]>
Commit | Line | Data |
---|---|---|
c90f71dd RD |
1 | // |
2 | // $Header$ | |
3 | // | |
4 | // math.i | |
5 | // Dave Beazley | |
6 | // March 24, 1996 | |
7 | // SWIG file for floating point operations | |
8 | // | |
9 | /* Revision history | |
10 | * $Log$ | |
11 | * Revision 1.1 2002/04/29 19:56:49 RD | |
12 | * Since I have made several changes to SWIG over the years to accomodate | |
13 | * special cases and other things in wxPython, and since I plan on making | |
14 | * several more, I've decided to put the SWIG sources in wxPython's CVS | |
15 | * instead of relying on maintaining patches. This effectivly becomes a | |
16 | * fork of an obsolete version of SWIG, :-( but since SWIG 1.3 still | |
17 | * doesn't have some things I rely on in 1.1, not to mention that my | |
18 | * custom patches would all have to be redone, I felt that this is the | |
19 | * easier road to take. | |
20 | * | |
21 | * Revision 1.1.1.1 1999/02/28 02:00:53 beazley | |
22 | * Swig1.1 | |
23 | * | |
24 | * Revision 1.1 1996/05/22 17:27:01 beazley | |
25 | * Initial revision | |
26 | * | |
27 | */ | |
28 | ||
29 | %module math | |
30 | %{ | |
31 | #include <math.h> | |
32 | %} | |
33 | ||
34 | %section "SWIG Math Module",after,info,nosort,pre,chop_left=3,chop_bottom=0,chop_top=0,chop_right=0,skip=1 | |
35 | ||
36 | %text %{ | |
37 | %include math.i | |
38 | ||
39 | This module provides access to the C math library and contains most | |
40 | of the functions in <math.h>. Most scripting languages already provide | |
41 | math support, but in certain cases, this module can provide more | |
42 | direct access. | |
43 | %} | |
44 | ||
45 | %subsection "Functions" | |
46 | ||
47 | ||
48 | extern double cos(double x); | |
49 | /* Cosine of x */ | |
50 | ||
51 | extern double sin(double x); | |
52 | /* Sine of x */ | |
53 | ||
54 | extern double tan(double x); | |
55 | /* Tangent of x */ | |
56 | ||
57 | extern double acos(double x); | |
58 | /* Inverse cosine in range [-PI/2,PI/2], x in [-1,1]. */ | |
59 | ||
60 | extern double asin(double x); | |
61 | /* Inverse sine in range [0,PI], x in [-1,1]. */ | |
62 | ||
63 | extern double atan(double x); | |
64 | /* Inverse tangent in range [-PI/2,PI/2]. */ | |
65 | ||
66 | extern double atan2(double y, double x); | |
67 | /* Inverse tangent of y/x in range [-PI,PI]. */ | |
68 | ||
69 | extern double cosh(double x); | |
70 | /* Hyperbolic cosine of x */ | |
71 | ||
72 | extern double sinh(double x); | |
73 | /* Hyperbolic sine of x */ | |
74 | ||
75 | extern double tanh(double x); | |
76 | /* Hyperbolic tangent of x */ | |
77 | ||
78 | extern double exp(double x); | |
79 | /* Natural exponential function e^x */ | |
80 | ||
81 | extern double log(double x); | |
82 | /* Natural logarithm ln(x), x > 0 */ | |
83 | ||
84 | extern double log10(double x); | |
85 | /* Base 10 logarithm, x > 0 */ | |
86 | ||
87 | extern double pow(double x, double y); | |
88 | /* Power function x^y. */ | |
89 | ||
90 | extern double sqrt(double x); | |
91 | /* Square root. x >= 0 */ | |
92 | ||
93 | extern double fabs(double x); | |
94 | /* Absolute value of x */ | |
95 | ||
96 | extern double ceil(double x); | |
97 | /* Smallest integer not less than x, as a double */ | |
98 | ||
99 | extern double floor(double x); | |
100 | /* Largest integer not greater than x, as a double */ | |
101 | ||
102 | extern double fmod(double x, double y); | |
103 | /* Floating-point remainder of x/y, with the same sign as x. */ | |
104 | ||
105 | %subsection "Mathematical constants",noinfo | |
106 | ||
107 | #define M_E 2.7182818284590452354 | |
108 | #define M_LOG2E 1.4426950408889634074 | |
109 | #define M_LOG10E 0.43429448190325182765 | |
110 | #define M_LN2 0.69314718055994530942 | |
111 | #define M_LN10 2.30258509299404568402 | |
112 | #define M_PI 3.14159265358979323846 | |
113 | #define M_PI_2 1.57079632679489661923 | |
114 | #define M_PI_4 0.78539816339744830962 | |
115 | #define M_1_PI 0.31830988618379067154 | |
116 | #define M_2_PI 0.63661977236758134308 | |
117 | #define M_2_SQRTPI 1.12837916709551257390 | |
118 | #define M_SQRT2 1.41421356237309504880 | |
119 | #define M_SQRT1_2 0.70710678118654752440 | |
120 |