]>
Commit | Line | Data |
---|---|---|
c801d85f | 1 | /* adler32.c -- compute the Adler-32 checksum of a data stream |
41faf807 | 2 | * Copyright (C) 1995-2004 Mark Adler |
e6ebb514 | 3 | * For conditions of distribution and use, see copyright notice in zlib.h |
c801d85f KB |
4 | */ |
5 | ||
c801d85f | 6 | |
51dbdf87 VS |
7 | #define ZLIB_INTERNAL |
8 | #include "zlib.h" | |
c801d85f | 9 | |
51dbdf87 | 10 | #define BASE 65521UL /* largest prime smaller than 65536 */ |
c801d85f KB |
11 | #define NMAX 5552 |
12 | /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ | |
13 | ||
41faf807 | 14 | #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} |
c801d85f KB |
15 | #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); |
16 | #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); | |
17 | #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); | |
18 | #define DO16(buf) DO8(buf,0); DO8(buf,8); | |
19 | ||
41faf807 | 20 | /* use NO_DIVIDE if your processor does not do division in hardware */ |
51dbdf87 VS |
21 | #ifdef NO_DIVIDE |
22 | # define MOD(a) \ | |
23 | do { \ | |
24 | if (a >= (BASE << 16)) a -= (BASE << 16); \ | |
25 | if (a >= (BASE << 15)) a -= (BASE << 15); \ | |
26 | if (a >= (BASE << 14)) a -= (BASE << 14); \ | |
27 | if (a >= (BASE << 13)) a -= (BASE << 13); \ | |
28 | if (a >= (BASE << 12)) a -= (BASE << 12); \ | |
29 | if (a >= (BASE << 11)) a -= (BASE << 11); \ | |
30 | if (a >= (BASE << 10)) a -= (BASE << 10); \ | |
31 | if (a >= (BASE << 9)) a -= (BASE << 9); \ | |
32 | if (a >= (BASE << 8)) a -= (BASE << 8); \ | |
33 | if (a >= (BASE << 7)) a -= (BASE << 7); \ | |
34 | if (a >= (BASE << 6)) a -= (BASE << 6); \ | |
35 | if (a >= (BASE << 5)) a -= (BASE << 5); \ | |
36 | if (a >= (BASE << 4)) a -= (BASE << 4); \ | |
37 | if (a >= (BASE << 3)) a -= (BASE << 3); \ | |
38 | if (a >= (BASE << 2)) a -= (BASE << 2); \ | |
39 | if (a >= (BASE << 1)) a -= (BASE << 1); \ | |
40 | if (a >= BASE) a -= BASE; \ | |
41 | } while (0) | |
41faf807 MW |
42 | # define MOD4(a) \ |
43 | do { \ | |
44 | if (a >= (BASE << 4)) a -= (BASE << 4); \ | |
45 | if (a >= (BASE << 3)) a -= (BASE << 3); \ | |
46 | if (a >= (BASE << 2)) a -= (BASE << 2); \ | |
47 | if (a >= (BASE << 1)) a -= (BASE << 1); \ | |
48 | if (a >= BASE) a -= BASE; \ | |
49 | } while (0) | |
e6ebb514 | 50 | #else |
51dbdf87 | 51 | # define MOD(a) a %= BASE |
41faf807 | 52 | # define MOD4(a) a %= BASE |
51dbdf87 VS |
53 | #endif |
54 | ||
55 | /* ========================================================================= */ | |
c801d85f KB |
56 | uLong ZEXPORT adler32(adler, buf, len) |
57 | uLong adler; | |
58 | const Bytef *buf; | |
59 | uInt len; | |
60 | { | |
41faf807 MW |
61 | unsigned long sum2; |
62 | unsigned n; | |
63 | ||
64 | /* split Adler-32 into component sums */ | |
65 | sum2 = (adler >> 16) & 0xffff; | |
66 | adler &= 0xffff; | |
67 | ||
68 | /* in case user likes doing a byte at a time, keep it fast */ | |
69 | if (len == 1) { | |
70 | adler += buf[0]; | |
71 | if (adler >= BASE) | |
72 | adler -= BASE; | |
73 | sum2 += adler; | |
74 | if (sum2 >= BASE) | |
75 | sum2 -= BASE; | |
76 | return adler | (sum2 << 16); | |
77 | } | |
c801d85f | 78 | |
41faf807 MW |
79 | /* initial Adler-32 value (deferred check for len == 1 speed) */ |
80 | if (buf == Z_NULL) | |
81 | return 1L; | |
c801d85f | 82 | |
41faf807 MW |
83 | /* in case short lengths are provided, keep it somewhat fast */ |
84 | if (len < 16) { | |
85 | while (len--) { | |
86 | adler += *buf++; | |
87 | sum2 += adler; | |
88 | } | |
89 | if (adler >= BASE) | |
90 | adler -= BASE; | |
91 | MOD4(sum2); /* only added so many BASE's */ | |
92 | return adler | (sum2 << 16); | |
93 | } | |
94 | ||
95 | /* do length NMAX blocks -- requires just one modulo operation */ | |
96 | while (len >= NMAX) { | |
97 | len -= NMAX; | |
98 | n = NMAX / 16; /* NMAX is divisible by 16 */ | |
99 | do { | |
100 | DO16(buf); /* 16 sums unrolled */ | |
101 | buf += 16; | |
102 | } while (--n); | |
103 | MOD(adler); | |
104 | MOD(sum2); | |
105 | } | |
106 | ||
107 | /* do remaining bytes (less than NMAX, still just one modulo) */ | |
108 | if (len) { /* avoid modulos if none remaining */ | |
109 | while (len >= 16) { | |
110 | len -= 16; | |
c801d85f | 111 | DO16(buf); |
51dbdf87 | 112 | buf += 16; |
c801d85f | 113 | } |
41faf807 MW |
114 | while (len--) { |
115 | adler += *buf++; | |
116 | sum2 += adler; | |
117 | } | |
118 | MOD(adler); | |
119 | MOD(sum2); | |
c801d85f | 120 | } |
41faf807 MW |
121 | |
122 | /* return recombined sums */ | |
123 | return adler | (sum2 << 16); | |
124 | } | |
125 | ||
126 | /* ========================================================================= */ | |
127 | uLong ZEXPORT adler32_combine(adler1, adler2, len2) | |
128 | uLong adler1; | |
129 | uLong adler2; | |
130 | z_off_t len2; | |
131 | { | |
132 | unsigned long sum1; | |
133 | unsigned long sum2; | |
134 | unsigned rem; | |
135 | ||
136 | /* the derivation of this formula is left as an exercise for the reader */ | |
137 | rem = (unsigned)(len2 % BASE); | |
138 | sum1 = adler1 & 0xffff; | |
139 | sum2 = rem * sum1; | |
140 | MOD(sum2); | |
141 | sum1 += (adler2 & 0xffff) + BASE - 1; | |
142 | sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; | |
143 | if (sum1 > BASE) sum1 -= BASE; | |
144 | if (sum1 > BASE) sum1 -= BASE; | |
145 | if (sum2 > (BASE << 1)) sum2 -= (BASE << 1); | |
146 | if (sum2 > BASE) sum2 -= BASE; | |
147 | return sum1 | (sum2 << 16); | |
c801d85f | 148 | } |