | ++i; | |
1423 | } | |
1424 | ||
1425 | PNG_FP_End: | |
1426 | /* Here at the end, update the state and return the correct | |
1427 | * return code. | |
1428 | */ | |
1429 | *statep = state; | |
1430 | *whereami = i; | |
1431 | ||
1432 | return (state & PNG_FP_SAW_DIGIT) != 0; | |
1433 | } | |
1434 | ||
1435 | ||
1436 | /* The same but for a complete string. */ | |
1437 | int | |
1438 | png_check_fp_string(png_const_charp string, png_size_t size) | |
1439 | { | |
1440 | int state=0; | |
1441 | png_size_t char_index=0; | |
1442 | ||
1443 | if (png_check_fp_number(string, size, &state, &char_index) && | |
1444 | (char_index == size || string[char_index] == 0)) | |
1445 | return state /* must be non-zero - see above */; | |
1446 | ||
1447 | return 0; /* i.e. fail */ | |
1448 | } | |
1449 | #endif /* pCAL or sCAL */ | |
1450 | ||
1451 | #ifdef PNG_READ_sCAL_SUPPORTED | |
1452 | # ifdef PNG_FLOATING_POINT_SUPPORTED | |
1453 | /* Utility used below - a simple accurate power of ten from an integral | |
1454 | * exponent. | |
1455 | */ | |
1456 | static double | |
1457 | png_pow10(int power) | |
1458 | { | |
1459 | int recip = 0; | |
1460 | double d = 1; | |
1461 | ||
1462 | /* Handle negative exponent with a reciprocal at the end because | |
1463 | * 10 is exact whereas .1 is inexact in base 2 | |
1464 | */ | |
1465 | if (power < 0) | |
1466 | { | |
1467 | if (power < DBL_MIN_10_EXP) return 0; | |
1468 | recip = 1, power = -power; | |
1469 | } | |
1470 | ||
1471 | if (power > 0) | |
1472 | { | |
1473 | /* Decompose power bitwise. */ | |
1474 | double mult = 10; | |
1475 | do | |
1476 | { | |
1477 | if (power & 1) d *= mult; | |
1478 | mult *= mult; | |
1479 | power >>= 1; | |
1480 | } | |
1481 | while (power > 0); | |
1482 | ||
1483 | if (recip) d = 1/d; | |
1484 | } | |
1485 | /* else power is 0 and d is 1 */ | |
1486 | ||
1487 | return d; | |
1488 | } | |
1489 | ||
1490 | /* Function to format a floating point value in ASCII with a given | |
1491 | * precision. | |
1492 | */ | |
1493 | void /* PRIVATE */ | |
1494 | png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size, | |
1495 | double fp, unsigned int precision) | |
1496 | { | |
1497 | /* We use standard functions from math.h, but not printf because | |
1498 | * that would require stdio. The caller must supply a buffer of | |
1499 | * sufficient size or we will png_error. The tests on size and | |
1500 | * the space in ascii[] consumed are indicated below. | |
1501 | */ | |
1502 | if (precision < 1) | |
1503 | precision = DBL_DIG; | |
1504 | ||
1505 | /* Enforce the limit of the implementation precision too. */ | |
1506 | if (precision > DBL_DIG+1) | |
1507 | precision = DBL_DIG+1; | |
1508 | ||
1509 | /* Basic sanity checks */ | |
1510 | if (size >= precision+5) /* See the requirements below. */ | |
1511 | { | |
1512 | if (fp < 0) | |
1513 | { | |
1514 | fp = -fp; | |
1515 | *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */ | |
1516 | --size; | |
1517 | } | |
1518 | ||
1519 | if (fp >= DBL_MIN && fp <= DBL_MAX) | |
1520 | { | |
1521 | int exp_b10; /* A base 10 exponent */ | |
1522 | double base; /* 10^exp_b10 */ | |
1523 | ||
1524 | /* First extract a base 10 exponent of the number, | |
1525 | * the calculation below rounds down when converting | |
1526 | * from base 2 to base 10 (multiply by log10(2) - | |
1527 | * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to | |
1528 | * be increased. Note that the arithmetic shift | |
1529 | * performs a floor() unlike C arithmetic - using a | |
1530 | * C multiply would break the following for negative | |
1531 | * exponents. | |
1532 | */ | |
1533 | (void)frexp(fp, &exp_b10); /* exponent to base 2 */ | |
1534 | ||
1535 | exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */ | |
1536 | ||
1537 | /* Avoid underflow here. */ | |
1538 | base = png_pow10(exp_b10); /* May underflow */ | |
1539 | ||
1540 | while (base < DBL_MIN || base < fp) | |
1541 | { | |
1542 | /* And this may overflow. */ | |
1543 | double test = png_pow10(exp_b10+1); | |
1544 | ||
1545 | if (test <= DBL_MAX) | |
1546 | ++exp_b10, base = test; | |
1547 | ||
1548 | else | |
1549 | break; | |
1550 | } | |
1551 | ||
1552 | /* Normalize fp and correct exp_b10, after this fp is in the | |
1553 | * range [.1,1) and exp_b10 is both the exponent and the digit | |
1554 | * *before* which the decimal point should be inserted | |
1555 | * (starting with 0 for the first digit). Note that this | |
1556 | * works even if 10^exp_b10 is out of range because of the | |
1557 | * test on DBL_MAX above. | |
1558 | */ | |
1559 | fp /= base; | |
1560 | while (fp >= 1) fp /= 10, ++exp_b10; | |
1561 | ||
1562 | /* Because of the code above fp may, at this point, be | |
1563 | * less than .1, this is ok because the code below can | |
1564 | * handle the leading zeros this generates, so no attempt | |
1565 | * is made to correct that here. | |
1566 | */ | |
1567 | ||
1568 | { | |
1569 | int czero, clead, cdigits; | |
1570 | char exponent[10]; | |
1571 | ||
1572 | /* Allow up to two leading zeros - this will not lengthen | |
1573 | * the number compared to using E-n. | |
1574 | */ | |
1575 | if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */ | |
1576 | { | |
1577 | czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */ | |
1578 | exp_b10 = 0; /* Dot added below before first output. */ | |
1579 | } | |
1580 | else | |
1581 | czero = 0; /* No zeros to add */ | |
1582 | ||
1583 | /* Generate the digit list, stripping trailing zeros and | |
1584 | * inserting a '.' before a digit if the exponent is 0. | |
1585 | */ | |
1586 | clead = czero; /* Count of leading zeros */ | |
1587 | cdigits = 0; /* Count of digits in list. */ | |
1588 | ||
1589 | do | |
1590 | { | |
1591 | double d; | |
1592 | ||
1593 | fp *= 10; | |
1594 | /* Use modf here, not floor and subtract, so that | |
1595 | * the separation is done in one step. At the end | |
1596 | * of the loop don't break the number into parts so | |
1597 | * that the final digit is rounded. | |
1598 | */ | |
1599 | if (cdigits+czero-clead+1 < (int)precision) | |
1600 | fp = modf(fp, &d); | |
1601 | ||
1602 | else | |
1603 | { | |
1604 | d = floor(fp + .5); | |
1605 | ||
1606 | if (d > 9) | |
1607 | { | |
1608 | /* Rounding up to 10, handle that here. */ | |
1609 | if (czero > 0) | |
1610 | { | |
1611 | --czero, d = 1; | |
1612 | if (cdigits == 0) --clead; | |
1613 | } | |
1614 | else | |
1615 | { | |
1616 | while (cdigits > 0 && d > 9) | |
1617 | { | |
1618 | int ch = *--ascii; | |
1619 | ||
1620 | if (exp_b10 != (-1)) | |
1621 | ++exp_b10; | |
1622 | ||
1623 | else if (ch == 46) | |
1624 | { | |
1625 | ch = *--ascii, ++size; | |
1626 | /* Advance exp_b10 to '1', so that the | |
1627 | * decimal point happens after the | |
1628 | * previous digit. | |
1629 | */ | |
1630 | exp_b10 = 1; | |
1631 | } | |
1632 | ||
1633 | --cdigits; | |
1634 | d = ch - 47; /* I.e. 1+(ch-48) */ | |
1635 | } | |
1636 | ||
1637 | /* Did we reach the beginning? If so adjust the | |
1638 | * exponent but take into account the leading | |
1639 | * decimal point. | |
1640 | */ | |
1641 | if (d > 9) /* cdigits == 0 */ | |
1642 | { | |
1643 | if (exp_b10 == (-1)) | |
1644 | { | |
1645 | /* Leading decimal point (plus zeros?), if | |
1646 | * we lose the decimal point here it must | |
1647 | * be reentered below. | |
1648 | */ | |
1649 | int ch = *--ascii; | |
1650 | ||
1651 | if (ch == 46) | |
1652 | ++size, exp_b10 = 1; | |
1653 | ||
1654 | /* Else lost a leading zero, so 'exp_b10' is | |
1655 | * still ok at (-1) | |
1656 | */ | |
1657 | } | |
1658 | else | |
1659 | ++exp_b10; | |
1660 | ||
1661 | /* In all cases we output a '1' */ | |
1662 | d = 1; | |
1663 | } | |
1664 | } | |
1665 | } | |
1666 | fp = 0; /* Guarantees termination below. */ | |
1667 | } | |
1668 | ||
1669 | if (d == 0) | |
1670 | { | |
1671 | ++czero; | |
1672 | if (cdigits == 0) ++clead; | |
1673 | } | |
1674 | else | |
1675 | { | |
1676 | /* Included embedded zeros in the digit count. */ | |
1677 | cdigits += czero - clead; | |
1678 | clead = 0; | |
1679 | ||
1680 | while (czero > 0) | |
1681 | { | |
1682 | /* exp_b10 == (-1) means we just output the decimal | |
1683 | * place - after the DP don't adjust 'exp_b10' any | |
1684 | * more! | |
1685 | */ | |
1686 | if (exp_b10 != (-1)) | |
1687 | { | |
1688 | if (exp_b10 == 0) *ascii++ = 46, --size; | |
1689 | /* PLUS 1: TOTAL 4 */ | |
1690 | --exp_b10; | |
1691 | } | |
1692 | *ascii++ = 48, --czero; | |
1693 | } | |
1694 | ||
1695 | if (exp_b10 != (-1)) | |
1696 | { | |
1697 | if (exp_b10 == 0) *ascii++ = 46, --size; /* counted | |
1698 | above */ | |
1699 | --exp_b10; | |
1700 | } | |
1701 | *ascii++ = (char)(48 + (int)d), ++cdigits; | |
1702 | } | |
1703 | } | |
1704 | while (cdigits+czero-clead < (int)precision && fp > DBL_MIN); | |
1705 | ||
1706 | /* The total output count (max) is now 4+precision */ | |
1707 | ||
1708 | /* Check for an exponent, if we don't need one we are | |
1709 | * done and just need to terminate the string. At | |
1710 | * this point exp_b10==(-1) is effectively if flag - it got | |
1711 | * to '-1' because of the decrement after outputing | |
1712 | * the decimal point above (the exponent required is | |
1713 | * *not* -1!) | |
1714 | */ | |
1715 | if (exp_b10 >= (-1) && exp_b10 <= 2) | |
1716 | { | |
1717 | /* The following only happens if we didn't output the | |
1718 | * leading zeros above for negative exponent, so this | |
1719 | * doest add to the digit requirement. Note that the | |
1720 | * two zeros here can only be output if the two leading | |
1721 | * zeros were *not* output, so this doesn't increase | |
1722 | * the output count. | |
1723 | */ | |
1724 | while (--exp_b10 >= 0) *ascii++ = 48; | |
1725 | ||
1726 | *ascii = 0; | |
1727 | ||
1728 | /* Total buffer requirement (including the '\0') is | |
1729 | * 5+precision - see check at the start. | |
1730 | */ | |
1731 | return; | |
1732 | } | |
1733 | ||
1734 | /* Here if an exponent is required, adjust size for | |
1735 | * the digits we output but did not count. The total | |
1736 | * digit output here so far is at most 1+precision - no | |
1737 | * decimal point and no leading or trailing zeros have | |
1738 | * been output. | |
1739 | */ | |
1740 | size -= cdigits; | |
1741 | ||
1742 | *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision */ | |
1743 | ||
1744 | /* The following use of an unsigned temporary avoids ambiguities in | |
1745 | * the signed arithmetic on exp_b10 and permits GCC at least to do | |
1746 | * better optimization. | |
1747 | */ | |
1748 | { | |
1749 | unsigned int uexp_b10; | |
1750 | ||
1751 | if (exp_b10 < 0) | |
1752 | { | |
1753 | *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */ | |
1754 | uexp_b10 = -exp_b10; | |
1755 | } | |
1756 | ||
1757 | else | |
1758 | uexp_b10 = exp_b10; | |
1759 | ||
1760 | cdigits = 0; | |
1761 | ||
1762 | while (uexp_b10 > 0) | |
1763 | { | |
1764 | exponent[cdigits++] = (char)(48 + uexp_b10 % 10); | |
1765 | uexp_b10 /= 10; | |
1766 | } | |
1767 | } | |
1768 | ||
1769 | /* Need another size check here for the exponent digits, so | |
1770 | * this need not be considered above. | |
1771 | */ | |
1772 | if ((int)size > cdigits) | |
1773 | { | |
1774 | while (cdigits > 0) *ascii++ = exponent[--cdigits]; | |
1775 | ||
1776 | *ascii = 0; | |
1777 | ||
1778 | return; | |
1779 | } | |
1780 | } | |
1781 | } | |
1782 | else if (!(fp >= DBL_MIN)) | |
1783 | { | |
1784 | *ascii++ = 48; /* '0' */ | |
1785 | *ascii = 0; | |
1786 | return; | |
1787 | } | |
1788 | else | |
1789 | { | |
1790 | *ascii++ = 105; /* 'i' */ | |
1791 | *ascii++ = 110; /* 'n' */ | |
1792 | *ascii++ = 102; /* 'f' */ | |
1793 | *ascii = 0; | |
1794 | return; | |
1795 | } | |
1796 | } | |
1797 | ||
1798 | /* Here on buffer too small. */ | |
1799 | png_error(png_ptr, "ASCII conversion buffer too small"); | |
1800 | } | |
1801 | ||
1802 | # endif /* FLOATING_POINT */ | |
1803 | ||
1804 | # ifdef PNG_FIXED_POINT_SUPPORTED | |
1805 | /* Function to format a fixed point value in ASCII. | |
1806 | */ | |
1807 | void /* PRIVATE */ | |
1808 | png_ascii_from_fixed(png_structp png_ptr, png_charp ascii, png_size_t size, | |
1809 | png_fixed_point fp) | |
1810 | { | |
1811 | /* Require space for 10 decimal digits, a decimal point, a minus sign and a | |
1812 | * trailing \0, 13 characters: | |
1813 | */ | |
1814 | if (size > 12) | |
1815 | { | |
1816 | png_uint_32 num; | |
1817 | ||
1818 | /* Avoid overflow here on the minimum integer. */ | |
1819 | if (fp < 0) | |
1820 | *ascii++ = 45, --size, num = -fp; | |
1821 | else | |
1822 | num = fp; | |
1823 | ||
1824 | if (num <= 0x80000000) /* else overflowed */ | |
1825 | { | |
1826 | unsigned int ndigits = 0, first = 16 /* flag value */; | |
1827 | char digits[10]; | |
1828 | ||
1829 | while (num) | |
1830 | { | |
1831 | /* Split the low digit off num: */ | |
1832 | unsigned int tmp = num/10; | |
1833 | num -= tmp*10; | |
1834 | digits[ndigits++] = (char)(48 + num); | |
1835 | /* Record the first non-zero digit, note that this is a number | |
1836 | * starting at 1, it's not actually the array index. | |
1837 | */ | |
1838 | if (first == 16 && num > 0) | |
1839 | first = ndigits; | |
1840 | num = tmp; | |
1841 | } | |
1842 | ||
1843 | if (ndigits > 0) | |
1844 | { | |
1845 | while (ndigits > 5) *ascii++ = digits[--ndigits]; | |
1846 | /* The remaining digits are fractional digits, ndigits is '5' or | |
1847 | * smaller at this point. It is certainly not zero. Check for a | |
1848 | * non-zero fractional digit: | |
1849 | */ | |
1850 | if (first <= 5) | |
1851 | { | |
1852 | unsigned int i; | |
1853 | *ascii++ = 46; /* decimal point */ | |
1854 | /* ndigits may be <5 for small numbers, output leading zeros | |
1855 | * then ndigits digits to first: | |
1856 | */ | |
1857 | i = 5; | |
1858 | while (ndigits < i) *ascii++ = 48, --i; | |
1859 | while (ndigits >= first) *ascii++ = digits[--ndigits]; | |
1860 | /* Don't output the trailing zeros! */ | |
1861 | } | |
1862 | } | |
1863 | else | |
1864 | *ascii++ = 48; | |
1865 | ||
1866 | /* And null terminate the string: */ | |
1867 | *ascii = 0; | |
1868 | return; | |
1869 | } | |
1870 | } | |
1871 | ||
1872 | /* Here on buffer too small. */ | |
1873 | png_error(png_ptr, "ASCII conversion buffer too small"); | |
1874 | } | |
1875 | # endif /* FIXED_POINT */ | |
1876 | #endif /* READ_SCAL */ | |
1877 | ||
1878 | #if defined(PNG_FLOATING_POINT_SUPPORTED) && \ | |
1879 | !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) | |
1880 | png_fixed_point | |
1881 | png_fixed(png_structp png_ptr, double fp, png_const_charp text) | |
1882 | { | |
1883 | double r = floor(100000 * fp + .5); | |
1884 | ||
1885 | if (r > 2147483647. || r < -2147483648.) | |
1886 | png_fixed_error(png_ptr, text); | |
1887 | ||
1888 | return (png_fixed_point)r; | |
1889 | } | |
1890 | #endif | |
1891 | ||
1892 | #if defined(PNG_READ_GAMMA_SUPPORTED) || \ | |
1893 | defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG__READ_pHYs_SUPPORTED) | |
1894 | /* muldiv functions */ | |
1895 | /* This API takes signed arguments and rounds the result to the nearest | |
1896 | * integer (or, for a fixed point number - the standard argument - to | |
1897 | * the nearest .00001). Overflow and divide by zero are signalled in | |
1898 | * the result, a boolean - true on success, false on overflow. | |
1899 | */ | |
1900 | int | |
1901 | png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times, | |
1902 | png_int_32 divisor) | |
1903 | { | |
1904 | /* Return a * times / divisor, rounded. */ | |
1905 | if (divisor != 0) | |
1906 | { | |
1907 | if (a == 0 || times == 0) | |
1908 | { | |
1909 | *res = 0; | |
1910 | return 1; | |
1911 | } | |
1912 | else | |
1913 | { | |
1914 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
1915 | double r = a; | |
1916 | r *= times; | |
1917 | r /= divisor; | |
1918 | r = floor(r+.5); | |
1919 | ||
1920 | /* A png_fixed_point is a 32-bit integer. */ | |
1921 | if (r <= 2147483647. && r >= -2147483648.) | |
1922 | { | |
1923 | *res = (png_fixed_point)r; | |
1924 | return 1; | |
1925 | } | |
1926 | #else | |
1927 | int negative = 0; | |
1928 | png_uint_32 A, T, D; | |
1929 | png_uint_32 s16, s32, s00; | |
1930 | ||
1931 | if (a < 0) | |
1932 | negative = 1, A = -a; | |
1933 | else | |
1934 | A = a; | |
1935 | ||
1936 | if (times < 0) | |
1937 | negative = !negative, T = -times; | |
1938 | else | |
1939 | T = times; | |
1940 | ||
1941 | if (divisor < 0) | |
1942 | negative = !negative, D = -divisor; | |
1943 | else | |
1944 | D = divisor; | |
1945 | ||
1946 | /* Following can't overflow because the arguments only | |
1947 | * have 31 bits each, however the result may be 32 bits. | |
1948 | */ | |
1949 | s16 = (A >> 16) * (T & 0xffff) + | |
1950 | (A & 0xffff) * (T >> 16); | |
1951 | /* Can't overflow because the a*times bit is only 30 | |
1952 | * bits at most. | |
1953 | */ | |
1954 | s32 = (A >> 16) * (T >> 16) + (s16 >> 16); | |
1955 | s00 = (A & 0xffff) * (T & 0xffff); | |
1956 | ||
1957 | s16 = (s16 & 0xffff) << 16; | |
1958 | s00 += s16; | |
1959 | ||
1960 | if (s00 < s16) | |
1961 | ++s32; /* carry */ | |
1962 | ||
1963 | if (s32 < D) /* else overflow */ | |
1964 | { | |
1965 | /* s32.s00 is now the 64-bit product, do a standard | |
1966 | * division, we know that s32 < D, so the maximum | |
1967 | * required shift is 31. | |
1968 | */ | |
1969 | int bitshift = 32; | |
1970 | png_fixed_point result = 0; /* NOTE: signed */ | |
1971 | ||
1972 | while (--bitshift >= 0) | |
1973 | { | |
1974 | png_uint_32 d32, d00; | |
1975 | ||
1976 | if (bitshift > 0) | |
1977 | d32 = D >> (32-bitshift), d00 = D << bitshift; | |
1978 | ||
1979 | else | |
1980 | d32 = 0, d00 = D; | |
1981 | ||
1982 | if (s32 > d32) | |
1983 | { | |
1984 | if (s00 < d00) --s32; /* carry */ | |
1985 | s32 -= d32, s00 -= d00, result += 1<<bitshift; | |
1986 | } | |
1987 | ||
1988 | else | |
1989 | if (s32 == d32 && s00 >= d00) | |
1990 | s32 = 0, s00 -= d00, result += 1<<bitshift; | |
1991 | } | |
1992 | ||
1993 | /* Handle the rounding. */ | |
1994 | if (s00 >= (D >> 1)) | |
1995 | ++result; | |
1996 | ||
1997 | if (negative) | |
1998 | result = -result; | |
1999 | ||
2000 | /* Check for overflow. */ | |
2001 | if ((negative && result <= 0) || (!negative && result >= 0)) | |
2002 | { | |
2003 | *res = result; | |
2004 | return 1; | |
2005 | } | |
2006 | } | |
2007 | #endif | |
2008 | } | |
2009 | } | |
2010 | ||
2011 | return 0; | |
2012 | } | |
2013 | #endif /* READ_GAMMA || INCH_CONVERSIONS */ | |
2014 | ||
2015 | #if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED) | |
2016 | /* The following is for when the caller doesn't much care about the | |
2017 | * result. | |
2018 | */ | |
2019 | png_fixed_point | |
2020 | png_muldiv_warn(png_structp png_ptr, png_fixed_point a, png_int_32 times, | |
2021 | png_int_32 divisor) | |
2022 | { | |
2023 | png_fixed_point result; | |
2024 | ||
2025 | if (png_muldiv(&result, a, times, divisor)) | |
2026 | return result; | |
2027 | ||
2028 | png_warning(png_ptr, "fixed point overflow ignored"); | |
2029 | return 0; | |
2030 | } | |
2031 | #endif | |
2032 | ||
2033 | #ifdef PNG_READ_GAMMA_SUPPORTED /* more fixed point functions for gammma */ | |
2034 | /* Calculate a reciprocal, return 0 on div-by-zero or overflow. */ | |
2035 | png_fixed_point | |
2036 | png_reciprocal(png_fixed_point a) | |
2037 | { | |
2038 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
2039 | double r = floor(1E10/a+.5); | |
2040 | ||
2041 | if (r <= 2147483647. && r >= -2147483648.) | |
2042 | return (png_fixed_point)r; | |
2043 | #else | |
2044 | png_fixed_point res; | |
2045 | ||
2046 | if (png_muldiv(&res, 100000, 100000, a)) | |
2047 | return res; | |
2048 | #endif | |
2049 | ||
2050 | return 0; /* error/overflow */ | |
2051 | } | |
2052 | ||
2053 | /* A local convenience routine. */ | |
2054 | static png_fixed_point | |
2055 | png_product2(png_fixed_point a, png_fixed_point b) | |
2056 | { | |
2057 | /* The required result is 1/a * 1/b; the following preserves accuracy. */ | |
2058 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
2059 | double r = a * 1E-5; | |
2060 | r *= b; | |
2061 | r = floor(r+.5); | |
2062 | ||
2063 | if (r <= 2147483647. && r >= -2147483648.) | |
2064 | return (png_fixed_point)r; | |
2065 | #else | |
2066 | png_fixed_point res; | |
2067 | ||
2068 | if (png_muldiv(&res, a, b, 100000)) | |
2069 | return res; | |
2070 | #endif | |
2071 | ||
2072 | return 0; /* overflow */ | |
2073 | } | |
2074 | ||
2075 | /* The inverse of the above. */ | |
2076 | png_fixed_point | |
2077 | png_reciprocal2(png_fixed_point a, png_fixed_point b) | |
2078 | { | |
2079 | /* The required result is 1/a * 1/b; the following preserves accuracy. */ | |
2080 | #ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
2081 | double r = 1E15/a; | |
2082 | r /= b; | |
2083 | r = floor(r+.5); | |
2084 | ||
2085 | if (r <= 2147483647. && r >= -2147483648.) | |
2086 | return (png_fixed_point)r; | |
2087 | #else | |
2088 | /* This may overflow because the range of png_fixed_point isn't symmetric, | |
2089 | * but this API is only used for the product of file and screen gamma so it | |
2090 | * doesn't matter that the smallest number it can produce is 1/21474, not | |
2091 | * 1/100000 | |
2092 | */ | |
2093 | png_fixed_point res = png_product2(a, b); | |
2094 | ||
2095 | if (res != 0) | |
2096 | return png_reciprocal(res); | |
2097 | #endif | |
2098 | ||
2099 | return 0; /* overflow */ | |
2100 | } | |
2101 | #endif /* READ_GAMMA */ | |
2102 | ||
2103 | #ifdef PNG_CHECK_cHRM_SUPPORTED | |
2104 | /* Added at libpng version 1.2.34 (Dec 8, 2008) and 1.4.0 (Jan 2, | |
2105 | * 2010: moved from pngset.c) */ | |
2106 | /* | |
2107 | * Multiply two 32-bit numbers, V1 and V2, using 32-bit | |
2108 | * arithmetic, to produce a 64-bit result in the HI/LO words. | |
2109 | * | |
2110 | * A B | |
2111 | * x C D | |
2112 | * ------ | |
2113 | * AD || BD | |
2114 | * AC || CB || 0 | |
2115 | * | |
2116 | * where A and B are the high and low 16-bit words of V1, | |
2117 | * C and D are the 16-bit words of V2, AD is the product of | |
2118 | * A and D, and X || Y is (X << 16) + Y. | |
2119 | */ | |
2120 | ||
2121 | void /* PRIVATE */ | |
2122 | png_64bit_product (long v1, long v2, unsigned long *hi_product, | |
2123 | unsigned long *lo_product) | |
2124 | { | |
2125 | int a, b, c, d; | |
2126 | long lo, hi, x, y; | |
2127 | ||
2128 | a = (v1 >> 16) & 0xffff; | |
2129 | b = v1 & 0xffff; | |
2130 | c = (v2 >> 16) & 0xffff; | |
2131 | d = v2 & 0xffff; | |
2132 | ||
2133 | lo = b * d; /* BD */ | |
2134 | x = a * d + c * b; /* AD + CB */ | |
2135 | y = ((lo >> 16) & 0xffff) + x; | |
2136 | ||
2137 | lo = (lo & 0xffff) | ((y & 0xffff) << 16); | |
2138 | hi = (y >> 16) & 0xffff; | |
2139 | ||
2140 | hi += a * c; /* AC */ | |
2141 | ||
2142 | *hi_product = (unsigned long)hi; | |
2143 | *lo_product = (unsigned long)lo; | |
2144 | } | |
2145 | #endif /* CHECK_cHRM */ | |
2146 | ||
2147 | #ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */ | |
2148 | #ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
2149 | /* Fixed point gamma. | |
2150 | * | |
2151 | * To calculate gamma this code implements fast log() and exp() calls using only | |
2152 | * fixed point arithmetic. This code has sufficient precision for either 8-bit | |
2153 | * or 16-bit sample values. | |
2154 | * | |
2155 | * The tables used here were calculated using simple 'bc' programs, but C double | |
2156 | * precision floating point arithmetic would work fine. The programs are given | |
2157 | * at the head of each table. | |
2158 | * | |
2159 | * 8-bit log table | |
2160 | * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to | |
2161 | * 255, so it's the base 2 logarithm of a normalized 8-bit floating point | |
2162 | * mantissa. The numbers are 32-bit fractions. | |
2163 | */ | |
2164 | static png_uint_32 | |
2165 | png_8bit_l2[128] = | |
2166 | { | |
2167 | # if PNG_DO_BC | |
2168 | for (i=128;i<256;++i) { .5 - l(i/255)/l(2)*65536*65536; } | |
2169 | # endif | |
2170 | 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U, | |
2171 | 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U, | |
2172 | 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U, | |
2173 | 3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U, | |
2174 | 3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U, | |
2175 | 2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U, | |
2176 | 2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U, | |
2177 | 2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U, | |
2178 | 2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U, | |
2179 | 2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U, | |
2180 | 1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U, | |
2181 | 1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U, | |
2182 | 1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U, | |
2183 | 1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U, | |
2184 | 1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U, | |
2185 | 971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U, | |
2186 | 803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U, | |
2187 | 639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U, | |
2188 | 479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U, | |
2189 | 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U, | |
2190 | 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U, | |
2191 | 24347096U, 0U | |
2192 | #if 0 | |
2193 | /* The following are the values for 16-bit tables - these work fine for the | |
2194 | * 8-bit conversions but produce very slightly larger errors in the 16-bit | |
2195 | * log (about 1.2 as opposed to 0.7 absolute error in the final value). To | |
2196 | * use these all the shifts below must be adjusted appropriately. | |
2197 | */ | |
2198 | 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054, | |
2199 | 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803, | |
2200 | 50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068, | |
2201 | 43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782, | |
2202 | 37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887, | |
2203 | 31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339, | |
2204 | 25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098, | |
2205 | 20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132, | |
2206 | 15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415, | |
2207 | 10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523, | |
2208 | 6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495, | |
2209 | 1119, 744, 372 | |
2210 | #endif | |
2211 | }; | |
2212 | ||
2213 | PNG_STATIC png_int_32 | |
2214 | png_log8bit(unsigned int x) | |
2215 | { | |
2216 | unsigned int lg2 = 0; | |
2217 | /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log, | |
2218 | * because the log is actually negate that means adding 1. The final | |
2219 | * returned value thus has the range 0 (for 255 input) to 7.994 (for 1 | |
2220 | * input), return 7.99998 for the overflow (log 0) case - so the result is | |
2221 | * always at most 19 bits. | |
2222 | */ | |
2223 | if ((x &= 0xff) == 0) | |
2224 | return 0xffffffff; | |
2225 | ||
2226 | if ((x & 0xf0) == 0) | |
2227 | lg2 = 4, x <<= 4; | |
2228 | ||
2229 | if ((x & 0xc0) == 0) | |
2230 | lg2 += 2, x <<= 2; | |
2231 | ||
2232 | if ((x & 0x80) == 0) | |
2233 | lg2 += 1, x <<= 1; | |
2234 | ||
2235 | /* result is at most 19 bits, so this cast is safe: */ | |
2236 | return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16)); | |
2237 | } | |
2238 | ||
2239 | /* The above gives exact (to 16 binary places) log2 values for 8-bit images, | |
2240 | * for 16-bit images we use the most significant 8 bits of the 16-bit value to | |
2241 | * get an approximation then multiply the approximation by a correction factor | |
2242 | * determined by the remaining up to 8 bits. This requires an additional step | |
2243 | * in the 16-bit case. | |
2244 | * | |
2245 | * We want log2(value/65535), we have log2(v'/255), where: | |
2246 | * | |
2247 | * value = v' * 256 + v'' | |
2248 | * = v' * f | |
2249 | * | |
2250 | * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128 | |
2251 | * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less | |
2252 | * than 258. The final factor also needs to correct for the fact that our 8-bit | |
2253 | * value is scaled by 255, whereas the 16-bit values must be scaled by 65535. | |
2254 | * | |
2255 | * This gives a final formula using a calculated value 'x' which is value/v' and | |
2256 | * scaling by 65536 to match the above table: | |
2257 | * | |
2258 | * log2(x/257) * 65536 | |
2259 | * | |
2260 | * Since these numbers are so close to '1' we can use simple linear | |
2261 | * interpolation between the two end values 256/257 (result -368.61) and 258/257 | |
2262 | * (result 367.179). The values used below are scaled by a further 64 to give | |
2263 | * 16-bit precision in the interpolation: | |
2264 | * | |
2265 | * Start (256): -23591 | |
2266 | * Zero (257): 0 | |
2267 | * End (258): 23499 | |
2268 | */ | |
2269 | PNG_STATIC png_int_32 | |
2270 | png_log16bit(png_uint_32 x) | |
2271 | { | |
2272 | unsigned int lg2 = 0; | |
2273 | ||
2274 | /* As above, but now the input has 16 bits. */ | |
2275 | if ((x &= 0xffff) == 0) | |
2276 | return 0xffffffff; | |
2277 | ||
2278 | if ((x & 0xff00) == 0) | |
2279 | lg2 = 8, x <<= 8; | |
2280 | ||
2281 | if ((x & 0xf000) == 0) | |
2282 | lg2 += 4, x <<= 4; | |
2283 | ||
2284 | if ((x & 0xc000) == 0) | |
2285 | lg2 += 2, x <<= 2; | |
2286 | ||
2287 | if ((x & 0x8000) == 0) | |
2288 | lg2 += 1, x <<= 1; | |
2289 | ||
2290 | /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional | |
2291 | * value. | |
2292 | */ | |
2293 | lg2 <<= 28; | |
2294 | lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4; | |
2295 | ||
2296 | /* Now we need to interpolate the factor, this requires a division by the top | |
2297 | * 8 bits. Do this with maximum precision. | |
2298 | */ | |
2299 | x = ((x << 16) + (x >> 9)) / (x >> 8); | |
2300 | ||
2301 | /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24, | |
2302 | * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly | |
2303 | * 16 bits to interpolate to get the low bits of the result. Round the | |
2304 | * answer. Note that the end point values are scaled by 64 to retain overall | |
2305 | * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust | |
2306 | * the overall scaling by 6-12. Round at every step. | |
2307 | */ | |
2308 | x -= 1U << 24; | |
2309 | ||
2310 | if (x <= 65536U) /* <= '257' */ | |
2311 | lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12); | |
2312 | ||
2313 | else | |
2314 | lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12); | |
2315 | ||
2316 | /* Safe, because the result can't have more than 20 bits: */ | |
2317 | return (png_int_32)((lg2 + 2048) >> 12); | |
2318 | } | |
2319 | ||
2320 | /* The 'exp()' case must invert the above, taking a 20-bit fixed point | |
2321 | * logarithmic value and returning a 16 or 8-bit number as appropriate. In | |
2322 | * each case only the low 16 bits are relevant - the fraction - since the | |
2323 | * integer bits (the top 4) simply determine a shift. | |
2324 | * | |
2325 | * The worst case is the 16-bit distinction between 65535 and 65534, this | |
2326 | * requires perhaps spurious accuracty in the decoding of the logarithm to | |
2327 | * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance | |
2328 | * of getting this accuracy in practice. | |
2329 | * | |
2330 | * To deal with this the following exp() function works out the exponent of the | |
2331 | * frational part of the logarithm by using an accurate 32-bit value from the | |
2332 | * top four fractional bits then multiplying in the remaining bits. | |
2333 | */ | |
2334 | static png_uint_32 | |
2335 | png_32bit_exp[16] = | |
2336 | { | |
2337 | # if PNG_DO_BC | |
2338 | for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; } | |
2339 | # endif | |
2340 | /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */ | |
2341 | 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U, | |
2342 | 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U, | |
2343 | 2553802834U, 2445529972U, 2341847524U, 2242560872U | |
2344 | }; | |
2345 | ||
2346 | /* Adjustment table; provided to explain the numbers in the code below. */ | |
2347 | #if PNG_DO_BC | |
2348 | for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"} | |
2349 | 11 44937.64284865548751208448 | |
2350 | 10 45180.98734845585101160448 | |
2351 | 9 45303.31936980687359311872 | |
2352 | 8 45364.65110595323018870784 | |
2353 | 7 45395.35850361789624614912 | |
2354 | 6 45410.72259715102037508096 | |
2355 | 5 45418.40724413220722311168 | |
2356 | 4 45422.25021786898173001728 | |
2357 | 3 45424.17186732298419044352 | |
2358 | 2 45425.13273269940811464704 | |
2359 | 1 45425.61317555035558641664 | |
2360 | 0 45425.85339951654943850496 | |
2361 | #endif | |
2362 | ||
2363 | PNG_STATIC png_uint_32 | |
2364 | png_exp(png_fixed_point x) | |
2365 | { | |
2366 | if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */ | |
2367 | { | |
2368 | /* Obtain a 4-bit approximation */ | |
2369 | png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf]; | |
2370 | ||
2371 | /* Incorporate the low 12 bits - these decrease the returned value by | |
2372 | * multiplying by a number less than 1 if the bit is set. The multiplier | |
2373 | * is determined by the above table and the shift. Notice that the values | |
2374 | * converge on 45426 and this is used to allow linear interpolation of the | |
2375 | * low bits. | |
2376 | */ | |
2377 | if (x & 0x800) | |
2378 | e -= (((e >> 16) * 44938U) + 16U) >> 5; | |
2379 | ||
2380 | if (x & 0x400) | |
2381 | e -= (((e >> 16) * 45181U) + 32U) >> 6; | |
2382 | ||
2383 | if (x & 0x200) | |
2384 | e -= (((e >> 16) * 45303U) + 64U) >> 7; | |
2385 | ||
2386 | if (x & 0x100) | |
2387 | e -= (((e >> 16) * 45365U) + 128U) >> 8; | |
2388 | ||
2389 | if (x & 0x080) | |
2390 | e -= (((e >> 16) * 45395U) + 256U) >> 9; | |
2391 | ||
2392 | if (x & 0x040) | |
2393 | e -= (((e >> 16) * 45410U) + 512U) >> 10; | |
2394 | ||
2395 | /* And handle the low 6 bits in a single block. */ | |
2396 | e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9; | |
2397 | ||
2398 | /* Handle the upper bits of x. */ | |
2399 | e >>= x >> 16; | |
2400 | return e; | |
2401 | } | |
2402 | ||
2403 | /* Check for overflow */ | |
2404 | if (x <= 0) | |
2405 | return png_32bit_exp[0]; | |
2406 | ||
2407 | /* Else underflow */ | |
2408 | return 0; | |
2409 | } | |
2410 | ||
2411 | PNG_STATIC png_byte | |
2412 | png_exp8bit(png_fixed_point lg2) | |
2413 | { | |
2414 | /* Get a 32-bit value: */ | |
2415 | png_uint_32 x = png_exp(lg2); | |
2416 | ||
2417 | /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the | |
2418 | * second, rounding, step can't overflow because of the first, subtraction, | |
2419 | * step. | |
2420 | */ | |
2421 | x -= x >> 8; | |
2422 | return (png_byte)((x + 0x7fffffU) >> 24); | |
2423 | } | |
2424 | ||
2425 | PNG_STATIC png_uint_16 | |
2426 | png_exp16bit(png_fixed_point lg2) | |
2427 | { | |
2428 | /* Get a 32-bit value: */ | |
2429 | png_uint_32 x = png_exp(lg2); | |
2430 | ||
2431 | /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */ | |
2432 | x -= x >> 16; | |
2433 | return (png_uint_16)((x + 32767U) >> 16); | |
2434 | } | |
2435 | #endif /* FLOATING_ARITHMETIC */ | |
2436 | ||
2437 | png_byte | |
2438 | png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val) | |
2439 | { | |
2440 | if (value > 0 && value < 255) | |
2441 | { | |
2442 | # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
2443 | double r = floor(255*pow(value/255.,gamma_val*.00001)+.5); | |
2444 | return (png_byte)r; | |
2445 | # else | |
2446 | png_int_32 lg2 = png_log8bit(value); | |
2447 | png_fixed_point res; | |
2448 | ||
2449 | if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1)) | |
2450 | return png_exp8bit(res); | |
2451 | ||
2452 | /* Overflow. */ | |
2453 | value = 0; | |
2454 | # endif | |
2455 | } | |
2456 | ||
2457 | return (png_byte)value; | |
2458 | } | |
2459 | ||
2460 | png_uint_16 | |
2461 | png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val) | |
2462 | { | |
2463 | if (value > 0 && value < 65535) | |
2464 | { | |
2465 | # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
2466 | double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5); | |
2467 | return (png_uint_16)r; | |
2468 | # else | |
2469 | png_int_32 lg2 = png_log16bit(value); | |
2470 | png_fixed_point res; | |
2471 | ||
2472 | if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1)) | |
2473 | return png_exp16bit(res); | |
2474 | ||
2475 | /* Overflow. */ | |
2476 | value = 0; | |
2477 | # endif | |
2478 | } | |
2479 | ||
2480 | return (png_uint_16)value; | |
2481 | } | |
2482 | ||
2483 | /* This does the right thing based on the bit_depth field of the | |
2484 | * png_struct, interpreting values as 8-bit or 16-bit. While the result | |
2485 | * is nominally a 16-bit value if bit depth is 8 then the result is | |
2486 | * 8-bit (as are the arguments.) | |
2487 | */ | |
2488 | png_uint_16 /* PRIVATE */ | |
2489 | png_gamma_correct(png_structp png_ptr, unsigned int value, | |
2490 | png_fixed_point gamma_val) | |
2491 | { | |
2492 | if (png_ptr->bit_depth == 8) | |
2493 | return png_gamma_8bit_correct(value, gamma_val); | |
2494 | ||
2495 | else | |
2496 | return png_gamma_16bit_correct(value, gamma_val); | |
2497 | } | |
2498 | ||
2499 | /* This is the shared test on whether a gamma value is 'significant' - whether | |
2500 | * it is worth doing gamma correction. | |
2501 | */ | |
2502 | int /* PRIVATE */ | |
2503 | png_gamma_significant(png_fixed_point gamma_val) | |
2504 | { | |
2505 | return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED || | |
2506 | gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED; | |
2507 | } | |
2508 | ||
2509 | /* Internal function to build a single 16-bit table - the table consists of | |
2510 | * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount | |
2511 | * to shift the input values right (or 16-number_of_signifiant_bits). | |
2512 | * | |
2513 | * The caller is responsible for ensuring that the table gets cleaned up on | |
2514 | * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument | |
2515 | * should be somewhere that will be cleaned. | |
2516 | */ | |
2517 | static void | |
2518 | png_build_16bit_table(png_structp png_ptr, png_uint_16pp *ptable, | |
2519 | PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val) | |
2520 | { | |
2521 | /* Various values derived from 'shift': */ | |
2522 | PNG_CONST unsigned int num = 1U << (8U - shift); | |
2523 | PNG_CONST unsigned int max = (1U << (16U - shift))-1U; | |
2524 | PNG_CONST unsigned int max_by_2 = 1U << (15U-shift); | |
2525 | unsigned int i; | |
2526 | ||
2527 | png_uint_16pp table = *ptable = | |
2528 | (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p)); | |
2529 | ||
2530 | for (i = 0; i < num; i++) | |
2531 | { | |
2532 | png_uint_16p sub_table = table[i] = | |
2533 | (png_uint_16p)png_malloc(png_ptr, 256 * png_sizeof(png_uint_16)); | |
2534 | ||
2535 | /* The 'threshold' test is repeated here because it can arise for one of | |
2536 | * the 16-bit tables even if the others don't hit it. | |
2537 | */ | |
2538 | if (png_gamma_significant(gamma_val)) | |
2539 | { | |
2540 | /* The old code would overflow at the end and this would cause the | |
2541 | * 'pow' function to return a result >1, resulting in an | |
2542 | * arithmetic error. This code follows the spec exactly; ig is | |
2543 | * the recovered input sample, it always has 8-16 bits. | |
2544 | * | |
2545 | * We want input * 65535/max, rounded, the arithmetic fits in 32 | |
2546 | * bits (unsigned) so long as max <= 32767. | |
2547 | */ | |
2548 | unsigned int j; | |
2549 | for (j = 0; j < 256; j++) | |
2550 | { | |
2551 | png_uint_32 ig = (j << (8-shift)) + i; | |
2552 | # ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED | |
2553 | /* Inline the 'max' scaling operation: */ | |
2554 | double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5); | |
2555 | sub_table[j] = (png_uint_16)d; | |
2556 | # else | |
2557 | if (shift) | |
2558 | ig = (ig * 65535U + max_by_2)/max; | |
2559 | ||
2560 | sub_table[j] = png_gamma_16bit_correct(ig, gamma_val); | |
2561 | # endif | |
2562 | } | |
2563 | } | |
2564 | else | |
2565 | { | |
2566 | /* We must still build a table, but do it the fast way. */ | |
2567 | unsigned int j; | |
2568 | ||
2569 | for (j = 0; j < 256; j++) | |
2570 | { | |
2571 | png_uint_32 ig = (j << (8-shift)) + i; | |
2572 | ||
2573 | if (shift) | |
2574 | ig = (ig * 65535U + max_by_2)/max; | |
2575 | ||
2576 | sub_table[j] = (png_uint_16)ig; | |
2577 | } | |
2578 | } | |
2579 | } | |
2580 | } | |
2581 | ||
2582 | /* NOTE: this function expects the *inverse* of the overall gamma transformation | |
2583 | * required. | |
2584 | */ | |
2585 | static void | |
2586 | png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable, | |
2587 | PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val) | |
2588 | { | |
2589 | PNG_CONST unsigned int num = 1U << (8U - shift); | |
2590 | PNG_CONST unsigned int max = (1U << (16U - shift))-1U; | |
2591 | unsigned int i; | |
2592 | png_uint_32 last; | |
2593 | ||
2594 | png_uint_16pp table = *ptable = | |
2595 | (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p)); | |
2596 | ||
2597 | /* 'num' is the number of tables and also the number of low bits of low | |
2598 | * bits of the input 16-bit value used to select a table. Each table is | |
2599 | * itself index by the high 8 bits of the value. | |
2600 | */ | |
2601 | for (i = 0; i < num; i++) | |
2602 | table[i] = (png_uint_16p)png_malloc(png_ptr, | |
2603 | 256 * png_sizeof(png_uint_16)); | |
2604 | ||
2605 | /* 'gamma_val' is set to the reciprocal of the value calculated above, so | |
2606 | * pow(out,g) is an *input* value. 'last' is the last input value set. | |
2607 | * | |
2608 | * In the loop 'i' is used to find output values. Since the output is | |
2609 | * 8-bit there are only 256 possible values. The tables are set up to | |
2610 | * select the closest possible output value for each input by finding | |
2611 | * the input value at the boundary between each pair of output values | |
2612 | * and filling the table up to that boundary with the lower output | |
2613 | * value. | |
2614 | * | |
2615 | * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit | |
2616 | * values the code below uses a 16-bit value in i; the values start at | |
2617 | * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last | |
2618 | * entries are filled with 255). Start i at 128 and fill all 'last' | |
2619 | * table entries <= 'max' | |
2620 | */ | |
2621 | last = 0; | |
2622 | for (i = 0; i < 255; ++i) /* 8-bit output value */ | |
2623 | { | |
2624 | /* Find the corresponding maximum input value */ | |
2625 | png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */ | |
2626 | ||
2627 | /* Find the boundary value in 16 bits: */ | |
2628 | png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val); | |
2629 | ||
2630 | /* Adjust (round) to (16-shift) bits: */ | |
2631 | bound = (bound * max + 32768U)/65535U + 1U; | |
2632 | ||
2633 | while (last < bound) | |
2634 | { | |
2635 | table[last & (0xffU >> shift)][last >> (8U - shift)] = out; | |
2636 | last++; | |
2637 | } | |
2638 | } | |
2639 | ||
2640 | /* And fill in the final entries. */ | |
2641 | while (last < (num << 8)) | |
2642 | { | |
2643 | table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U; | |
2644 | last++; | |
2645 | } | |
2646 | } | |
2647 | ||
2648 | /* Build a single 8-bit table: same as the 16-bit case but much simpler (and | |
2649 | * typically much faster). Note that libpng currently does no sBIT processing | |
2650 | * (apparently contrary to the spec) so a 256 entry table is always generated. | |
2651 | */ | |
2652 | static void | |
2653 | png_build_8bit_table(png_structp png_ptr, png_bytepp ptable, | |
2654 | PNG_CONST png_fixed_point gamma_val) | |
2655 | { | |
2656 | unsigned int i; | |
2657 | png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256); | |
2658 | ||
2659 | if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++) | |
2660 | table[i] = png_gamma_8bit_correct(i, gamma_val); | |
2661 | ||
2662 | else for (i=0; i<256; ++i) | |
2663 | table[i] = (png_byte)i; | |
2664 | } | |
2665 | ||
2666 | /* Used from png_read_destroy and below to release the memory used by the gamma | |
2667 | * tables. | |
2668 | */ | |
2669 | void /* PRIVATE */ | |
2670 | png_destroy_gamma_table(png_structp png_ptr) | |
2671 | { | |
2672 | png_free(png_ptr, png_ptr->gamma_table); | |
2673 | png_ptr->gamma_table = NULL; | |
2674 | ||
2675 | if (png_ptr->gamma_16_table != NULL) | |
2676 | { | |
2677 | int i; | |
2678 | int istop = (1 << (8 - png_ptr->gamma_shift)); | |
2679 | for (i = 0; i < istop; i++) | |
2680 | { | |
2681 | png_free(png_ptr, png_ptr->gamma_16_table[i]); | |
2682 | } | |
2683 | png_free(png_ptr, png_ptr->gamma_16_table); | |
2684 | png_ptr->gamma_16_table = NULL; | |
2685 | } | |
2686 | ||
2687 | #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ | |
2688 | defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ | |
2689 | defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) | |
2690 | png_free(png_ptr, png_ptr->gamma_from_1); | |
2691 | png_ptr->gamma_from_1 = NULL; | |
2692 | png_free(png_ptr, png_ptr->gamma_to_1); | |
2693 | png_ptr->gamma_to_1 = NULL; | |
2694 | ||
2695 | if (png_ptr->gamma_16_from_1 != NULL) | |
2696 | { | |
2697 | int i; | |
2698 | int istop = (1 << (8 - png_ptr->gamma_shift)); | |
2699 | for (i = 0; i < istop; i++) | |
2700 | { | |
2701 | png_free(png_ptr, png_ptr->gamma_16_from_1[i]); | |
2702 | } | |
2703 | png_free(png_ptr, png_ptr->gamma_16_from_1); | |
2704 | png_ptr->gamma_16_from_1 = NULL; | |
2705 | } | |
2706 | if (png_ptr->gamma_16_to_1 != NULL) | |
2707 | { | |
2708 | int i; | |
2709 | int istop = (1 << (8 - png_ptr->gamma_shift)); | |
2710 | for (i = 0; i < istop; i++) | |
2711 | { | |
2712 | png_free(png_ptr, png_ptr->gamma_16_to_1[i]); | |
2713 | } | |
2714 | png_free(png_ptr, png_ptr->gamma_16_to_1); | |
2715 | png_ptr->gamma_16_to_1 = NULL; | |
2716 | } | |
2717 | #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ | |
2718 | } | |
2719 | ||
2720 | /* We build the 8- or 16-bit gamma tables here. Note that for 16-bit | |
2721 | * tables, we don't make a full table if we are reducing to 8-bit in | |
2722 | * the future. Note also how the gamma_16 tables are segmented so that | |
2723 | * we don't need to allocate > 64K chunks for a full 16-bit table. | |
2724 | */ | |
2725 | void /* PRIVATE */ | |
2726 | png_build_gamma_table(png_structp png_ptr, int bit_depth) | |
2727 | { | |
2728 | png_debug(1, "in png_build_gamma_table"); | |
2729 | ||
2730 | /* Remove any existing table; this copes with multiple calls to | |
2731 | * png_read_update_info. The warning is because building the gamma tables | |
2732 | * multiple times is a performance hit - it's harmless but the ability to call | |
2733 | * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible | |
2734 | * to warn if the app introduces such a hit. | |
2735 | */ | |
2736 | if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL) | |
2737 | { | |
2738 | png_warning(png_ptr, "gamma table being rebuilt"); | |
2739 | png_destroy_gamma_table(png_ptr); | |
2740 | } | |
2741 | ||
2742 | if (bit_depth <= 8) | |
2743 | { | |
2744 | png_build_8bit_table(png_ptr, &png_ptr->gamma_table, | |
2745 | png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma, | |
2746 | png_ptr->screen_gamma) : PNG_FP_1); | |
2747 | ||
2748 | #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ | |
2749 | defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ | |
2750 | defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) | |
2751 | if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) | |
2752 | { | |
2753 | png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1, | |
2754 | png_reciprocal(png_ptr->gamma)); | |
2755 | ||
2756 | png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1, | |
2757 | png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : | |
2758 | png_ptr->gamma/* Probably doing rgb_to_gray */); | |
2759 | } | |
2760 | #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ | |
2761 | } | |
2762 | else | |
2763 | { | |
2764 | png_byte shift, sig_bit; | |
2765 | ||
2766 | if (png_ptr->color_type & PNG_COLOR_MASK_COLOR) | |
2767 | { | |
2768 | sig_bit = png_ptr->sig_bit.red; | |
2769 | ||
2770 | if (png_ptr->sig_bit.green > sig_bit) | |
2771 | sig_bit = png_ptr->sig_bit.green; | |
2772 | ||
2773 | if (png_ptr->sig_bit.blue > sig_bit) | |
2774 | sig_bit = png_ptr->sig_bit.blue; | |
2775 | } | |
2776 | else | |
2777 | sig_bit = png_ptr->sig_bit.gray; | |
2778 | ||
2779 | /* 16-bit gamma code uses this equation: | |
2780 | * | |
2781 | * ov = table[(iv & 0xff) >> gamma_shift][iv >> 8] | |
2782 | * | |
2783 | * Where 'iv' is the input color value and 'ov' is the output value - | |
2784 | * pow(iv, gamma). | |
2785 | * | |
2786 | * Thus the gamma table consists of up to 256 256 entry tables. The table | |
2787 | * is selected by the (8-gamma_shift) most significant of the low 8 bits of | |
2788 | * the color value then indexed by the upper 8 bits: | |
2789 | * | |
2790 | * table[low bits][high 8 bits] | |
2791 | * | |
2792 | * So the table 'n' corresponds to all those 'iv' of: | |
2793 | * | |
2794 | * <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1> | |
2795 | * | |
2796 | */ | |
2797 | if (sig_bit > 0 && sig_bit < 16U) | |
2798 | shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */ | |
2799 | ||
2800 | else | |
2801 | shift = 0; /* keep all 16 bits */ | |
2802 | ||
2803 | if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) | |
2804 | { | |
2805 | /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively | |
2806 | * the significant bits in the *input* when the output will | |
2807 | * eventually be 8 bits. By default it is 11. | |
2808 | */ | |
2809 | if (shift < (16U - PNG_MAX_GAMMA_8)) | |
2810 | shift = (16U - PNG_MAX_GAMMA_8); | |
2811 | } | |
2812 | ||
2813 | if (shift > 8U) | |
2814 | shift = 8U; /* Guarantees at least one table! */ | |
2815 | ||
2816 | png_ptr->gamma_shift = shift; | |
2817 | ||
2818 | #ifdef PNG_16BIT_SUPPORTED | |
2819 | /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now | |
2820 | * PNG_COMPOSE). This effectively smashed the background calculation for | |
2821 | * 16-bit output because the 8-bit table assumes the result will be reduced | |
2822 | * to 8 bits. | |
2823 | */ | |
2824 | if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8)) | |
2825 | #endif | |
2826 | png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift, | |
2827 | png_ptr->screen_gamma > 0 ? png_product2(png_ptr->gamma, | |
2828 | png_ptr->screen_gamma) : PNG_FP_1); | |
2829 | ||
2830 | #ifdef PNG_16BIT_SUPPORTED | |
2831 | else | |
2832 | png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift, | |
2833 | png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma, | |
2834 | png_ptr->screen_gamma) : PNG_FP_1); | |
2835 | #endif | |
2836 | ||
2837 | #if defined(PNG_READ_BACKGROUND_SUPPORTED) || \ | |
2838 | defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \ | |
2839 | defined(PNG_READ_RGB_TO_GRAY_SUPPORTED) | |
2840 | if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY)) | |
2841 | { | |
2842 | png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift, | |
2843 | png_reciprocal(png_ptr->gamma)); | |
2844 | ||
2845 | /* Notice that the '16 from 1' table should be full precision, however | |
2846 | * the lookup on this table still uses gamma_shift, so it can't be. | |
2847 | * TODO: fix this. | |
2848 | */ | |
2849 | png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift, | |
2850 | png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) : | |
2851 | png_ptr->gamma/* Probably doing rgb_to_gray */); | |
2852 | } | |
2853 | #endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */ | |
2854 | } | |
2855 | } | |
2856 | #endif /* READ_GAMMA */ | |
0272a10d | 2857 | #endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */ |