]> git.saurik.com Git - wxWidgets.git/blame - include/wx/matrix.h
implemented wxStackWalker for Unix (using glibc-specific methods); moved wxUSE_STACKW...
[wxWidgets.git] / include / wx / matrix.h
CommitLineData
c801d85f
KB
1/////////////////////////////////////////////////////////////////////////////
2// Name: matrix.h
3// Purpose: wxTransformMatrix class. NOT YET USED
371a5b4e 4// Author: Chris Breeze, Julian Smart
555526fb 5// Modified by: Klaas Holwerda
c801d85f
KB
6// Created: 01/02/97
7// RCS-ID: $Id$
371a5b4e 8// Copyright: (c) Julian Smart, Chris Breeze
65571936 9// Licence: wxWindows licence
c801d85f
KB
10/////////////////////////////////////////////////////////////////////////////
11
34138703
JS
12#ifndef _WX_MATRIXH__
13#define _WX_MATRIXH__
c801d85f 14
12028905 15#if defined(__GNUG__) && !defined(NO_GCC_PRAGMA)
c801d85f
KB
16#pragma interface "matrix.h"
17#endif
18
555526fb 19//! headerfiles="matrix.h wx/object.h"
c801d85f
KB
20#include "wx/object.h"
21
555526fb
RR
22//! codefiles="matrix.cpp"
23
c801d85f
KB
24// A simple 3x3 matrix. This may be replaced by a more general matrix
25// class some day.
26//
27// Note: this is intended to be used in wxDC at some point to replace
28// the current system of scaling/translation. It is not yet used.
29
65b17727 30//:definition
555526fb 31// A 3x3 matrix to do 2D transformations.
65b17727
JS
32// It can be used to map data to window coordinates,
33// and also for manipulating your own data.
555526fb
RR
34// For example drawing a picture (composed of several primitives)
35// at a certain coordinate and angle within another parent picture.
36// At all times m_isIdentity is set if the matrix itself is an Identity matrix.
37// It is used where possible to optimize calculations.
c801d85f
KB
38class WXDLLEXPORT wxTransformMatrix: public wxObject
39{
40public:
555526fb
RR
41 wxTransformMatrix(void);
42 wxTransformMatrix(const wxTransformMatrix& mat);
43
44 //get the value in the matrix at col,row
45 //rows are horizontal (second index of m_matrix member)
46 //columns are vertical (first index of m_matrix member)
47 double GetValue(int col, int row) const;
48
49 //set the value in the matrix at col,row
50 //rows are horizontal (second index of m_matrix member)
51 //columns are vertical (first index of m_matrix member)
52 void SetValue(int col, int row, double value);
53
54 void operator = (const wxTransformMatrix& mat);
55 bool operator == (const wxTransformMatrix& mat);
56 bool operator != (const wxTransformMatrix& mat);
57
58 //multiply every element by t
59 wxTransformMatrix& operator*=(const double& t);
60 //divide every element by t
61 wxTransformMatrix& operator/=(const double& t);
62 //add matrix m to this t
63 wxTransformMatrix& operator+=(const wxTransformMatrix& m);
64 //subtract matrix m from this
65 wxTransformMatrix& operator-=(const wxTransformMatrix& m);
66 //multiply matrix m with this
67 wxTransformMatrix& operator*=(const wxTransformMatrix& m);
68
69 // constant operators
70
71 //multiply every element by t and return result
72 wxTransformMatrix operator*(const double& t) const;
73 //divide this matrix by t and return result
74 wxTransformMatrix operator/(const double& t) const;
75 //add matrix m to this and return result
76 wxTransformMatrix operator+(const wxTransformMatrix& m) const;
77 //subtract matrix m from this and return result
78 wxTransformMatrix operator-(const wxTransformMatrix& m) const;
79 //multiply this by matrix m and return result
80 wxTransformMatrix operator*(const wxTransformMatrix& m) const;
81 wxTransformMatrix operator-() const;
82
83 //rows are horizontal (second index of m_matrix member)
84 //columns are vertical (first index of m_matrix member)
85 double& operator()(int col, int row);
86
87 //rows are horizontal (second index of m_matrix member)
88 //columns are vertical (first index of m_matrix member)
89 double operator()(int col, int row) const;
90
91 // Invert matrix
92 bool Invert(void);
93
94 // Make into identity matrix
95 bool Identity(void);
96
97 // Is the matrix the identity matrix?
98 // Only returns a flag, which is set whenever an operation
99 // is done.
100 inline bool IsIdentity(void) const { return m_isIdentity; };
101
102 // This does an actual check.
103 inline bool IsIdentity1(void) const ;
104
105 //Scale by scale (isotropic scaling i.e. the same in x and y):
106 //!ex:
107 //!code: | scale 0 0 |
108 //!code: matrix' = | 0 scale 0 | x matrix
109 //!code: | 0 0 scale |
110 bool Scale(double scale);
111
112 //Scale with center point and x/y scale
113 //
114 //!ex:
115 //!code: | xs 0 xc(1-xs) |
116 //!code: matrix' = | 0 ys yc(1-ys) | x matrix
117 //!code: | 0 0 1 |
118 wxTransformMatrix& Scale(const double &xs, const double &ys,const double &xc, const double &yc);
119
120 // mirror a matrix in x, y
121 //!ex:
122 //!code: | -1 0 0 |
123 //!code: matrix' = | 0 -1 0 | x matrix
124 //!code: | 0 0 1 |
4e32eea1 125 wxTransformMatrix& Mirror(bool x=true, bool y=false);
555526fb
RR
126 // Translate by dx, dy:
127 //!ex:
128 //!code: | 1 0 dx |
129 //!code: matrix' = | 0 1 dy | x matrix
130 //!code: | 0 0 1 |
131 bool Translate(double x, double y);
132
133 // Rotate clockwise by the given number of degrees:
134 //!ex:
135 //!code: | cos sin 0 |
136 //!code: matrix' = | -sin cos 0 | x matrix
137 //!code: | 0 0 1 |
138 bool Rotate(double angle);
139
140 //Rotate counter clockwise with point of rotation
141 //
142 //!ex:
143 //!code: | cos(r) -sin(r) x(1-cos(r))+y(sin(r)|
144 //!code: matrix' = | sin(r) cos(r) y(1-cos(r))-x(sin(r)| x matrix
145 //!code: | 0 0 1 |
146 wxTransformMatrix& Rotate(const double &r, const double &x, const double &y);
147
148 // Transform X value from logical to device
149 inline double TransformX(double x) const;
150
151 // Transform Y value from logical to device
152 inline double TransformY(double y) const;
153
154 // Transform a point from logical to device coordinates
155 bool TransformPoint(double x, double y, double& tx, double& ty) const;
156
157 // Transform a point from device to logical coordinates.
158 // Example of use:
159 // wxTransformMatrix mat = dc.GetTransformation();
160 // mat.Invert();
161 // mat.InverseTransformPoint(x, y, x1, y1);
162 // OR (shorthand:)
163 // dc.LogicalToDevice(x, y, x1, y1);
164 // The latter is slightly less efficient if we're doing several
165 // conversions, since the matrix is inverted several times.
166 // N.B. 'this' matrix is the inverse at this point
167 bool InverseTransformPoint(double x, double y, double& tx, double& ty) const;
168
169 double Get_scaleX();
170 double Get_scaleY();
171 double GetRotation();
172 void SetRotation(double rotation);
c801d85f 173
c801d85f
KB
174
175public:
555526fb
RR
176 double m_matrix[3][3];
177 bool m_isIdentity;
c801d85f
KB
178};
179
46dc76ba
RR
180
181/*
555526fb 182Chris Breeze reported, that
46dc76ba
RR
183some functions of wxTransformMatrix cannot work because it is not
184known if he matrix has been inverted. Be careful when using it.
555526fb 185*/
46dc76ba 186
c801d85f 187// Transform X value from logical to device
555526fb
RR
188// warning: this function can only be used for this purpose
189// because no rotation is involved when mapping logical to device coordinates
190// mirror and scaling for x and y will be part of the matrix
191// if you have a matrix that is rotated, eg a shape containing a matrix to place
192// it in the logical coordinate system, use TransformPoint
c801d85f
KB
193inline double wxTransformMatrix::TransformX(double x) const
194{
555526fb
RR
195 //normally like this, but since no rotation is involved (only mirror and scale)
196 //we can do without Y -> m_matrix[1]{0] is -sin(rotation angle) and therefore zero
197 //(x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]))
198 return (m_isIdentity ? x : (x * m_matrix[0][0] + m_matrix[2][0]));
c801d85f
KB
199}
200
201// Transform Y value from logical to device
555526fb
RR
202// warning: this function can only be used for this purpose
203// because no rotation is involved when mapping logical to device coordinates
204// mirror and scaling for x and y will be part of the matrix
205// if you have a matrix that is rotated, eg a shape containing a matrix to place
206// it in the logical coordinate system, use TransformPoint
c801d85f
KB
207inline double wxTransformMatrix::TransformY(double y) const
208{
555526fb
RR
209 //normally like this, but since no rotation is involved (only mirror and scale)
210 //we can do without X -> m_matrix[0]{1] is sin(rotation angle) and therefore zero
211 //(x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]))
212 return (m_isIdentity ? y : (y * m_matrix[1][1] + m_matrix[2][1]));
c801d85f 213}
555526fb 214
c801d85f
KB
215
216// Is the matrix the identity matrix?
555526fb 217// Each operation checks whether the result is still the identity matrix and sets a flag.
c801d85f
KB
218inline bool wxTransformMatrix::IsIdentity1(void) const
219{
555526fb
RR
220 return
221 (m_matrix[0][0] == 1.0 &&
222 m_matrix[1][1] == 1.0 &&
223 m_matrix[2][2] == 1.0 &&
224 m_matrix[1][0] == 0.0 &&
225 m_matrix[2][0] == 0.0 &&
226 m_matrix[0][1] == 0.0 &&
227 m_matrix[2][1] == 0.0 &&
228 m_matrix[0][2] == 0.0 &&
229 m_matrix[1][2] == 0.0) ;
c801d85f
KB
230}
231
232// Calculates the determinant of a 2 x 2 matrix
233inline double wxCalculateDet(double a11, double a21, double a12, double a22)
234{
555526fb 235 return a11 * a22 - a12 * a21;
c801d85f
KB
236}
237
238#endif
555526fb 239 // _WX_MATRIXH__