]> git.saurik.com Git - wxWidgets.git/blame - src/common/quantize.cpp
fix for C99-compatible vsnprintf()
[wxWidgets.git] / src / common / quantize.cpp
CommitLineData
3f4fc796
JS
1/////////////////////////////////////////////////////////////////////////////
2// Name: quantize.cpp
3// Purpose: wxQuantize implementation
4// Author: Julian Smart
5// Modified by:
6// Created: 22/6/2000
7// RCS-ID: $Id$
8// Copyright: (c) Thomas G. Lane, Vaclav Slavik, Julian Smart
19193a2c 9// Licence: wxWindows licence + JPEG library licence
3f4fc796
JS
10/////////////////////////////////////////////////////////////////////////////
11
12/*
13 * jquant2.c
14 *
15 * Copyright (C) 1991-1996, Thomas G. Lane.
16 * This file is part of the Independent JPEG Group's software.
17 * For conditions of distribution and use, see the accompanying README file.
18 *
19 * This file contains 2-pass color quantization (color mapping) routines.
20 * These routines provide selection of a custom color map for an image,
21 * followed by mapping of the image to that color map, with optional
22 * Floyd-Steinberg dithering.
23 * It is also possible to use just the second pass to map to an arbitrary
24 * externally-given color map.
25 *
26 * Note: ordered dithering is not supported, since there isn't any fast
27 * way to compute intercolor distances; it's unclear that ordered dither's
28 * fundamental assumptions even hold with an irregularly spaced color map.
29 */
30
31/* modified by Vaclav Slavik for use as jpeglib-independent module */
32
14f355c2 33#if defined(__GNUG__) && !defined(NO_GCC_PRAGMA)
3f4fc796
JS
34#pragma implementation "quantize.h"
35#endif
36
37// For compilers that support precompilation, includes "wx/wx.h".
38#include "wx/wxprec.h"
39
40#ifdef __BORLANDC__
41#pragma hdrstop
42#endif
43
44#ifndef WX_PRECOMP
ed39ff57 45 #include "wx/palette.h"
3f4fc796
JS
46#endif
47
7da6ab6e
JS
48#if wxUSE_IMAGE
49
3f4fc796
JS
50#include "wx/image.h"
51#include "wx/quantize.h"
52
2736b3ce 53#ifdef __WXMSW__
1c193821 54#include "wx/msw/private.h"
2736b3ce
JS
55#endif
56
3f4fc796
JS
57#include <stdlib.h>
58#include <string.h>
59
19193a2c 60#if defined(__OS2__)
99f73df9
DW
61#define RGB_RED_OS2 0
62#define RGB_GREEN_OS2 1
63#define RGB_BLUE_OS2 2
64#else
3f4fc796
JS
65#define RGB_RED 0
66#define RGB_GREEN 1
67#define RGB_BLUE 2
99f73df9 68#endif
3f4fc796
JS
69#define RGB_PIXELSIZE 3
70
71#define MAXJSAMPLE 255
72#define CENTERJSAMPLE 128
73#define BITS_IN_JSAMPLE 8
74#define GETJSAMPLE(value) ((int) (value))
75
76#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
77
78typedef unsigned short UINT16;
79typedef signed short INT16;
80typedef signed int INT32;
81
82typedef unsigned char JSAMPLE;
83typedef JSAMPLE *JSAMPROW;
84typedef JSAMPROW *JSAMPARRAY;
85typedef unsigned int JDIMENSION;
86
87typedef struct {
88 void *cquantize;
89 JDIMENSION output_width;
90 JSAMPARRAY colormap;
91 int actual_number_of_colors;
92 int desired_number_of_colors;
93 JSAMPLE *sample_range_limit, *srl_orig;
94} j_decompress;
95
c67d6888 96#if defined(__WINDOWS__) && !defined(__WXMICROWIN__)
19193a2c
KB
97 #define JMETHOD(type,methodname,arglist) type (__cdecl methodname) arglist
98#else
99 #define JMETHOD(type,methodname,arglist) type (methodname) arglist
100#endif
101
3f4fc796 102typedef j_decompress *j_decompress_ptr;
19193a2c
KB
103struct jpeg_color_quantizer {
104 JMETHOD(void, start_pass, (j_decompress_ptr cinfo, bool is_pre_scan));
105 JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
106 JSAMPARRAY input_buf, JSAMPARRAY output_buf,
107 int num_rows));
108 JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
109 JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
110};
111
112
3f4fc796
JS
113
114
115/*
116 * This module implements the well-known Heckbert paradigm for color
117 * quantization. Most of the ideas used here can be traced back to
118 * Heckbert's seminal paper
119 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
120 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
121 *
122 * In the first pass over the image, we accumulate a histogram showing the
123 * usage count of each possible color. To keep the histogram to a reasonable
124 * size, we reduce the precision of the input; typical practice is to retain
125 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
126 * in the same histogram cell.
127 *
128 * Next, the color-selection step begins with a box representing the whole
129 * color space, and repeatedly splits the "largest" remaining box until we
130 * have as many boxes as desired colors. Then the mean color in each
131 * remaining box becomes one of the possible output colors.
99f73df9 132 *
3f4fc796
JS
133 * The second pass over the image maps each input pixel to the closest output
134 * color (optionally after applying a Floyd-Steinberg dithering correction).
135 * This mapping is logically trivial, but making it go fast enough requires
136 * considerable care.
137 *
138 * Heckbert-style quantizers vary a good deal in their policies for choosing
139 * the "largest" box and deciding where to cut it. The particular policies
140 * used here have proved out well in experimental comparisons, but better ones
141 * may yet be found.
142 *
143 * In earlier versions of the IJG code, this module quantized in YCbCr color
144 * space, processing the raw upsampled data without a color conversion step.
145 * This allowed the color conversion math to be done only once per colormap
146 * entry, not once per pixel. However, that optimization precluded other
147 * useful optimizations (such as merging color conversion with upsampling)
148 * and it also interfered with desired capabilities such as quantizing to an
149 * externally-supplied colormap. We have therefore abandoned that approach.
150 * The present code works in the post-conversion color space, typically RGB.
151 *
152 * To improve the visual quality of the results, we actually work in scaled
153 * RGB space, giving G distances more weight than R, and R in turn more than
154 * B. To do everything in integer math, we must use integer scale factors.
155 * The 2/3/1 scale factors used here correspond loosely to the relative
156 * weights of the colors in the NTSC grayscale equation.
157 * If you want to use this code to quantize a non-RGB color space, you'll
158 * probably need to change these scale factors.
159 */
160
19193a2c
KB
161#define R_SCALE 2 /* scale R distances by this much */
162#define G_SCALE 3 /* scale G distances by this much */
163#define B_SCALE 1 /* and B by this much */
3f4fc796
JS
164
165/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
166 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
167 * and B,G,R orders. If you define some other weird order in jmorecfg.h,
168 * you'll get compile errors until you extend this logic. In that case
169 * you'll probably want to tweak the histogram sizes too.
170 */
171
19193a2c 172#if defined(__OS2__)
99f73df9
DW
173
174#if RGB_RED_OS2 == 0
175#define C0_SCALE R_SCALE
176#endif
177#if RGB_BLUE_OS2 == 0
178#define C0_SCALE B_SCALE
179#endif
180#if RGB_GREEN_OS2 == 1
181#define C1_SCALE G_SCALE
182#endif
183#if RGB_RED_OS2 == 2
184#define C2_SCALE R_SCALE
185#endif
186#if RGB_BLUE_OS2 == 2
187#define C2_SCALE B_SCALE
188#endif
189
190#else
191
3f4fc796
JS
192#if RGB_RED == 0
193#define C0_SCALE R_SCALE
194#endif
195#if RGB_BLUE == 0
196#define C0_SCALE B_SCALE
197#endif
198#if RGB_GREEN == 1
199#define C1_SCALE G_SCALE
200#endif
201#if RGB_RED == 2
202#define C2_SCALE R_SCALE
203#endif
204#if RGB_BLUE == 2
205#define C2_SCALE B_SCALE
206#endif
207
99f73df9 208#endif
3f4fc796
JS
209
210/*
211 * First we have the histogram data structure and routines for creating it.
212 *
213 * The number of bits of precision can be adjusted by changing these symbols.
214 * We recommend keeping 6 bits for G and 5 each for R and B.
215 * If you have plenty of memory and cycles, 6 bits all around gives marginally
216 * better results; if you are short of memory, 5 bits all around will save
217 * some space but degrade the results.
218 * To maintain a fully accurate histogram, we'd need to allocate a "long"
219 * (preferably unsigned long) for each cell. In practice this is overkill;
220 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
221 * and clamping those that do overflow to the maximum value will give close-
222 * enough results. This reduces the recommended histogram size from 256Kb
223 * to 128Kb, which is a useful savings on PC-class machines.
224 * (In the second pass the histogram space is re-used for pixel mapping data;
225 * in that capacity, each cell must be able to store zero to the number of
226 * desired colors. 16 bits/cell is plenty for that too.)
227 * Since the JPEG code is intended to run in small memory model on 80x86
228 * machines, we can't just allocate the histogram in one chunk. Instead
229 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
230 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
231 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
232 * on 80x86 machines, the pointer row is in near memory but the actual
233 * arrays are in far memory (same arrangement as we use for image arrays).
234 */
235
236#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
237
238/* These will do the right thing for either R,G,B or B,G,R color order,
239 * but you may not like the results for other color orders.
240 */
19193a2c
KB
241#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
242#define HIST_C1_BITS 6 /* bits of precision in G histogram */
243#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
3f4fc796
JS
244
245/* Number of elements along histogram axes. */
246#define HIST_C0_ELEMS (1<<HIST_C0_BITS)
247#define HIST_C1_ELEMS (1<<HIST_C1_BITS)
248#define HIST_C2_ELEMS (1<<HIST_C2_BITS)
249
250/* These are the amounts to shift an input value to get a histogram index. */
251#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
252#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
253#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
254
255
19193a2c 256typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
3f4fc796 257
19193a2c 258typedef histcell * histptr; /* for pointers to histogram cells */
3f4fc796
JS
259
260typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
19193a2c
KB
261typedef hist1d * hist2d; /* type for the 2nd-level pointers */
262typedef hist2d * hist3d; /* type for top-level pointer */
3f4fc796
JS
263
264
265/* Declarations for Floyd-Steinberg dithering.
266 *
267 * Errors are accumulated into the array fserrors[], at a resolution of
268 * 1/16th of a pixel count. The error at a given pixel is propagated
269 * to its not-yet-processed neighbors using the standard F-S fractions,
19193a2c
KB
270 * ... (here) 7/16
271 * 3/16 5/16 1/16
3f4fc796
JS
272 * We work left-to-right on even rows, right-to-left on odd rows.
273 *
274 * We can get away with a single array (holding one row's worth of errors)
275 * by using it to store the current row's errors at pixel columns not yet
276 * processed, but the next row's errors at columns already processed. We
277 * need only a few extra variables to hold the errors immediately around the
278 * current column. (If we are lucky, those variables are in registers, but
279 * even if not, they're probably cheaper to access than array elements are.)
280 *
281 * The fserrors[] array has (#columns + 2) entries; the extra entry at
282 * each end saves us from special-casing the first and last pixels.
283 * Each entry is three values long, one value for each color component.
284 *
285 * Note: on a wide image, we might not have enough room in a PC's near data
286 * segment to hold the error array; so it is allocated with alloc_large.
287 */
288
289#if BITS_IN_JSAMPLE == 8
19193a2c
KB
290typedef INT16 FSERROR; /* 16 bits should be enough */
291typedef int LOCFSERROR; /* use 'int' for calculation temps */
3f4fc796 292#else
19193a2c
KB
293typedef INT32 FSERROR; /* may need more than 16 bits */
294typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
3f4fc796
JS
295#endif
296
19193a2c 297typedef FSERROR *FSERRPTR; /* pointer to error array (in storage!) */
3f4fc796
JS
298
299
300/* Private subobject */
301
302typedef struct {
303
304 struct {
305 void (*finish_pass)(j_decompress_ptr);
306 void (*color_quantize)(j_decompress_ptr, JSAMPARRAY, JSAMPARRAY, int);
307 void (*start_pass)(j_decompress_ptr, bool);
308 void (*new_color_map)(j_decompress_ptr);
309 } pub;
310
311 /* Space for the eventually created colormap is stashed here */
19193a2c
KB
312 JSAMPARRAY sv_colormap; /* colormap allocated at init time */
313 int desired; /* desired # of colors = size of colormap */
3f4fc796
JS
314
315 /* Variables for accumulating image statistics */
19193a2c 316 hist3d histogram; /* pointer to the histogram */
3f4fc796 317
19193a2c 318 bool needs_zeroed; /* true if next pass must zero histogram */
3f4fc796
JS
319
320 /* Variables for Floyd-Steinberg dithering */
19193a2c
KB
321 FSERRPTR fserrors; /* accumulated errors */
322 bool on_odd_row; /* flag to remember which row we are on */
323 int * error_limiter; /* table for clamping the applied error */
3f4fc796
JS
324} my_cquantizer;
325
326typedef my_cquantizer * my_cquantize_ptr;
327
328
329/*
330 * Prescan some rows of pixels.
331 * In this module the prescan simply updates the histogram, which has been
332 * initialized to zeroes by start_pass.
333 * An output_buf parameter is required by the method signature, but no data
334 * is actually output (in fact the buffer controller is probably passing a
335 * NULL pointer).
336 */
337
338void
339prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
574c939e 340 JSAMPARRAY WXUNUSED(output_buf), int num_rows)
3f4fc796
JS
341{
342 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
343 register JSAMPROW ptr;
344 register histptr histp;
345 register hist3d histogram = cquantize->histogram;
346 int row;
347 JDIMENSION col;
348 JDIMENSION width = cinfo->output_width;
349
350 for (row = 0; row < num_rows; row++) {
351 ptr = input_buf[row];
352 for (col = width; col > 0; col--) {
99f73df9 353
3f4fc796 354 {
99f73df9 355
3f4fc796
JS
356 /* get pixel value and index into the histogram */
357 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
19193a2c
KB
358 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
359 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
3f4fc796
JS
360 /* increment, check for overflow and undo increment if so. */
361 if (++(*histp) <= 0)
362 (*histp)--;
363 }
364 ptr += 3;
365 }
366 }
367}
368
369
370/*
371 * Next we have the really interesting routines: selection of a colormap
372 * given the completed histogram.
373 * These routines work with a list of "boxes", each representing a rectangular
374 * subset of the input color space (to histogram precision).
375 */
376
377typedef struct {
378 /* The bounds of the box (inclusive); expressed as histogram indexes */
379 int c0min, c0max;
380 int c1min, c1max;
381 int c2min, c2max;
382 /* The volume (actually 2-norm) of the box */
383 INT32 volume;
384 /* The number of nonzero histogram cells within this box */
385 long colorcount;
386} box;
387
388typedef box * boxptr;
389
390
391boxptr
392find_biggest_color_pop (boxptr boxlist, int numboxes)
393/* Find the splittable box with the largest color population */
394/* Returns NULL if no splittable boxes remain */
395{
396 register boxptr boxp;
397 register int i;
398 register long maxc = 0;
399 boxptr which = NULL;
99f73df9 400
3f4fc796
JS
401 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
402 if (boxp->colorcount > maxc && boxp->volume > 0) {
403 which = boxp;
404 maxc = boxp->colorcount;
405 }
406 }
407 return which;
408}
409
410
411boxptr
412find_biggest_volume (boxptr boxlist, int numboxes)
413/* Find the splittable box with the largest (scaled) volume */
414/* Returns NULL if no splittable boxes remain */
415{
416 register boxptr boxp;
417 register int i;
418 register INT32 maxv = 0;
419 boxptr which = NULL;
99f73df9 420
3f4fc796
JS
421 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
422 if (boxp->volume > maxv) {
423 which = boxp;
424 maxv = boxp->volume;
425 }
426 }
427 return which;
428}
429
430
431void
432update_box (j_decompress_ptr cinfo, boxptr boxp)
433/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
434/* and recompute its volume and population */
435{
436 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
437 hist3d histogram = cquantize->histogram;
438 histptr histp;
439 int c0,c1,c2;
440 int c0min,c0max,c1min,c1max,c2min,c2max;
441 INT32 dist0,dist1,dist2;
442 long ccount;
99f73df9 443
3f4fc796
JS
444 c0min = boxp->c0min; c0max = boxp->c0max;
445 c1min = boxp->c1min; c1max = boxp->c1max;
446 c2min = boxp->c2min; c2max = boxp->c2max;
99f73df9 447
3f4fc796
JS
448 if (c0max > c0min)
449 for (c0 = c0min; c0 <= c0max; c0++)
450 for (c1 = c1min; c1 <= c1max; c1++) {
19193a2c
KB
451 histp = & histogram[c0][c1][c2min];
452 for (c2 = c2min; c2 <= c2max; c2++)
453 if (*histp++ != 0) {
454 boxp->c0min = c0min = c0;
455 goto have_c0min;
456 }
3f4fc796
JS
457 }
458 have_c0min:
459 if (c0max > c0min)
460 for (c0 = c0max; c0 >= c0min; c0--)
461 for (c1 = c1min; c1 <= c1max; c1++) {
19193a2c
KB
462 histp = & histogram[c0][c1][c2min];
463 for (c2 = c2min; c2 <= c2max; c2++)
464 if (*histp++ != 0) {
465 boxp->c0max = c0max = c0;
466 goto have_c0max;
467 }
3f4fc796
JS
468 }
469 have_c0max:
470 if (c1max > c1min)
471 for (c1 = c1min; c1 <= c1max; c1++)
472 for (c0 = c0min; c0 <= c0max; c0++) {
19193a2c
KB
473 histp = & histogram[c0][c1][c2min];
474 for (c2 = c2min; c2 <= c2max; c2++)
475 if (*histp++ != 0) {
476 boxp->c1min = c1min = c1;
477 goto have_c1min;
478 }
3f4fc796
JS
479 }
480 have_c1min:
481 if (c1max > c1min)
482 for (c1 = c1max; c1 >= c1min; c1--)
483 for (c0 = c0min; c0 <= c0max; c0++) {
19193a2c
KB
484 histp = & histogram[c0][c1][c2min];
485 for (c2 = c2min; c2 <= c2max; c2++)
486 if (*histp++ != 0) {
487 boxp->c1max = c1max = c1;
488 goto have_c1max;
489 }
3f4fc796
JS
490 }
491 have_c1max:
492 if (c2max > c2min)
493 for (c2 = c2min; c2 <= c2max; c2++)
494 for (c0 = c0min; c0 <= c0max; c0++) {
19193a2c
KB
495 histp = & histogram[c0][c1min][c2];
496 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
497 if (*histp != 0) {
498 boxp->c2min = c2min = c2;
499 goto have_c2min;
500 }
3f4fc796
JS
501 }
502 have_c2min:
503 if (c2max > c2min)
504 for (c2 = c2max; c2 >= c2min; c2--)
505 for (c0 = c0min; c0 <= c0max; c0++) {
19193a2c
KB
506 histp = & histogram[c0][c1min][c2];
507 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
508 if (*histp != 0) {
509 boxp->c2max = c2max = c2;
510 goto have_c2max;
511 }
3f4fc796
JS
512 }
513 have_c2max:
514
515 /* Update box volume.
516 * We use 2-norm rather than real volume here; this biases the method
517 * against making long narrow boxes, and it has the side benefit that
518 * a box is splittable iff norm > 0.
519 * Since the differences are expressed in histogram-cell units,
520 * we have to shift back to JSAMPLE units to get consistent distances;
521 * after which, we scale according to the selected distance scale factors.
522 */
523 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
524 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
525 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
526 boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
99f73df9 527
3f4fc796
JS
528 /* Now scan remaining volume of box and compute population */
529 ccount = 0;
530 for (c0 = c0min; c0 <= c0max; c0++)
531 for (c1 = c1min; c1 <= c1max; c1++) {
532 histp = & histogram[c0][c1][c2min];
533 for (c2 = c2min; c2 <= c2max; c2++, histp++)
19193a2c
KB
534 if (*histp != 0) {
535 ccount++;
536 }
3f4fc796
JS
537 }
538 boxp->colorcount = ccount;
539}
540
541
542int
543median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
19193a2c 544 int desired_colors)
3f4fc796
JS
545/* Repeatedly select and split the largest box until we have enough boxes */
546{
547 int n,lb;
548 int c0,c1,c2,cmax;
549 register boxptr b1,b2;
550
551 while (numboxes < desired_colors) {
552 /* Select box to split.
553 * Current algorithm: by population for first half, then by volume.
554 */
3de71bc8 555 if ((numboxes*2) <= desired_colors) {
3f4fc796
JS
556 b1 = find_biggest_color_pop(boxlist, numboxes);
557 } else {
558 b1 = find_biggest_volume(boxlist, numboxes);
559 }
19193a2c 560 if (b1 == NULL) /* no splittable boxes left! */
3f4fc796 561 break;
19193a2c 562 b2 = &boxlist[numboxes]; /* where new box will go */
3f4fc796
JS
563 /* Copy the color bounds to the new box. */
564 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
565 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
566 /* Choose which axis to split the box on.
567 * Current algorithm: longest scaled axis.
568 * See notes in update_box about scaling distances.
569 */
570 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
571 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
572 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
573 /* We want to break any ties in favor of green, then red, blue last.
574 * This code does the right thing for R,G,B or B,G,R color orders only.
575 */
99f73df9
DW
576#if defined(__VISAGECPP__)
577
578#if RGB_RED_OS2 == 0
579 cmax = c1; n = 1;
580 if (c0 > cmax) { cmax = c0; n = 0; }
581 if (c2 > cmax) { n = 2; }
582#else
583 cmax = c1; n = 1;
584 if (c2 > cmax) { cmax = c2; n = 2; }
585 if (c0 > cmax) { n = 0; }
586#endif
587
588#else
589
3f4fc796
JS
590#if RGB_RED == 0
591 cmax = c1; n = 1;
592 if (c0 > cmax) { cmax = c0; n = 0; }
593 if (c2 > cmax) { n = 2; }
594#else
595 cmax = c1; n = 1;
596 if (c2 > cmax) { cmax = c2; n = 2; }
597 if (c0 > cmax) { n = 0; }
99f73df9
DW
598#endif
599
3f4fc796
JS
600#endif
601 /* Choose split point along selected axis, and update box bounds.
602 * Current algorithm: split at halfway point.
603 * (Since the box has been shrunk to minimum volume,
604 * any split will produce two nonempty subboxes.)
605 * Note that lb value is max for lower box, so must be < old max.
606 */
607 switch (n) {
608 case 0:
609 lb = (b1->c0max + b1->c0min) / 2;
610 b1->c0max = lb;
611 b2->c0min = lb+1;
612 break;
613 case 1:
614 lb = (b1->c1max + b1->c1min) / 2;
615 b1->c1max = lb;
616 b2->c1min = lb+1;
617 break;
618 case 2:
619 lb = (b1->c2max + b1->c2min) / 2;
620 b1->c2max = lb;
621 b2->c2min = lb+1;
622 break;
623 }
624 /* Update stats for boxes */
625 update_box(cinfo, b1);
626 update_box(cinfo, b2);
627 numboxes++;
628 }
629 return numboxes;
630}
631
632
633void
634compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
635/* Compute representative color for a box, put it in colormap[icolor] */
636{
637 /* Current algorithm: mean weighted by pixels (not colors) */
638 /* Note it is important to get the rounding correct! */
639 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
640 hist3d histogram = cquantize->histogram;
641 histptr histp;
642 int c0,c1,c2;
643 int c0min,c0max,c1min,c1max,c2min,c2max;
644 long count;
645 long total = 0;
646 long c0total = 0;
647 long c1total = 0;
648 long c2total = 0;
99f73df9 649
3f4fc796
JS
650 c0min = boxp->c0min; c0max = boxp->c0max;
651 c1min = boxp->c1min; c1max = boxp->c1max;
652 c2min = boxp->c2min; c2max = boxp->c2max;
99f73df9 653
3f4fc796
JS
654 for (c0 = c0min; c0 <= c0max; c0++)
655 for (c1 = c1min; c1 <= c1max; c1++) {
656 histp = & histogram[c0][c1][c2min];
657 for (c2 = c2min; c2 <= c2max; c2++) {
19193a2c
KB
658 if ((count = *histp++) != 0) {
659 total += count;
660 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
661 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
662 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
663 }
3f4fc796
JS
664 }
665 }
99f73df9 666
3f4fc796
JS
667 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
668 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
669 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
670}
671
672
673static void
674select_colors (j_decompress_ptr cinfo, int desired_colors)
675/* Master routine for color selection */
676{
677 boxptr boxlist;
678 int numboxes;
679 int i;
680
681 /* Allocate workspace for box list */
682 boxlist = (boxptr) malloc(desired_colors * sizeof(box));
683 /* Initialize one box containing whole space */
684 numboxes = 1;
685 boxlist[0].c0min = 0;
686 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
687 boxlist[0].c1min = 0;
688 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
689 boxlist[0].c2min = 0;
690 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
691 /* Shrink it to actually-used volume and set its statistics */
692 update_box(cinfo, & boxlist[0]);
693 /* Perform median-cut to produce final box list */
694 numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
695 /* Compute the representative color for each box, fill colormap */
696 for (i = 0; i < numboxes; i++)
697 compute_color(cinfo, & boxlist[i], i);
698 cinfo->actual_number_of_colors = numboxes;
99f73df9 699
3f4fc796
JS
700 free(boxlist); //FIXME?? I don't know if this is correct - VS
701}
702
703
704/*
705 * These routines are concerned with the time-critical task of mapping input
706 * colors to the nearest color in the selected colormap.
707 *
708 * We re-use the histogram space as an "inverse color map", essentially a
709 * cache for the results of nearest-color searches. All colors within a
710 * histogram cell will be mapped to the same colormap entry, namely the one
711 * closest to the cell's center. This may not be quite the closest entry to
712 * the actual input color, but it's almost as good. A zero in the cache
713 * indicates we haven't found the nearest color for that cell yet; the array
714 * is cleared to zeroes before starting the mapping pass. When we find the
715 * nearest color for a cell, its colormap index plus one is recorded in the
716 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
717 * when they need to use an unfilled entry in the cache.
718 *
719 * Our method of efficiently finding nearest colors is based on the "locally
720 * sorted search" idea described by Heckbert and on the incremental distance
721 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
722 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
723 * the distances from a given colormap entry to each cell of the histogram can
724 * be computed quickly using an incremental method: the differences between
725 * distances to adjacent cells themselves differ by a constant. This allows a
726 * fairly fast implementation of the "brute force" approach of computing the
727 * distance from every colormap entry to every histogram cell. Unfortunately,
728 * it needs a work array to hold the best-distance-so-far for each histogram
729 * cell (because the inner loop has to be over cells, not colormap entries).
730 * The work array elements have to be INT32s, so the work array would need
731 * 256Kb at our recommended precision. This is not feasible in DOS machines.
732 *
733 * To get around these problems, we apply Thomas' method to compute the
734 * nearest colors for only the cells within a small subbox of the histogram.
735 * The work array need be only as big as the subbox, so the memory usage
736 * problem is solved. Furthermore, we need not fill subboxes that are never
737 * referenced in pass2; many images use only part of the color gamut, so a
738 * fair amount of work is saved. An additional advantage of this
739 * approach is that we can apply Heckbert's locality criterion to quickly
740 * eliminate colormap entries that are far away from the subbox; typically
741 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
742 * and we need not compute their distances to individual cells in the subbox.
743 * The speed of this approach is heavily influenced by the subbox size: too
744 * small means too much overhead, too big loses because Heckbert's criterion
745 * can't eliminate as many colormap entries. Empirically the best subbox
746 * size seems to be about 1/512th of the histogram (1/8th in each direction).
747 *
748 * Thomas' article also describes a refined method which is asymptotically
749 * faster than the brute-force method, but it is also far more complex and
750 * cannot efficiently be applied to small subboxes. It is therefore not
751 * useful for programs intended to be portable to DOS machines. On machines
752 * with plenty of memory, filling the whole histogram in one shot with Thomas'
753 * refined method might be faster than the present code --- but then again,
754 * it might not be any faster, and it's certainly more complicated.
755 */
756
757
758/* log2(histogram cells in update box) for each axis; this can be adjusted */
759#define BOX_C0_LOG (HIST_C0_BITS-3)
760#define BOX_C1_LOG (HIST_C1_BITS-3)
761#define BOX_C2_LOG (HIST_C2_BITS-3)
762
763#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
764#define BOX_C1_ELEMS (1<<BOX_C1_LOG)
765#define BOX_C2_ELEMS (1<<BOX_C2_LOG)
766
767#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
768#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
769#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
770
771
772/*
773 * The next three routines implement inverse colormap filling. They could
774 * all be folded into one big routine, but splitting them up this way saves
775 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
776 * and may allow some compilers to produce better code by registerizing more
777 * inner-loop variables.
778 */
779
780static int
781find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
19193a2c 782 JSAMPLE colorlist[])
3f4fc796
JS
783/* Locate the colormap entries close enough to an update box to be candidates
784 * for the nearest entry to some cell(s) in the update box. The update box
785 * is specified by the center coordinates of its first cell. The number of
786 * candidate colormap entries is returned, and their colormap indexes are
787 * placed in colorlist[].
788 * This routine uses Heckbert's "locally sorted search" criterion to select
789 * the colors that need further consideration.
790 */
791{
792 int numcolors = cinfo->actual_number_of_colors;
793 int maxc0, maxc1, maxc2;
794 int centerc0, centerc1, centerc2;
795 int i, x, ncolors;
796 INT32 minmaxdist, min_dist, max_dist, tdist;
19193a2c 797 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
3f4fc796
JS
798
799 /* Compute true coordinates of update box's upper corner and center.
800 * Actually we compute the coordinates of the center of the upper-corner
801 * histogram cell, which are the upper bounds of the volume we care about.
802 * Note that since ">>" rounds down, the "center" values may be closer to
803 * min than to max; hence comparisons to them must be "<=", not "<".
804 */
805 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
806 centerc0 = (minc0 + maxc0) >> 1;
807 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
808 centerc1 = (minc1 + maxc1) >> 1;
809 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
810 centerc2 = (minc2 + maxc2) >> 1;
811
812 /* For each color in colormap, find:
813 * 1. its minimum squared-distance to any point in the update box
814 * (zero if color is within update box);
815 * 2. its maximum squared-distance to any point in the update box.
816 * Both of these can be found by considering only the corners of the box.
817 * We save the minimum distance for each color in mindist[];
818 * only the smallest maximum distance is of interest.
819 */
820 minmaxdist = 0x7FFFFFFFL;
821
822 for (i = 0; i < numcolors; i++) {
823 /* We compute the squared-c0-distance term, then add in the other two. */
824 x = GETJSAMPLE(cinfo->colormap[0][i]);
825 if (x < minc0) {
826 tdist = (x - minc0) * C0_SCALE;
827 min_dist = tdist*tdist;
828 tdist = (x - maxc0) * C0_SCALE;
829 max_dist = tdist*tdist;
830 } else if (x > maxc0) {
831 tdist = (x - maxc0) * C0_SCALE;
832 min_dist = tdist*tdist;
833 tdist = (x - minc0) * C0_SCALE;
834 max_dist = tdist*tdist;
835 } else {
836 /* within cell range so no contribution to min_dist */
837 min_dist = 0;
838 if (x <= centerc0) {
19193a2c
KB
839 tdist = (x - maxc0) * C0_SCALE;
840 max_dist = tdist*tdist;
3f4fc796 841 } else {
19193a2c
KB
842 tdist = (x - minc0) * C0_SCALE;
843 max_dist = tdist*tdist;
3f4fc796
JS
844 }
845 }
846
847 x = GETJSAMPLE(cinfo->colormap[1][i]);
848 if (x < minc1) {
849 tdist = (x - minc1) * C1_SCALE;
850 min_dist += tdist*tdist;
851 tdist = (x - maxc1) * C1_SCALE;
852 max_dist += tdist*tdist;
853 } else if (x > maxc1) {
854 tdist = (x - maxc1) * C1_SCALE;
855 min_dist += tdist*tdist;
856 tdist = (x - minc1) * C1_SCALE;
857 max_dist += tdist*tdist;
858 } else {
859 /* within cell range so no contribution to min_dist */
860 if (x <= centerc1) {
19193a2c
KB
861 tdist = (x - maxc1) * C1_SCALE;
862 max_dist += tdist*tdist;
3f4fc796 863 } else {
19193a2c
KB
864 tdist = (x - minc1) * C1_SCALE;
865 max_dist += tdist*tdist;
3f4fc796
JS
866 }
867 }
868
869 x = GETJSAMPLE(cinfo->colormap[2][i]);
870 if (x < minc2) {
871 tdist = (x - minc2) * C2_SCALE;
872 min_dist += tdist*tdist;
873 tdist = (x - maxc2) * C2_SCALE;
874 max_dist += tdist*tdist;
875 } else if (x > maxc2) {
876 tdist = (x - maxc2) * C2_SCALE;
877 min_dist += tdist*tdist;
878 tdist = (x - minc2) * C2_SCALE;
879 max_dist += tdist*tdist;
880 } else {
881 /* within cell range so no contribution to min_dist */
882 if (x <= centerc2) {
19193a2c
KB
883 tdist = (x - maxc2) * C2_SCALE;
884 max_dist += tdist*tdist;
3f4fc796 885 } else {
19193a2c
KB
886 tdist = (x - minc2) * C2_SCALE;
887 max_dist += tdist*tdist;
3f4fc796
JS
888 }
889 }
890
19193a2c 891 mindist[i] = min_dist; /* save away the results */
3f4fc796
JS
892 if (max_dist < minmaxdist)
893 minmaxdist = max_dist;
894 }
895
896 /* Now we know that no cell in the update box is more than minmaxdist
897 * away from some colormap entry. Therefore, only colors that are
898 * within minmaxdist of some part of the box need be considered.
899 */
900 ncolors = 0;
901 for (i = 0; i < numcolors; i++) {
902 if (mindist[i] <= minmaxdist)
903 colorlist[ncolors++] = (JSAMPLE) i;
904 }
905 return ncolors;
906}
907
908
909static void
910find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
19193a2c 911 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
3f4fc796
JS
912/* Find the closest colormap entry for each cell in the update box,
913 * given the list of candidate colors prepared by find_nearby_colors.
914 * Return the indexes of the closest entries in the bestcolor[] array.
915 * This routine uses Thomas' incremental distance calculation method to
916 * find the distance from a colormap entry to successive cells in the box.
917 */
918{
919 int ic0, ic1, ic2;
920 int i, icolor;
19193a2c
KB
921 register INT32 * bptr; /* pointer into bestdist[] array */
922 JSAMPLE * cptr; /* pointer into bestcolor[] array */
923 INT32 dist0, dist1; /* initial distance values */
924 register INT32 dist2; /* current distance in inner loop */
925 INT32 xx0, xx1; /* distance increments */
3f4fc796 926 register INT32 xx2;
19193a2c 927 INT32 inc0, inc1, inc2; /* initial values for increments */
3f4fc796
JS
928 /* This array holds the distance to the nearest-so-far color for each cell */
929 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
930
931 /* Initialize best-distance for each cell of the update box */
932 bptr = bestdist;
933 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
934 *bptr++ = 0x7FFFFFFFL;
99f73df9 935
3f4fc796
JS
936 /* For each color selected by find_nearby_colors,
937 * compute its distance to the center of each cell in the box.
938 * If that's less than best-so-far, update best distance and color number.
939 */
99f73df9 940
3f4fc796
JS
941 /* Nominal steps between cell centers ("x" in Thomas article) */
942#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
943#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
944#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
99f73df9 945
3f4fc796
JS
946 for (i = 0; i < numcolors; i++) {
947 icolor = GETJSAMPLE(colorlist[i]);
948 /* Compute (square of) distance from minc0/c1/c2 to this color */
949 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
950 dist0 = inc0*inc0;
951 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
952 dist0 += inc1*inc1;
953 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
954 dist0 += inc2*inc2;
955 /* Form the initial difference increments */
956 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
957 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
958 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
959 /* Now loop over all cells in box, updating distance per Thomas method */
960 bptr = bestdist;
961 cptr = bestcolor;
962 xx0 = inc0;
963 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
964 dist1 = dist0;
965 xx1 = inc1;
966 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
19193a2c
KB
967 dist2 = dist1;
968 xx2 = inc2;
969 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
970 if (dist2 < *bptr) {
971 *bptr = dist2;
972 *cptr = (JSAMPLE) icolor;
973 }
974 dist2 += xx2;
975 xx2 += 2 * STEP_C2 * STEP_C2;
976 bptr++;
977 cptr++;
978 }
979 dist1 += xx1;
980 xx1 += 2 * STEP_C1 * STEP_C1;
3f4fc796
JS
981 }
982 dist0 += xx0;
983 xx0 += 2 * STEP_C0 * STEP_C0;
984 }
985 }
986}
987
988
989static void
990fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
991/* Fill the inverse-colormap entries in the update box that contains */
992/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
993/* we can fill as many others as we wish.) */
994{
995 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
996 hist3d histogram = cquantize->histogram;
19193a2c 997 int minc0, minc1, minc2; /* lower left corner of update box */
3f4fc796 998 int ic0, ic1, ic2;
19193a2c
KB
999 register JSAMPLE * cptr; /* pointer into bestcolor[] array */
1000 register histptr cachep; /* pointer into main cache array */
3f4fc796
JS
1001 /* This array lists the candidate colormap indexes. */
1002 JSAMPLE colorlist[MAXNUMCOLORS];
19193a2c 1003 int numcolors; /* number of candidate colors */
3f4fc796
JS
1004 /* This array holds the actually closest colormap index for each cell. */
1005 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
1006
1007 /* Convert cell coordinates to update box ID */
1008 c0 >>= BOX_C0_LOG;
1009 c1 >>= BOX_C1_LOG;
1010 c2 >>= BOX_C2_LOG;
1011
1012 /* Compute true coordinates of update box's origin corner.
1013 * Actually we compute the coordinates of the center of the corner
1014 * histogram cell, which are the lower bounds of the volume we care about.
1015 */
1016 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
1017 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
1018 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
99f73df9 1019
3f4fc796
JS
1020 /* Determine which colormap entries are close enough to be candidates
1021 * for the nearest entry to some cell in the update box.
1022 */
1023 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
1024
1025 /* Determine the actually nearest colors. */
1026 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
19193a2c 1027 bestcolor);
3f4fc796
JS
1028
1029 /* Save the best color numbers (plus 1) in the main cache array */
19193a2c 1030 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
3f4fc796
JS
1031 c1 <<= BOX_C1_LOG;
1032 c2 <<= BOX_C2_LOG;
1033 cptr = bestcolor;
1034 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
1035 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
1036 cachep = & histogram[c0+ic0][c1+ic1][c2];
1037 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
19193a2c 1038 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
3f4fc796
JS
1039 }
1040 }
1041 }
1042}
1043
1044
1045/*
1046 * Map some rows of pixels to the output colormapped representation.
1047 */
1048
1049void
1050pass2_no_dither (j_decompress_ptr cinfo,
19193a2c 1051 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
3f4fc796
JS
1052/* This version performs no dithering */
1053{
1054 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1055 hist3d histogram = cquantize->histogram;
1056 register JSAMPROW inptr, outptr;
1057 register histptr cachep;
1058 register int c0, c1, c2;
1059 int row;
1060 JDIMENSION col;
1061 JDIMENSION width = cinfo->output_width;
1062
1063 for (row = 0; row < num_rows; row++) {
1064 inptr = input_buf[row];
1065 outptr = output_buf[row];
1066 for (col = width; col > 0; col--) {
1067 /* get pixel value and index into the cache */
1068 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
1069 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
1070 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
1071 cachep = & histogram[c0][c1][c2];
1072 /* If we have not seen this color before, find nearest colormap entry */
1073 /* and update the cache */
1074 if (*cachep == 0)
19193a2c 1075 fill_inverse_cmap(cinfo, c0,c1,c2);
3f4fc796
JS
1076 /* Now emit the colormap index for this cell */
1077 *outptr++ = (JSAMPLE) (*cachep - 1);
1078 }
1079 }
1080}
1081
1082
1083void
1084pass2_fs_dither (j_decompress_ptr cinfo,
19193a2c 1085 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
3f4fc796
JS
1086/* This version performs Floyd-Steinberg dithering */
1087{
1088 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1089 hist3d histogram = cquantize->histogram;
19193a2c 1090 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
3f4fc796
JS
1091 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
1092 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
19193a2c
KB
1093 register FSERRPTR errorptr; /* => fserrors[] at column before current */
1094 JSAMPROW inptr; /* => current input pixel */
1095 JSAMPROW outptr; /* => current output pixel */
3f4fc796 1096 histptr cachep;
19193a2c
KB
1097 int dir; /* +1 or -1 depending on direction */
1098 int dir3; /* 3*dir, for advancing inptr & errorptr */
3f4fc796
JS
1099 int row;
1100 JDIMENSION col;
1101 JDIMENSION width = cinfo->output_width;
1102 JSAMPLE *range_limit = cinfo->sample_range_limit;
1103 int *error_limit = cquantize->error_limiter;
1104 JSAMPROW colormap0 = cinfo->colormap[0];
1105 JSAMPROW colormap1 = cinfo->colormap[1];
1106 JSAMPROW colormap2 = cinfo->colormap[2];
99f73df9 1107
3f4fc796
JS
1108
1109 for (row = 0; row < num_rows; row++) {
1110 inptr = input_buf[row];
1111 outptr = output_buf[row];
1112 if (cquantize->on_odd_row) {
1113 /* work right to left in this row */
19193a2c 1114 inptr += (width-1) * 3; /* so point to rightmost pixel */
3f4fc796
JS
1115 outptr += width-1;
1116 dir = -1;
1117 dir3 = -3;
1118 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
748a3af8 1119 cquantize->on_odd_row = FALSE; /* flip for next time */
3f4fc796
JS
1120 } else {
1121 /* work left to right in this row */
1122 dir = 1;
1123 dir3 = 3;
1124 errorptr = cquantize->fserrors; /* => entry before first real column */
748a3af8 1125 cquantize->on_odd_row = TRUE; /* flip for next time */
3f4fc796
JS
1126 }
1127 /* Preset error values: no error propagated to first pixel from left */
1128 cur0 = cur1 = cur2 = 0;
1129 /* and no error propagated to row below yet */
1130 belowerr0 = belowerr1 = belowerr2 = 0;
1131 bpreverr0 = bpreverr1 = bpreverr2 = 0;
1132
1133 for (col = width; col > 0; col--) {
1134 /* curN holds the error propagated from the previous pixel on the
1135 * current line. Add the error propagated from the previous line
1136 * to form the complete error correction term for this pixel, and
1137 * round the error term (which is expressed * 16) to an integer.
1138 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1139 * for either sign of the error value.
1140 * Note: errorptr points to *previous* column's array entry.
1141 */
1142 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1143 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1144 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1145 /* Limit the error using transfer function set by init_error_limit.
1146 * See comments with init_error_limit for rationale.
1147 */
1148 cur0 = error_limit[cur0];
1149 cur1 = error_limit[cur1];
1150 cur2 = error_limit[cur2];
1151 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1152 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1153 * this sets the required size of the range_limit array.
1154 */
1155 cur0 += GETJSAMPLE(inptr[0]);
1156 cur1 += GETJSAMPLE(inptr[1]);
1157 cur2 += GETJSAMPLE(inptr[2]);
1158 cur0 = GETJSAMPLE(range_limit[cur0]);
1159 cur1 = GETJSAMPLE(range_limit[cur1]);
1160 cur2 = GETJSAMPLE(range_limit[cur2]);
1161 /* Index into the cache with adjusted pixel value */
1162 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1163 /* If we have not seen this color before, find nearest colormap */
1164 /* entry and update the cache */
1165 if (*cachep == 0)
19193a2c 1166 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
3f4fc796
JS
1167 /* Now emit the colormap index for this cell */
1168 { register int pixcode = *cachep - 1;
19193a2c
KB
1169 *outptr = (JSAMPLE) pixcode;
1170 /* Compute representation error for this pixel */
1171 cur0 -= GETJSAMPLE(colormap0[pixcode]);
1172 cur1 -= GETJSAMPLE(colormap1[pixcode]);
1173 cur2 -= GETJSAMPLE(colormap2[pixcode]);
3f4fc796
JS
1174 }
1175 /* Compute error fractions to be propagated to adjacent pixels.
1176 * Add these into the running sums, and simultaneously shift the
1177 * next-line error sums left by 1 column.
1178 */
1179 { register LOCFSERROR bnexterr, delta;
1180
19193a2c
KB
1181 bnexterr = cur0; /* Process component 0 */
1182 delta = cur0 * 2;
1183 cur0 += delta; /* form error * 3 */
1184 errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1185 cur0 += delta; /* form error * 5 */
1186 bpreverr0 = belowerr0 + cur0;
1187 belowerr0 = bnexterr;
1188 cur0 += delta; /* form error * 7 */
1189 bnexterr = cur1; /* Process component 1 */
1190 delta = cur1 * 2;
1191 cur1 += delta; /* form error * 3 */
1192 errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1193 cur1 += delta; /* form error * 5 */
1194 bpreverr1 = belowerr1 + cur1;
1195 belowerr1 = bnexterr;
1196 cur1 += delta; /* form error * 7 */
1197 bnexterr = cur2; /* Process component 2 */
1198 delta = cur2 * 2;
1199 cur2 += delta; /* form error * 3 */
1200 errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1201 cur2 += delta; /* form error * 5 */
1202 bpreverr2 = belowerr2 + cur2;
1203 belowerr2 = bnexterr;
1204 cur2 += delta; /* form error * 7 */
3f4fc796
JS
1205 }
1206 /* At this point curN contains the 7/16 error value to be propagated
1207 * to the next pixel on the current line, and all the errors for the
1208 * next line have been shifted over. We are therefore ready to move on.
1209 */
19193a2c 1210 inptr += dir3; /* Advance pixel pointers to next column */
3f4fc796 1211 outptr += dir;
19193a2c 1212 errorptr += dir3; /* advance errorptr to current column */
3f4fc796
JS
1213 }
1214 /* Post-loop cleanup: we must unload the final error values into the
1215 * final fserrors[] entry. Note we need not unload belowerrN because
1216 * it is for the dummy column before or after the actual array.
1217 */
1218 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1219 errorptr[1] = (FSERROR) bpreverr1;
1220 errorptr[2] = (FSERROR) bpreverr2;
1221 }
1222}
1223
1224
1225/*
1226 * Initialize the error-limiting transfer function (lookup table).
1227 * The raw F-S error computation can potentially compute error values of up to
1228 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1229 * much less, otherwise obviously wrong pixels will be created. (Typical
1230 * effects include weird fringes at color-area boundaries, isolated bright
1231 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1232 * is to ensure that the "corners" of the color cube are allocated as output
1233 * colors; then repeated errors in the same direction cannot cause cascading
1234 * error buildup. However, that only prevents the error from getting
1235 * completely out of hand; Aaron Giles reports that error limiting improves
1236 * the results even with corner colors allocated.
1237 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1238 * well, but the smoother transfer function used below is even better. Thanks
1239 * to Aaron Giles for this idea.
1240 */
1241
1242static void
1243init_error_limit (j_decompress_ptr cinfo)
1244/* Allocate and fill in the error_limiter table */
1245{
1246 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1247 int * table;
1248 int in, out;
1249
1250 table = (int *) malloc((MAXJSAMPLE*2+1) * sizeof(int));
19193a2c 1251 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
3f4fc796
JS
1252 cquantize->error_limiter = table;
1253
1254#define STEPSIZE ((MAXJSAMPLE+1)/16)
1255 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1256 out = 0;
1257 for (in = 0; in < STEPSIZE; in++, out++) {
1258 table[in] = out; table[-in] = -out;
1259 }
1260 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1261 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1262 table[in] = out; table[-in] = -out;
1263 }
1264 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1265 for (; in <= MAXJSAMPLE; in++) {
1266 table[in] = out; table[-in] = -out;
1267 }
1268#undef STEPSIZE
1269}
1270
1271
1272/*
1273 * Finish up at the end of each pass.
1274 */
1275
1276void
1277finish_pass1 (j_decompress_ptr cinfo)
1278{
1279 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1280
1281 /* Select the representative colors and fill in cinfo->colormap */
1282 cinfo->colormap = cquantize->sv_colormap;
1283 select_colors(cinfo, cquantize->desired);
1284 /* Force next pass to zero the color index table */
748a3af8 1285 cquantize->needs_zeroed = TRUE;
3f4fc796
JS
1286}
1287
1288
1289void
574c939e 1290finish_pass2 (j_decompress_ptr WXUNUSED(cinfo))
3f4fc796
JS
1291{
1292 /* no work */
1293}
1294
1295
1296/*
1297 * Initialize for each processing pass.
1298 */
1299
1300void
1301start_pass_2_quant (j_decompress_ptr cinfo, bool is_pre_scan)
1302{
1303 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1304 hist3d histogram = cquantize->histogram;
1305 int i;
1306
1307 if (is_pre_scan) {
1308 /* Set up method pointers */
1309 cquantize->pub.color_quantize = prescan_quantize;
1310 cquantize->pub.finish_pass = finish_pass1;
748a3af8 1311 cquantize->needs_zeroed = TRUE; /* Always zero histogram */
3f4fc796
JS
1312 } else {
1313 /* Set up method pointers */
1314 cquantize->pub.color_quantize = pass2_fs_dither;
1315 cquantize->pub.finish_pass = finish_pass2;
1316
1317 /* Make sure color count is acceptable */
1318 i = cinfo->actual_number_of_colors;
1319
1320 {
1321 size_t arraysize = (size_t) ((cinfo->output_width + 2) *
19193a2c 1322 (3 * sizeof(FSERROR)));
3f4fc796
JS
1323 /* Allocate Floyd-Steinberg workspace if we didn't already. */
1324 if (cquantize->fserrors == NULL)
19193a2c 1325 cquantize->fserrors = (INT16*) malloc(arraysize);
3f4fc796
JS
1326 /* Initialize the propagated errors to zero. */
1327 memset((void *) cquantize->fserrors, 0, arraysize);
1328 /* Make the error-limit table if we didn't already. */
1329 if (cquantize->error_limiter == NULL)
19193a2c 1330 init_error_limit(cinfo);
748a3af8 1331 cquantize->on_odd_row = FALSE;
3f4fc796
JS
1332 }
1333
1334 }
1335 /* Zero the histogram or inverse color map, if necessary */
1336 if (cquantize->needs_zeroed) {
1337 for (i = 0; i < HIST_C0_ELEMS; i++) {
1338 memset((void *) histogram[i], 0,
19193a2c 1339 HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
3f4fc796 1340 }
748a3af8 1341 cquantize->needs_zeroed = FALSE;
3f4fc796
JS
1342 }
1343}
1344
1345
1346/*
1347 * Switch to a new external colormap between output passes.
1348 */
1349
1350void
1351new_color_map_2_quant (j_decompress_ptr cinfo)
1352{
1353 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1354
1355 /* Reset the inverse color map */
748a3af8 1356 cquantize->needs_zeroed = TRUE;
3f4fc796
JS
1357}
1358
1359
1360/*
1361 * Module initialization routine for 2-pass color quantization.
1362 */
1363
1364void
1365jinit_2pass_quantizer (j_decompress_ptr cinfo)
1366{
1367 my_cquantize_ptr cquantize;
1368 int i;
1369
1370 cquantize = (my_cquantize_ptr) malloc(sizeof(my_cquantizer));
19193a2c 1371 cinfo->cquantize = (jpeg_color_quantizer *) cquantize;
3f4fc796
JS
1372 cquantize->pub.start_pass = start_pass_2_quant;
1373 cquantize->pub.new_color_map = new_color_map_2_quant;
19193a2c 1374 cquantize->fserrors = NULL; /* flag optional arrays not allocated */
3f4fc796
JS
1375 cquantize->error_limiter = NULL;
1376
1377
1378 /* Allocate the histogram/inverse colormap storage */
1379 cquantize->histogram = (hist3d) malloc(HIST_C0_ELEMS * sizeof(hist2d));
1380 for (i = 0; i < HIST_C0_ELEMS; i++) {
1381 cquantize->histogram[i] = (hist2d) malloc(HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1382 }
748a3af8 1383 cquantize->needs_zeroed = TRUE; /* histogram is garbage now */
3f4fc796
JS
1384
1385 /* Allocate storage for the completed colormap, if required.
1386 * We do this now since it is storage and may affect
1387 * the memory manager's space calculations.
1388 */
1389 {
1390 /* Make sure color count is acceptable */
1391 int desired = cinfo->desired_number_of_colors;
1392
1393 cquantize->sv_colormap = (JSAMPARRAY) malloc(sizeof(JSAMPROW) * 3);
1394 cquantize->sv_colormap[0] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired);
1395 cquantize->sv_colormap[1] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired);
1396 cquantize->sv_colormap[2] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired);
99f73df9 1397
3f4fc796 1398 cquantize->desired = desired;
99f73df9 1399 }
3f4fc796
JS
1400
1401 /* Allocate Floyd-Steinberg workspace if necessary.
1402 * This isn't really needed until pass 2, but again it is storage.
1403 * Although we will cope with a later change in dither_mode,
1404 * we do not promise to honor max_memory_to_use if dither_mode changes.
1405 */
1406 {
1407 cquantize->fserrors = (FSERRPTR) malloc(
1408 (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
1409 /* Might as well create the error-limiting table too. */
1410 init_error_limit(cinfo);
1411 }
1412}
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423void
1424prepare_range_limit_table (j_decompress_ptr cinfo)
1425/* Allocate and fill in the sample_range_limit table */
1426{
1427 JSAMPLE * table;
1428 int i;
1429
1430 table = (JSAMPLE *) malloc((5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * sizeof(JSAMPLE));
1431 cinfo->srl_orig = table;
19193a2c 1432 table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
3f4fc796
JS
1433 cinfo->sample_range_limit = table;
1434 /* First segment of "simple" table: limit[x] = 0 for x < 0 */
1435 memset(table - (MAXJSAMPLE+1), 0, (MAXJSAMPLE+1) * sizeof(JSAMPLE));
1436 /* Main part of "simple" table: limit[x] = x */
1437 for (i = 0; i <= MAXJSAMPLE; i++)
1438 table[i] = (JSAMPLE) i;
19193a2c 1439 table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
3f4fc796
JS
1440 /* End of simple table, rest of first half of post-IDCT table */
1441 for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
1442 table[i] = MAXJSAMPLE;
1443 /* Second half of post-IDCT table */
1444 memset(table + (2 * (MAXJSAMPLE+1)), 0,
19193a2c 1445 (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * sizeof(JSAMPLE));
3f4fc796 1446 memcpy(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
19193a2c 1447 cinfo->sample_range_limit, CENTERJSAMPLE * sizeof(JSAMPLE));
3f4fc796
JS
1448}
1449
1450
1451
1452
1453/*
1454 * wxQuantize
1455 */
1456
1457IMPLEMENT_DYNAMIC_CLASS(wxQuantize, wxObject)
1458
1459void wxQuantize::DoQuantize(unsigned w, unsigned h, unsigned char **in_rows, unsigned char **out_rows,
1460 unsigned char *palette, int desiredNoColours)
1461{
1462 j_decompress dec;
1463 my_cquantize_ptr cquantize;
1464
1465 dec.output_width = w;
1466 dec.desired_number_of_colors = desiredNoColours;
1467 prepare_range_limit_table(&dec);
1468 jinit_2pass_quantizer(&dec);
1469 cquantize = (my_cquantize_ptr) dec.cquantize;
1470
1471
748a3af8 1472 cquantize->pub.start_pass(&dec, TRUE);
3f4fc796
JS
1473 cquantize->pub.color_quantize(&dec, in_rows, out_rows, h);
1474 cquantize->pub.finish_pass(&dec);
1475
748a3af8 1476 cquantize->pub.start_pass(&dec, FALSE);
3f4fc796
JS
1477 cquantize->pub.color_quantize(&dec, in_rows, out_rows, h);
1478 cquantize->pub.finish_pass(&dec);
1479
1480
1481 for (int i = 0; i < dec.desired_number_of_colors; i++) {
1482 palette[3 * i + 0] = dec.colormap[0][i];
1483 palette[3 * i + 1] = dec.colormap[1][i];
1484 palette[3 * i + 2] = dec.colormap[2][i];
1485 }
1486
1487 for (int ii = 0; ii < HIST_C0_ELEMS; ii++) free(cquantize->histogram[ii]);
1488 free(cquantize->histogram);
1489 free(dec.colormap[0]);
1490 free(dec.colormap[1]);
1491 free(dec.colormap[2]);
1492 free(dec.colormap);
1493 free(dec.srl_orig);
1494
1495 //free(cquantize->error_limiter);
1496 free((void*)(cquantize->error_limiter - MAXJSAMPLE)); // To reverse what was done to it
1497
1498 free(cquantize->fserrors);
1499 free(cquantize);
1500}
1501
1502// TODO: somehow make use of the Windows system colours, rather than ignoring them for the
1503// purposes of quantization.
1504
d275c7eb
VZ
1505bool wxQuantize::Quantize(const wxImage& src, wxImage& dest,
1506 wxPalette** pPalette,
1507 int desiredNoColours,
1508 unsigned char** eightBitData,
1509 int flags)
3f4fc796 1510
99f73df9 1511{
3f4fc796
JS
1512 int i;
1513 int w = src.GetWidth();
1514 int h = src.GetHeight();
1515
1516 int windowsSystemColourCount = 20;
19193a2c 1517
3f4fc796
JS
1518 int paletteShift = 0;
1519
1520 // Shift the palette up by the number of Windows system colours,
1521 // if necessary
1522 if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS)
1523 paletteShift = windowsSystemColourCount;
1524
1525 // Make room for the Windows system colours
1526#ifdef __WXMSW__
1527 if ((flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS) && (desiredNoColours > (256 - windowsSystemColourCount)))
1528 desiredNoColours = 256 - windowsSystemColourCount;
1529#endif
1530
1531 // create rows info:
1532 unsigned char **rows = new unsigned char *[h];
1533 h = src.GetHeight(), w = src.GetWidth();
1534 unsigned char *imgdt = src.GetData();
1535 for (i = 0; i < h; i++)
1536 rows[i] = imgdt + 3/*RGB*/ * w * i;
1537
1538 unsigned char palette[3*256];
1539
1540 // This is the image as represented by palette indexes.
1541 unsigned char *data8bit = new unsigned char[w * h];
1542 unsigned char **outrows = new unsigned char *[h];
1543 for (i = 0; i < h; i++)
1544 outrows[i] = data8bit + w * i;
99f73df9 1545
3f4fc796
JS
1546 //RGB->palette
1547 DoQuantize(w, h, rows, outrows, palette, desiredNoColours);
99f73df9 1548
3f4fc796 1549 delete[] rows;
99f73df9
DW
1550 delete[] outrows;
1551
3f4fc796
JS
1552 // palette->RGB(max.256)
1553
1554 if (flags & wxQUANTIZE_FILL_DESTINATION_IMAGE)
1555 {
1556 if (!dest.Ok())
1557 dest.Create(w, h);
1558
1559 imgdt = dest.GetData();
1560 for (i = 0; i < w * h; i++)
1561 {
1562 unsigned char c = data8bit[i];
1563 imgdt[3 * i + 0/*R*/] = palette[3 * c + 0];
1564 imgdt[3 * i + 1/*G*/] = palette[3 * c + 1];
1565 imgdt[3 * i + 2/*B*/] = palette[3 * c + 2];
1566 }
1567 }
1568
1569 if (eightBitData && (flags & wxQUANTIZE_RETURN_8BIT_DATA))
1570 {
1571#ifdef __WXMSW__
1572 if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS)
1573 {
1574 // We need to shift the palette entries up
1575 // to make room for the Windows system colours.
1576 for (i = 0; i < w * h; i++)
1577 data8bit[i] = data8bit[i] + paletteShift;
1578 }
1579#endif
1580 *eightBitData = data8bit;
1581 }
1582 else
1583 delete[] data8bit;
1584
d275c7eb 1585#if wxUSE_PALETTE
3f4fc796
JS
1586 // Make a wxWindows palette
1587 if (pPalette)
1588 {
1589 unsigned char* r = new unsigned char[256];
1590 unsigned char* g = new unsigned char[256];
1591 unsigned char* b = new unsigned char[256];
1592
1593#ifdef __WXMSW__
1594 // Fill the first 20 entries with Windows system colours
1595 if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS)
1596 {
1597 HDC hDC = ::GetDC(NULL);
1598 PALETTEENTRY* entries = new PALETTEENTRY[windowsSystemColourCount];
1599 ::GetSystemPaletteEntries(hDC, 0, windowsSystemColourCount, entries);
1600 ::ReleaseDC(NULL, hDC);
1601
1602 for (i = 0; i < windowsSystemColourCount; i++)
1603 {
1604 r[i] = entries[i].peRed;
1605 g[i] = entries[i].peGreen;
1606 b[i] = entries[i].peBlue;
1607 }
1608 delete[] entries;
1609 }
1610#endif
1611
1612 for (i = 0; i < desiredNoColours; i++)
1613 {
1614 r[i+paletteShift] = palette[i*3 + 0];
1615 g[i+paletteShift] = palette[i*3 + 1];
1616 b[i+paletteShift] = palette[i*3 + 2];
1617 }
1618
1619 // Blank out any remaining palette entries
1620 for (i = desiredNoColours+paletteShift; i < 256; i++)
1621 {
1622 r[i] = 0;
1623 g[i] = 0;
1624 b[i] = 0;
1625 }
1626 *pPalette = new wxPalette(256, r, g, b);
1627 delete[] r;
1628 delete[] g;
1629 delete[] b;
1630 }
d275c7eb 1631#endif // wxUSE_PALETTE
99f73df9 1632
3f4fc796
JS
1633 return TRUE;
1634}
1635
2f382cc6
JS
1636// This version sets a palette in the destination image so you don't
1637// have to manage it yourself.
1638
d275c7eb
VZ
1639bool wxQuantize::Quantize(const wxImage& src,
1640 wxImage& dest,
1641 int desiredNoColours,
1642 unsigned char** eightBitData,
1643 int flags)
2f382cc6
JS
1644{
1645 wxPalette* palette = NULL;
d275c7eb
VZ
1646 if ( !Quantize(src, dest, & palette, desiredNoColours, eightBitData, flags) )
1647 return FALSE;
1648
1649#if wxUSE_PALETTE
1650 if (palette)
2f382cc6 1651 {
d275c7eb
VZ
1652 dest.SetPalette(* palette);
1653 delete palette;
2f382cc6 1654 }
d275c7eb
VZ
1655#endif // wxUSE_PALETTE
1656
1657 return TRUE;
2f382cc6
JS
1658}
1659
7da6ab6e
JS
1660#endif
1661 // wxUSE_IMAGE
1662