]>
Commit | Line | Data |
---|---|---|
b47c832e RR |
1 | /* $Header$ */ |
2 | ||
3 | /* | |
4 | * Copyright (c) 1991-1997 Sam Leffler | |
5 | * Copyright (c) 1991-1997 Silicon Graphics, Inc. | |
6 | * | |
7 | * Permission to use, copy, modify, distribute, and sell this software and | |
8 | * its documentation for any purpose is hereby granted without fee, provided | |
9 | * that (i) the above copyright notices and this permission notice appear in | |
10 | * all copies of the software and related documentation, and (ii) the names of | |
11 | * Sam Leffler and Silicon Graphics may not be used in any advertising or | |
12 | * publicity relating to the software without the specific, prior written | |
13 | * permission of Sam Leffler and Silicon Graphics. | |
14 | * | |
15 | * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
16 | * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
17 | * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
18 | * | |
19 | * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR | |
20 | * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, | |
21 | * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, | |
22 | * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF | |
23 | * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE | |
24 | * OF THIS SOFTWARE. | |
25 | */ | |
26 | ||
27 | /* | |
28 | * TIFF Library | |
29 | * | |
30 | * Read and return a packed RGBA image. | |
31 | */ | |
32 | #include "tiffiop.h" | |
33 | #include <assert.h> | |
34 | #include <stdio.h> | |
35 | ||
36 | static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32); | |
37 | static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | |
38 | static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32); | |
39 | static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | |
40 | static int pickTileContigCase(TIFFRGBAImage*); | |
41 | static int pickTileSeparateCase(TIFFRGBAImage*); | |
42 | ||
43 | static const char photoTag[] = "PhotometricInterpretation"; | |
44 | ||
45 | /* | |
46 | * Check the image to see if TIFFReadRGBAImage can deal with it. | |
47 | * 1/0 is returned according to whether or not the image can | |
48 | * be handled. If 0 is returned, emsg contains the reason | |
49 | * why it is being rejected. | |
50 | */ | |
51 | int | |
52 | TIFFRGBAImageOK(TIFF* tif, char emsg[1024]) | |
53 | { | |
54 | TIFFDirectory* td = &tif->tif_dir; | |
55 | uint16 photometric; | |
56 | int colorchannels; | |
57 | ||
58 | switch (td->td_bitspersample) { | |
59 | case 1: case 2: case 4: | |
60 | case 8: case 16: | |
61 | break; | |
62 | default: | |
63 | sprintf(emsg, "Sorry, can not handle images with %d-bit samples", | |
64 | td->td_bitspersample); | |
65 | return (0); | |
66 | } | |
67 | colorchannels = td->td_samplesperpixel - td->td_extrasamples; | |
68 | if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) { | |
69 | switch (colorchannels) { | |
70 | case 1: | |
71 | photometric = PHOTOMETRIC_MINISBLACK; | |
72 | break; | |
73 | case 3: | |
74 | photometric = PHOTOMETRIC_RGB; | |
75 | break; | |
76 | default: | |
77 | sprintf(emsg, "Missing needed %s tag", photoTag); | |
78 | return (0); | |
79 | } | |
80 | } | |
81 | switch (photometric) { | |
82 | case PHOTOMETRIC_MINISWHITE: | |
83 | case PHOTOMETRIC_MINISBLACK: | |
84 | case PHOTOMETRIC_PALETTE: | |
85 | if (td->td_planarconfig == PLANARCONFIG_CONTIG && td->td_samplesperpixel != 1) { | |
86 | sprintf(emsg, | |
87 | "Sorry, can not handle contiguous data with %s=%d, and %s=%d", | |
88 | photoTag, photometric, | |
89 | "Samples/pixel", td->td_samplesperpixel); | |
90 | return (0); | |
91 | } | |
92 | break; | |
93 | case PHOTOMETRIC_YCBCR: | |
94 | if (td->td_planarconfig != PLANARCONFIG_CONTIG) { | |
95 | sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d", | |
96 | "Planarconfiguration", td->td_planarconfig); | |
97 | return (0); | |
98 | } | |
99 | break; | |
100 | case PHOTOMETRIC_RGB: | |
101 | if (colorchannels < 3) { | |
102 | sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", | |
103 | "Color channels", colorchannels); | |
104 | return (0); | |
105 | } | |
106 | break; | |
107 | #ifdef CMYK_SUPPORT | |
108 | case PHOTOMETRIC_SEPARATED: | |
109 | if (td->td_inkset != INKSET_CMYK) { | |
110 | sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | |
111 | "InkSet", td->td_inkset); | |
112 | return (0); | |
113 | } | |
114 | if (td->td_samplesperpixel != 4) { | |
115 | sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | |
116 | "Samples/pixel", td->td_samplesperpixel); | |
117 | return (0); | |
118 | } | |
119 | break; | |
120 | #endif | |
121 | case PHOTOMETRIC_LOGL: | |
122 | if (td->td_compression != COMPRESSION_SGILOG) { | |
123 | sprintf(emsg, "Sorry, LogL data must have %s=%d", | |
124 | "Compression", COMPRESSION_SGILOG); | |
125 | return (0); | |
126 | } | |
127 | break; | |
128 | case PHOTOMETRIC_LOGLUV: | |
129 | if (td->td_compression != COMPRESSION_SGILOG && | |
130 | td->td_compression != COMPRESSION_SGILOG24) { | |
131 | sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", | |
132 | "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); | |
133 | return (0); | |
134 | } | |
135 | if (td->td_planarconfig != PLANARCONFIG_CONTIG) { | |
136 | sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", | |
137 | "Planarconfiguration", td->td_planarconfig); | |
138 | return (0); | |
139 | } | |
140 | break; | |
141 | default: | |
142 | sprintf(emsg, "Sorry, can not handle image with %s=%d", | |
143 | photoTag, photometric); | |
144 | return (0); | |
145 | } | |
146 | return (1); | |
147 | } | |
148 | ||
149 | void | |
150 | TIFFRGBAImageEnd(TIFFRGBAImage* img) | |
151 | { | |
152 | if (img->Map) | |
153 | _TIFFfree(img->Map), img->Map = NULL; | |
154 | if (img->BWmap) | |
155 | _TIFFfree(img->BWmap), img->BWmap = NULL; | |
156 | if (img->PALmap) | |
157 | _TIFFfree(img->PALmap), img->PALmap = NULL; | |
158 | if (img->ycbcr) | |
159 | _TIFFfree(img->ycbcr), img->ycbcr = NULL; | |
160 | ||
161 | if( img->redcmap ) { | |
162 | _TIFFfree( img->redcmap ); | |
163 | _TIFFfree( img->greencmap ); | |
164 | _TIFFfree( img->bluecmap ); | |
165 | } | |
166 | } | |
167 | ||
168 | static int | |
169 | isCCITTCompression(TIFF* tif) | |
170 | { | |
171 | uint16 compress; | |
172 | TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress); | |
173 | return (compress == COMPRESSION_CCITTFAX3 || | |
174 | compress == COMPRESSION_CCITTFAX4 || | |
175 | compress == COMPRESSION_CCITTRLE || | |
176 | compress == COMPRESSION_CCITTRLEW); | |
177 | } | |
178 | ||
179 | int | |
180 | TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024]) | |
181 | { | |
182 | uint16* sampleinfo; | |
183 | uint16 extrasamples; | |
184 | uint16 planarconfig; | |
185 | uint16 compress; | |
186 | int colorchannels; | |
187 | uint16 *red_orig, *green_orig, *blue_orig; | |
188 | int n_color; | |
189 | ||
190 | /* Initialize to normal values */ | |
191 | img->row_offset = 0; | |
192 | img->col_offset = 0; | |
193 | img->redcmap = NULL; | |
194 | img->greencmap = NULL; | |
195 | img->bluecmap = NULL; | |
196 | ||
197 | img->tif = tif; | |
198 | img->stoponerr = stop; | |
199 | TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample); | |
200 | switch (img->bitspersample) { | |
201 | case 1: case 2: case 4: | |
202 | case 8: case 16: | |
203 | break; | |
204 | default: | |
205 | sprintf(emsg, "Sorry, can not image with %d-bit samples", | |
206 | img->bitspersample); | |
207 | return (0); | |
208 | } | |
209 | img->alpha = 0; | |
210 | TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel); | |
211 | TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, | |
212 | &extrasamples, &sampleinfo); | |
213 | if (extrasamples == 1) | |
214 | switch (sampleinfo[0]) { | |
215 | case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */ | |
216 | case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */ | |
217 | img->alpha = sampleinfo[0]; | |
218 | break; | |
219 | } | |
220 | colorchannels = img->samplesperpixel - extrasamples; | |
221 | TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress); | |
222 | TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig); | |
223 | if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) { | |
224 | switch (colorchannels) { | |
225 | case 1: | |
226 | if (isCCITTCompression(tif)) | |
227 | img->photometric = PHOTOMETRIC_MINISWHITE; | |
228 | else | |
229 | img->photometric = PHOTOMETRIC_MINISBLACK; | |
230 | break; | |
231 | case 3: | |
232 | img->photometric = PHOTOMETRIC_RGB; | |
233 | break; | |
234 | default: | |
235 | sprintf(emsg, "Missing needed %s tag", photoTag); | |
236 | return (0); | |
237 | } | |
238 | } | |
239 | switch (img->photometric) { | |
240 | case PHOTOMETRIC_PALETTE: | |
241 | if (!TIFFGetField(tif, TIFFTAG_COLORMAP, | |
242 | &red_orig, &green_orig, &blue_orig)) { | |
243 | TIFFError(TIFFFileName(tif), "Missing required \"Colormap\" tag"); | |
244 | return (0); | |
245 | } | |
246 | ||
247 | /* copy the colormaps so we can modify them */ | |
248 | n_color = (1L << img->bitspersample); | |
249 | img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | |
250 | img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | |
251 | img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | |
252 | if( !img->redcmap || !img->greencmap || !img->bluecmap ) { | |
253 | TIFFError(TIFFFileName(tif), "Out of memory for colormap copy"); | |
254 | return (0); | |
255 | } | |
256 | ||
257 | memcpy( img->redcmap, red_orig, n_color * 2 ); | |
258 | memcpy( img->greencmap, green_orig, n_color * 2 ); | |
259 | memcpy( img->bluecmap, blue_orig, n_color * 2 ); | |
260 | ||
261 | /* fall thru... */ | |
262 | case PHOTOMETRIC_MINISWHITE: | |
263 | case PHOTOMETRIC_MINISBLACK: | |
264 | if (planarconfig == PLANARCONFIG_CONTIG && img->samplesperpixel != 1) { | |
265 | sprintf(emsg, | |
266 | "Sorry, can not handle contiguous data with %s=%d, and %s=%d", | |
267 | photoTag, img->photometric, | |
268 | "Samples/pixel", img->samplesperpixel); | |
269 | return (0); | |
270 | } | |
271 | break; | |
272 | case PHOTOMETRIC_YCBCR: | |
273 | if (planarconfig != PLANARCONFIG_CONTIG) { | |
274 | sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d", | |
275 | "Planarconfiguration", planarconfig); | |
276 | return (0); | |
277 | } | |
278 | /* It would probably be nice to have a reality check here. */ | |
279 | if (compress == COMPRESSION_JPEG && planarconfig == PLANARCONFIG_CONTIG) { | |
280 | /* can rely on libjpeg to convert to RGB */ | |
281 | /* XXX should restore current state on exit */ | |
282 | TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB); | |
283 | img->photometric = PHOTOMETRIC_RGB; | |
284 | } | |
285 | break; | |
286 | case PHOTOMETRIC_RGB: | |
287 | if (colorchannels < 3) { | |
288 | sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", | |
289 | "Color channels", colorchannels); | |
290 | return (0); | |
291 | } | |
292 | break; | |
293 | case PHOTOMETRIC_SEPARATED: { | |
294 | uint16 inkset; | |
295 | TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); | |
296 | if (inkset != INKSET_CMYK) { | |
297 | sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | |
298 | "InkSet", inkset); | |
299 | return (0); | |
300 | } | |
301 | if (img->samplesperpixel != 4) { | |
302 | sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | |
303 | "Samples/pixel", img->samplesperpixel); | |
304 | return (0); | |
305 | } | |
306 | break; | |
307 | } | |
308 | case PHOTOMETRIC_LOGL: | |
309 | if (compress != COMPRESSION_SGILOG) { | |
310 | sprintf(emsg, "Sorry, LogL data must have %s=%d", | |
311 | "Compression", COMPRESSION_SGILOG); | |
312 | return (0); | |
313 | } | |
314 | TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); | |
315 | img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */ | |
316 | img->bitspersample = 8; | |
317 | break; | |
318 | case PHOTOMETRIC_LOGLUV: | |
319 | if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) { | |
320 | sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", | |
321 | "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); | |
322 | return (0); | |
323 | } | |
324 | if (planarconfig != PLANARCONFIG_CONTIG) { | |
325 | sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", | |
326 | "Planarconfiguration", planarconfig); | |
327 | return (0); | |
328 | } | |
329 | TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); | |
330 | img->photometric = PHOTOMETRIC_RGB; /* little white lie */ | |
331 | img->bitspersample = 8; | |
332 | break; | |
333 | default: | |
334 | sprintf(emsg, "Sorry, can not handle image with %s=%d", | |
335 | photoTag, img->photometric); | |
336 | return (0); | |
337 | } | |
338 | img->Map = NULL; | |
339 | img->BWmap = NULL; | |
340 | img->PALmap = NULL; | |
341 | img->ycbcr = NULL; | |
342 | TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width); | |
343 | TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height); | |
344 | TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation); | |
345 | img->isContig = | |
346 | !(planarconfig == PLANARCONFIG_SEPARATE && colorchannels > 1); | |
347 | if (img->isContig) { | |
348 | img->get = TIFFIsTiled(tif) ? gtTileContig : gtStripContig; | |
349 | (void) pickTileContigCase(img); | |
350 | } else { | |
351 | img->get = TIFFIsTiled(tif) ? gtTileSeparate : gtStripSeparate; | |
352 | (void) pickTileSeparateCase(img); | |
353 | } | |
354 | return (1); | |
355 | } | |
356 | ||
357 | int | |
358 | TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
359 | { | |
360 | if (img->get == NULL) { | |
361 | TIFFError(TIFFFileName(img->tif), "No \"get\" routine setup"); | |
362 | return (0); | |
363 | } | |
364 | if (img->put.any == NULL) { | |
365 | TIFFError(TIFFFileName(img->tif), | |
366 | "No \"put\" routine setupl; probably can not handle image format"); | |
367 | return (0); | |
368 | } | |
369 | return (*img->get)(img, raster, w, h); | |
370 | } | |
371 | ||
372 | /* | |
373 | * Read the specified image into an ABGR-format raster. | |
374 | */ | |
375 | int | |
376 | TIFFReadRGBAImage(TIFF* tif, | |
377 | uint32 rwidth, uint32 rheight, uint32* raster, int stop) | |
378 | { | |
379 | char emsg[1024]; | |
380 | TIFFRGBAImage img; | |
381 | int ok; | |
382 | ||
383 | if (TIFFRGBAImageBegin(&img, tif, stop, emsg)) { | |
384 | /* XXX verify rwidth and rheight against width and height */ | |
385 | ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth, | |
386 | rwidth, img.height); | |
387 | TIFFRGBAImageEnd(&img); | |
388 | } else { | |
389 | TIFFError(TIFFFileName(tif), emsg); | |
390 | ok = 0; | |
391 | } | |
392 | return (ok); | |
393 | } | |
394 | ||
395 | static uint32 | |
396 | setorientation(TIFFRGBAImage* img, uint32 h) | |
397 | { | |
398 | TIFF* tif = img->tif; | |
399 | uint32 y; | |
400 | ||
401 | switch (img->orientation) { | |
402 | case ORIENTATION_BOTRIGHT: | |
403 | case ORIENTATION_RIGHTBOT: /* XXX */ | |
404 | case ORIENTATION_LEFTBOT: /* XXX */ | |
405 | TIFFWarning(TIFFFileName(tif), "using bottom-left orientation"); | |
406 | img->orientation = ORIENTATION_BOTLEFT; | |
407 | /* fall thru... */ | |
408 | case ORIENTATION_BOTLEFT: | |
409 | y = 0; | |
410 | break; | |
411 | case ORIENTATION_TOPRIGHT: | |
412 | case ORIENTATION_RIGHTTOP: /* XXX */ | |
413 | case ORIENTATION_LEFTTOP: /* XXX */ | |
414 | default: | |
415 | TIFFWarning(TIFFFileName(tif), "using top-left orientation"); | |
416 | img->orientation = ORIENTATION_TOPLEFT; | |
417 | /* fall thru... */ | |
418 | case ORIENTATION_TOPLEFT: | |
419 | y = h-1; | |
420 | break; | |
421 | } | |
422 | return (y); | |
423 | } | |
424 | ||
425 | /* | |
426 | * Get an tile-organized image that has | |
427 | * PlanarConfiguration contiguous if SamplesPerPixel > 1 | |
428 | * or | |
429 | * SamplesPerPixel == 1 | |
430 | */ | |
431 | static int | |
432 | gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
433 | { | |
434 | TIFF* tif = img->tif; | |
435 | tileContigRoutine put = img->put.contig; | |
436 | uint16 orientation; | |
437 | uint32 col, row, y; | |
438 | uint32 tw, th; | |
439 | u_char* buf; | |
440 | int32 fromskew, toskew; | |
441 | uint32 nrow; | |
442 | ||
443 | buf = (u_char*) _TIFFmalloc(TIFFTileSize(tif)); | |
444 | if (buf == 0) { | |
445 | TIFFError(TIFFFileName(tif), "No space for tile buffer"); | |
446 | return (0); | |
447 | } | |
448 | TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | |
449 | TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | |
450 | y = setorientation(img, h); | |
451 | orientation = img->orientation; | |
452 | toskew = -(int32) (orientation == ORIENTATION_TOPLEFT ? tw+w : tw-w); | |
453 | for (row = 0; row < h; row += th) { | |
454 | nrow = (row + th > h ? h - row : th); | |
455 | for (col = 0; col < w; col += tw) { | |
456 | if (TIFFReadTile(tif, buf, col+img->col_offset, | |
457 | row+img->row_offset, 0, 0) < 0 && img->stoponerr) | |
458 | break; | |
459 | if (col + tw > w) { | |
460 | /* | |
461 | * Tile is clipped horizontally. Calculate | |
462 | * visible portion and skewing factors. | |
463 | */ | |
464 | uint32 npix = w - col; | |
465 | fromskew = tw - npix; | |
466 | (*put)(img, raster+y*w+col, col, y, | |
467 | npix, nrow, fromskew, toskew + fromskew, buf); | |
468 | } else { | |
469 | (*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf); | |
470 | } | |
471 | } | |
472 | y += (orientation == ORIENTATION_TOPLEFT ? | |
473 | -(int32) nrow : (int32) nrow); | |
474 | } | |
475 | _TIFFfree(buf); | |
476 | return (1); | |
477 | } | |
478 | ||
479 | /* | |
480 | * Get an tile-organized image that has | |
481 | * SamplesPerPixel > 1 | |
482 | * PlanarConfiguration separated | |
483 | * We assume that all such images are RGB. | |
484 | */ | |
485 | static int | |
486 | gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
487 | { | |
488 | TIFF* tif = img->tif; | |
489 | tileSeparateRoutine put = img->put.separate; | |
490 | uint16 orientation; | |
491 | uint32 col, row, y; | |
492 | uint32 tw, th; | |
493 | u_char* buf; | |
494 | u_char* r; | |
495 | u_char* g; | |
496 | u_char* b; | |
497 | u_char* a; | |
498 | tsize_t tilesize; | |
499 | int32 fromskew, toskew; | |
500 | int alpha = img->alpha; | |
501 | uint32 nrow; | |
502 | ||
503 | tilesize = TIFFTileSize(tif); | |
504 | buf = (u_char*) _TIFFmalloc(4*tilesize); | |
505 | if (buf == 0) { | |
506 | TIFFError(TIFFFileName(tif), "No space for tile buffer"); | |
507 | return (0); | |
508 | } | |
509 | r = buf; | |
510 | g = r + tilesize; | |
511 | b = g + tilesize; | |
512 | a = b + tilesize; | |
513 | if (!alpha) | |
514 | memset(a, 0xff, tilesize); | |
515 | TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | |
516 | TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | |
517 | y = setorientation(img, h); | |
518 | orientation = img->orientation; | |
519 | toskew = -(int32) (orientation == ORIENTATION_TOPLEFT ? tw+w : tw-w); | |
520 | for (row = 0; row < h; row += th) { | |
521 | nrow = (row + th > h ? h - row : th); | |
522 | for (col = 0; col < w; col += tw) { | |
523 | if (TIFFReadTile(tif, r, col+img->col_offset, | |
524 | row+img->row_offset,0,0) < 0 && img->stoponerr) | |
525 | break; | |
526 | if (TIFFReadTile(tif, g, col+img->col_offset, | |
527 | row+img->row_offset,0,1) < 0 && img->stoponerr) | |
528 | break; | |
529 | if (TIFFReadTile(tif, b, col+img->col_offset, | |
530 | row+img->row_offset,0,2) < 0 && img->stoponerr) | |
531 | break; | |
532 | if (alpha && TIFFReadTile(tif,a,col+img->col_offset, | |
533 | row+img->row_offset,0,3) < 0 && img->stoponerr) | |
534 | break; | |
535 | if (col + tw > w) { | |
536 | /* | |
537 | * Tile is clipped horizontally. Calculate | |
538 | * visible portion and skewing factors. | |
539 | */ | |
540 | uint32 npix = w - col; | |
541 | fromskew = tw - npix; | |
542 | (*put)(img, raster+y*w+col, col, y, | |
543 | npix, nrow, fromskew, toskew + fromskew, r, g, b, a); | |
544 | } else { | |
545 | (*put)(img, raster+y*w+col, col, y, | |
546 | tw, nrow, 0, toskew, r, g, b, a); | |
547 | } | |
548 | } | |
549 | y += (orientation == ORIENTATION_TOPLEFT ? | |
550 | -(int32) nrow : (int32) nrow); | |
551 | } | |
552 | _TIFFfree(buf); | |
553 | return (1); | |
554 | } | |
555 | ||
556 | /* | |
557 | * Get a strip-organized image that has | |
558 | * PlanarConfiguration contiguous if SamplesPerPixel > 1 | |
559 | * or | |
560 | * SamplesPerPixel == 1 | |
561 | */ | |
562 | static int | |
563 | gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
564 | { | |
565 | TIFF* tif = img->tif; | |
566 | tileContigRoutine put = img->put.contig; | |
567 | uint16 orientation; | |
568 | uint32 row, y, nrow; | |
569 | u_char* buf; | |
570 | uint32 rowsperstrip; | |
571 | uint32 imagewidth = img->width; | |
572 | tsize_t scanline; | |
573 | int32 fromskew, toskew; | |
574 | ||
575 | buf = (u_char*) _TIFFmalloc(TIFFStripSize(tif)); | |
576 | if (buf == 0) { | |
577 | TIFFError(TIFFFileName(tif), "No space for strip buffer"); | |
578 | return (0); | |
579 | } | |
580 | y = setorientation(img, h); | |
581 | orientation = img->orientation; | |
582 | toskew = -(int32) (orientation == ORIENTATION_TOPLEFT ? w+w : w-w); | |
583 | TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
584 | scanline = TIFFScanlineSize(tif); | |
585 | fromskew = (w < imagewidth ? imagewidth - w : 0); | |
586 | for (row = 0; row < h; row += rowsperstrip) { | |
587 | nrow = (row + rowsperstrip > h ? h - row : rowsperstrip); | |
588 | if (TIFFReadEncodedStrip(tif, | |
589 | TIFFComputeStrip(tif,row+img->row_offset, 0), | |
590 | buf, nrow*scanline) < 0 | |
591 | && img->stoponerr) | |
592 | break; | |
593 | (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf); | |
594 | y += (orientation == ORIENTATION_TOPLEFT ? | |
595 | -(int32) nrow : (int32) nrow); | |
596 | } | |
597 | _TIFFfree(buf); | |
598 | return (1); | |
599 | } | |
600 | ||
601 | /* | |
602 | * Get a strip-organized image with | |
603 | * SamplesPerPixel > 1 | |
604 | * PlanarConfiguration separated | |
605 | * We assume that all such images are RGB. | |
606 | */ | |
607 | static int | |
608 | gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
609 | { | |
610 | TIFF* tif = img->tif; | |
611 | tileSeparateRoutine put = img->put.separate; | |
612 | uint16 orientation; | |
613 | u_char *buf; | |
614 | u_char *r, *g, *b, *a; | |
615 | uint32 row, y, nrow; | |
616 | tsize_t scanline; | |
617 | uint32 rowsperstrip, offset_row; | |
618 | uint32 imagewidth = img->width; | |
619 | tsize_t stripsize; | |
620 | int32 fromskew, toskew; | |
621 | int alpha = img->alpha; | |
622 | ||
623 | stripsize = TIFFStripSize(tif); | |
624 | r = buf = (u_char *)_TIFFmalloc(4*stripsize); | |
625 | if (buf == 0) { | |
626 | TIFFError(TIFFFileName(tif), "No space for tile buffer"); | |
627 | return (0); | |
628 | } | |
629 | g = r + stripsize; | |
630 | b = g + stripsize; | |
631 | a = b + stripsize; | |
632 | if (!alpha) | |
633 | memset(a, 0xff, stripsize); | |
634 | y = setorientation(img, h); | |
635 | orientation = img->orientation; | |
636 | toskew = -(int32) (orientation == ORIENTATION_TOPLEFT ? w+w : w-w); | |
637 | TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
638 | scanline = TIFFScanlineSize(tif); | |
639 | fromskew = (w < imagewidth ? imagewidth - w : 0); | |
640 | for (row = 0; row < h; row += rowsperstrip) { | |
641 | nrow = (row + rowsperstrip > h ? h - row : rowsperstrip); | |
642 | offset_row = row + img->row_offset; | |
643 | if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0), | |
644 | r, nrow*scanline) < 0 && img->stoponerr) | |
645 | break; | |
646 | if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1), | |
647 | g, nrow*scanline) < 0 && img->stoponerr) | |
648 | break; | |
649 | if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2), | |
650 | b, nrow*scanline) < 0 && img->stoponerr) | |
651 | break; | |
652 | if (alpha && | |
653 | (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 3), | |
654 | a, nrow*scanline) < 0 && img->stoponerr)) | |
655 | break; | |
656 | (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, r, g, b, a); | |
657 | y += (orientation == ORIENTATION_TOPLEFT ? | |
658 | -(int32) nrow : (int32) nrow); | |
659 | } | |
660 | _TIFFfree(buf); | |
661 | return (1); | |
662 | } | |
663 | ||
664 | /* | |
665 | * The following routines move decoded data returned | |
666 | * from the TIFF library into rasters filled with packed | |
667 | * ABGR pixels (i.e. suitable for passing to lrecwrite.) | |
668 | * | |
669 | * The routines have been created according to the most | |
670 | * important cases and optimized. pickTileContigCase and | |
671 | * pickTileSeparateCase analyze the parameters and select | |
672 | * the appropriate "put" routine to use. | |
673 | */ | |
674 | #define REPEAT8(op) REPEAT4(op); REPEAT4(op) | |
675 | #define REPEAT4(op) REPEAT2(op); REPEAT2(op) | |
676 | #define REPEAT2(op) op; op | |
677 | #define CASE8(x,op) \ | |
678 | switch (x) { \ | |
679 | case 7: op; case 6: op; case 5: op; \ | |
680 | case 4: op; case 3: op; case 2: op; \ | |
681 | case 1: op; \ | |
682 | } | |
683 | #define CASE4(x,op) switch (x) { case 3: op; case 2: op; case 1: op; } | |
684 | #define NOP | |
685 | ||
686 | #define UNROLL8(w, op1, op2) { \ | |
687 | uint32 _x; \ | |
688 | for (_x = w; _x >= 8; _x -= 8) { \ | |
689 | op1; \ | |
690 | REPEAT8(op2); \ | |
691 | } \ | |
692 | if (_x > 0) { \ | |
693 | op1; \ | |
694 | CASE8(_x,op2); \ | |
695 | } \ | |
696 | } | |
697 | #define UNROLL4(w, op1, op2) { \ | |
698 | uint32 _x; \ | |
699 | for (_x = w; _x >= 4; _x -= 4) { \ | |
700 | op1; \ | |
701 | REPEAT4(op2); \ | |
702 | } \ | |
703 | if (_x > 0) { \ | |
704 | op1; \ | |
705 | CASE4(_x,op2); \ | |
706 | } \ | |
707 | } | |
708 | #define UNROLL2(w, op1, op2) { \ | |
709 | uint32 _x; \ | |
710 | for (_x = w; _x >= 2; _x -= 2) { \ | |
711 | op1; \ | |
712 | REPEAT2(op2); \ | |
713 | } \ | |
714 | if (_x) { \ | |
715 | op1; \ | |
716 | op2; \ | |
717 | } \ | |
718 | } | |
719 | ||
720 | #define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; } | |
721 | #define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; } | |
722 | ||
723 | #define A1 ((uint32)(0xffL<<24)) | |
724 | #define PACK(r,g,b) \ | |
725 | ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1) | |
726 | #define PACK4(r,g,b,a) \ | |
727 | ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24)) | |
728 | #define W2B(v) (((v)>>8)&0xff) | |
729 | #define PACKW(r,g,b) \ | |
730 | ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1) | |
731 | #define PACKW4(r,g,b,a) \ | |
732 | ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24)) | |
733 | ||
734 | #define DECLAREContigPutFunc(name) \ | |
735 | static void name(\ | |
736 | TIFFRGBAImage* img, \ | |
737 | uint32* cp, \ | |
738 | uint32 x, uint32 y, \ | |
739 | uint32 w, uint32 h, \ | |
740 | int32 fromskew, int32 toskew, \ | |
741 | u_char* pp \ | |
742 | ) | |
743 | ||
744 | /* | |
745 | * 8-bit palette => colormap/RGB | |
746 | */ | |
747 | DECLAREContigPutFunc(put8bitcmaptile) | |
748 | { | |
749 | uint32** PALmap = img->PALmap; | |
750 | ||
751 | (void) x; (void) y; | |
752 | while (h-- > 0) { | |
753 | UNROLL8(w, NOP, *cp++ = PALmap[*pp++][0]); | |
754 | cp += toskew; | |
755 | pp += fromskew; | |
756 | } | |
757 | } | |
758 | ||
759 | /* | |
760 | * 4-bit palette => colormap/RGB | |
761 | */ | |
762 | DECLAREContigPutFunc(put4bitcmaptile) | |
763 | { | |
764 | uint32** PALmap = img->PALmap; | |
765 | ||
766 | (void) x; (void) y; | |
767 | fromskew /= 2; | |
768 | while (h-- > 0) { | |
769 | uint32* bw; | |
770 | UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
771 | cp += toskew; | |
772 | pp += fromskew; | |
773 | } | |
774 | } | |
775 | ||
776 | /* | |
777 | * 2-bit palette => colormap/RGB | |
778 | */ | |
779 | DECLAREContigPutFunc(put2bitcmaptile) | |
780 | { | |
781 | uint32** PALmap = img->PALmap; | |
782 | ||
783 | (void) x; (void) y; | |
784 | fromskew /= 4; | |
785 | while (h-- > 0) { | |
786 | uint32* bw; | |
787 | UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
788 | cp += toskew; | |
789 | pp += fromskew; | |
790 | } | |
791 | } | |
792 | ||
793 | /* | |
794 | * 1-bit palette => colormap/RGB | |
795 | */ | |
796 | DECLAREContigPutFunc(put1bitcmaptile) | |
797 | { | |
798 | uint32** PALmap = img->PALmap; | |
799 | ||
800 | (void) x; (void) y; | |
801 | fromskew /= 8; | |
802 | while (h-- > 0) { | |
803 | uint32* bw; | |
804 | UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
805 | cp += toskew; | |
806 | pp += fromskew; | |
807 | } | |
808 | } | |
809 | ||
810 | /* | |
811 | * 8-bit greyscale => colormap/RGB | |
812 | */ | |
813 | DECLAREContigPutFunc(putgreytile) | |
814 | { | |
815 | uint32** BWmap = img->BWmap; | |
816 | ||
817 | (void) y; | |
818 | while (h-- > 0) { | |
819 | for (x = w; x-- > 0;) | |
820 | *cp++ = BWmap[*pp++][0]; | |
821 | cp += toskew; | |
822 | pp += fromskew; | |
823 | } | |
824 | } | |
825 | ||
826 | /* | |
827 | * 1-bit bilevel => colormap/RGB | |
828 | */ | |
829 | DECLAREContigPutFunc(put1bitbwtile) | |
830 | { | |
831 | uint32** BWmap = img->BWmap; | |
832 | ||
833 | (void) x; (void) y; | |
834 | fromskew /= 8; | |
835 | while (h-- > 0) { | |
836 | uint32* bw; | |
837 | UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
838 | cp += toskew; | |
839 | pp += fromskew; | |
840 | } | |
841 | } | |
842 | ||
843 | /* | |
844 | * 2-bit greyscale => colormap/RGB | |
845 | */ | |
846 | DECLAREContigPutFunc(put2bitbwtile) | |
847 | { | |
848 | uint32** BWmap = img->BWmap; | |
849 | ||
850 | (void) x; (void) y; | |
851 | fromskew /= 4; | |
852 | while (h-- > 0) { | |
853 | uint32* bw; | |
854 | UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
855 | cp += toskew; | |
856 | pp += fromskew; | |
857 | } | |
858 | } | |
859 | ||
860 | /* | |
861 | * 4-bit greyscale => colormap/RGB | |
862 | */ | |
863 | DECLAREContigPutFunc(put4bitbwtile) | |
864 | { | |
865 | uint32** BWmap = img->BWmap; | |
866 | ||
867 | (void) x; (void) y; | |
868 | fromskew /= 2; | |
869 | while (h-- > 0) { | |
870 | uint32* bw; | |
871 | UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
872 | cp += toskew; | |
873 | pp += fromskew; | |
874 | } | |
875 | } | |
876 | ||
877 | /* | |
878 | * 8-bit packed samples, no Map => RGB | |
879 | */ | |
880 | DECLAREContigPutFunc(putRGBcontig8bittile) | |
881 | { | |
882 | int samplesperpixel = img->samplesperpixel; | |
883 | ||
884 | (void) x; (void) y; | |
885 | fromskew *= samplesperpixel; | |
886 | while (h-- > 0) { | |
887 | UNROLL8(w, NOP, | |
888 | *cp++ = PACK(pp[0], pp[1], pp[2]); | |
889 | pp += samplesperpixel); | |
890 | cp += toskew; | |
891 | pp += fromskew; | |
892 | } | |
893 | } | |
894 | ||
895 | /* | |
896 | * 8-bit packed samples, w/ Map => RGB | |
897 | */ | |
898 | DECLAREContigPutFunc(putRGBcontig8bitMaptile) | |
899 | { | |
900 | TIFFRGBValue* Map = img->Map; | |
901 | int samplesperpixel = img->samplesperpixel; | |
902 | ||
903 | (void) y; | |
904 | fromskew *= samplesperpixel; | |
905 | while (h-- > 0) { | |
906 | for (x = w; x-- > 0;) { | |
907 | *cp++ = PACK(Map[pp[0]], Map[pp[1]], Map[pp[2]]); | |
908 | pp += samplesperpixel; | |
909 | } | |
910 | pp += fromskew; | |
911 | cp += toskew; | |
912 | } | |
913 | } | |
914 | ||
915 | /* | |
916 | * 8-bit packed samples => RGBA w/ associated alpha | |
917 | * (known to have Map == NULL) | |
918 | */ | |
919 | DECLAREContigPutFunc(putRGBAAcontig8bittile) | |
920 | { | |
921 | int samplesperpixel = img->samplesperpixel; | |
922 | ||
923 | (void) x; (void) y; | |
924 | fromskew *= samplesperpixel; | |
925 | while (h-- > 0) { | |
926 | UNROLL8(w, NOP, | |
927 | *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]); | |
928 | pp += samplesperpixel); | |
929 | cp += toskew; | |
930 | pp += fromskew; | |
931 | } | |
932 | } | |
933 | ||
934 | /* | |
935 | * 8-bit packed samples => RGBA w/ unassociated alpha | |
936 | * (known to have Map == NULL) | |
937 | */ | |
938 | DECLAREContigPutFunc(putRGBUAcontig8bittile) | |
939 | { | |
940 | int samplesperpixel = img->samplesperpixel; | |
941 | ||
942 | (void) y; | |
943 | fromskew *= samplesperpixel; | |
944 | while (h-- > 0) { | |
945 | uint32 r, g, b, a; | |
946 | for (x = w; x-- > 0;) { | |
947 | a = pp[3]; | |
948 | r = (pp[0] * a) / 255; | |
949 | g = (pp[1] * a) / 255; | |
950 | b = (pp[2] * a) / 255; | |
951 | *cp++ = PACK4(r,g,b,a); | |
952 | pp += samplesperpixel; | |
953 | } | |
954 | cp += toskew; | |
955 | pp += fromskew; | |
956 | } | |
957 | } | |
958 | ||
959 | /* | |
960 | * 16-bit packed samples => RGB | |
961 | */ | |
962 | DECLAREContigPutFunc(putRGBcontig16bittile) | |
963 | { | |
964 | int samplesperpixel = img->samplesperpixel; | |
965 | uint16 *wp = (uint16 *)pp; | |
966 | ||
967 | (void) y; | |
968 | fromskew *= samplesperpixel; | |
969 | while (h-- > 0) { | |
970 | for (x = w; x-- > 0;) { | |
971 | *cp++ = PACKW(wp[0], wp[1], wp[2]); | |
972 | wp += samplesperpixel; | |
973 | } | |
974 | cp += toskew; | |
975 | wp += fromskew; | |
976 | } | |
977 | } | |
978 | ||
979 | /* | |
980 | * 16-bit packed samples => RGBA w/ associated alpha | |
981 | * (known to have Map == NULL) | |
982 | */ | |
983 | DECLAREContigPutFunc(putRGBAAcontig16bittile) | |
984 | { | |
985 | int samplesperpixel = img->samplesperpixel; | |
986 | uint16 *wp = (uint16 *)pp; | |
987 | ||
988 | (void) y; | |
989 | fromskew *= samplesperpixel; | |
990 | while (h-- > 0) { | |
991 | for (x = w; x-- > 0;) { | |
992 | *cp++ = PACKW4(wp[0], wp[1], wp[2], wp[3]); | |
993 | wp += samplesperpixel; | |
994 | } | |
995 | cp += toskew; | |
996 | wp += fromskew; | |
997 | } | |
998 | } | |
999 | ||
1000 | /* | |
1001 | * 16-bit packed samples => RGBA w/ unassociated alpha | |
1002 | * (known to have Map == NULL) | |
1003 | */ | |
1004 | DECLAREContigPutFunc(putRGBUAcontig16bittile) | |
1005 | { | |
1006 | int samplesperpixel = img->samplesperpixel; | |
1007 | uint16 *wp = (uint16 *)pp; | |
1008 | ||
1009 | (void) y; | |
1010 | fromskew *= samplesperpixel; | |
1011 | while (h-- > 0) { | |
1012 | uint32 r,g,b,a; | |
1013 | /* | |
1014 | * We shift alpha down four bits just in case unsigned | |
1015 | * arithmetic doesn't handle the full range. | |
1016 | * We still have plenty of accuracy, since the output is 8 bits. | |
1017 | * So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff) | |
1018 | * Since we want r*a * 0xff for eight bit output, | |
1019 | * we divide by (0xffff * 0xfff) / 0xff == 0x10eff. | |
1020 | */ | |
1021 | for (x = w; x-- > 0;) { | |
1022 | a = wp[3] >> 4; | |
1023 | r = (wp[0] * a) / 0x10eff; | |
1024 | g = (wp[1] * a) / 0x10eff; | |
1025 | b = (wp[2] * a) / 0x10eff; | |
1026 | *cp++ = PACK4(r,g,b,a); | |
1027 | wp += samplesperpixel; | |
1028 | } | |
1029 | cp += toskew; | |
1030 | wp += fromskew; | |
1031 | } | |
1032 | } | |
1033 | ||
1034 | /* | |
1035 | * 8-bit packed CMYK samples w/o Map => RGB | |
1036 | * | |
1037 | * NB: The conversion of CMYK->RGB is *very* crude. | |
1038 | */ | |
1039 | DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) | |
1040 | { | |
1041 | int samplesperpixel = img->samplesperpixel; | |
1042 | uint16 r, g, b, k; | |
1043 | ||
1044 | (void) x; (void) y; | |
1045 | fromskew *= samplesperpixel; | |
1046 | while (h-- > 0) { | |
1047 | UNROLL8(w, NOP, | |
1048 | k = 255 - pp[3]; | |
1049 | r = (k*(255-pp[0]))/255; | |
1050 | g = (k*(255-pp[1]))/255; | |
1051 | b = (k*(255-pp[2]))/255; | |
1052 | *cp++ = PACK(r, g, b); | |
1053 | pp += samplesperpixel); | |
1054 | cp += toskew; | |
1055 | pp += fromskew; | |
1056 | } | |
1057 | } | |
1058 | ||
1059 | /* | |
1060 | * 8-bit packed CMYK samples w/Map => RGB | |
1061 | * | |
1062 | * NB: The conversion of CMYK->RGB is *very* crude. | |
1063 | */ | |
1064 | DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) | |
1065 | { | |
1066 | int samplesperpixel = img->samplesperpixel; | |
1067 | TIFFRGBValue* Map = img->Map; | |
1068 | uint16 r, g, b, k; | |
1069 | ||
1070 | (void) y; | |
1071 | fromskew *= samplesperpixel; | |
1072 | while (h-- > 0) { | |
1073 | for (x = w; x-- > 0;) { | |
1074 | k = 255 - pp[3]; | |
1075 | r = (k*(255-pp[0]))/255; | |
1076 | g = (k*(255-pp[1]))/255; | |
1077 | b = (k*(255-pp[2]))/255; | |
1078 | *cp++ = PACK(Map[r], Map[g], Map[b]); | |
1079 | pp += samplesperpixel; | |
1080 | } | |
1081 | pp += fromskew; | |
1082 | cp += toskew; | |
1083 | } | |
1084 | } | |
1085 | ||
1086 | #define DECLARESepPutFunc(name) \ | |
1087 | static void name(\ | |
1088 | TIFFRGBAImage* img,\ | |
1089 | uint32* cp,\ | |
1090 | uint32 x, uint32 y, \ | |
1091 | uint32 w, uint32 h,\ | |
1092 | int32 fromskew, int32 toskew,\ | |
1093 | u_char* r, u_char* g, u_char* b, u_char* a\ | |
1094 | ) | |
1095 | ||
1096 | /* | |
1097 | * 8-bit unpacked samples => RGB | |
1098 | */ | |
1099 | DECLARESepPutFunc(putRGBseparate8bittile) | |
1100 | { | |
1101 | (void) img; (void) x; (void) y; (void) a; | |
1102 | while (h-- > 0) { | |
1103 | UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++)); | |
1104 | SKEW(r, g, b, fromskew); | |
1105 | cp += toskew; | |
1106 | } | |
1107 | } | |
1108 | ||
1109 | /* | |
1110 | * 8-bit unpacked samples => RGB | |
1111 | */ | |
1112 | DECLARESepPutFunc(putRGBseparate8bitMaptile) | |
1113 | { | |
1114 | TIFFRGBValue* Map = img->Map; | |
1115 | ||
1116 | (void) y; (void) a; | |
1117 | while (h-- > 0) { | |
1118 | for (x = w; x > 0; x--) | |
1119 | *cp++ = PACK(Map[*r++], Map[*g++], Map[*b++]); | |
1120 | SKEW(r, g, b, fromskew); | |
1121 | cp += toskew; | |
1122 | } | |
1123 | } | |
1124 | ||
1125 | /* | |
1126 | * 8-bit unpacked samples => RGBA w/ associated alpha | |
1127 | */ | |
1128 | DECLARESepPutFunc(putRGBAAseparate8bittile) | |
1129 | { | |
1130 | (void) img; (void) x; (void) y; | |
1131 | while (h-- > 0) { | |
1132 | UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++)); | |
1133 | SKEW4(r, g, b, a, fromskew); | |
1134 | cp += toskew; | |
1135 | } | |
1136 | } | |
1137 | ||
1138 | /* | |
1139 | * 8-bit unpacked samples => RGBA w/ unassociated alpha | |
1140 | */ | |
1141 | DECLARESepPutFunc(putRGBUAseparate8bittile) | |
1142 | { | |
1143 | (void) img; (void) y; | |
1144 | while (h-- > 0) { | |
1145 | uint32 rv, gv, bv, av; | |
1146 | for (x = w; x-- > 0;) { | |
1147 | av = *a++; | |
1148 | rv = (*r++ * av) / 255; | |
1149 | gv = (*g++ * av) / 255; | |
1150 | bv = (*b++ * av) / 255; | |
1151 | *cp++ = PACK4(rv,gv,bv,av); | |
1152 | } | |
1153 | SKEW4(r, g, b, a, fromskew); | |
1154 | cp += toskew; | |
1155 | } | |
1156 | } | |
1157 | ||
1158 | /* | |
1159 | * 16-bit unpacked samples => RGB | |
1160 | */ | |
1161 | DECLARESepPutFunc(putRGBseparate16bittile) | |
1162 | { | |
1163 | uint16 *wr = (uint16*) r; | |
1164 | uint16 *wg = (uint16*) g; | |
1165 | uint16 *wb = (uint16*) b; | |
1166 | ||
1167 | (void) img; (void) y; (void) a; | |
1168 | while (h-- > 0) { | |
1169 | for (x = 0; x < w; x++) | |
1170 | *cp++ = PACKW(*wr++, *wg++, *wb++); | |
1171 | SKEW(wr, wg, wb, fromskew); | |
1172 | cp += toskew; | |
1173 | } | |
1174 | } | |
1175 | ||
1176 | /* | |
1177 | * 16-bit unpacked samples => RGBA w/ associated alpha | |
1178 | */ | |
1179 | DECLARESepPutFunc(putRGBAAseparate16bittile) | |
1180 | { | |
1181 | uint16 *wr = (uint16*) r; | |
1182 | uint16 *wg = (uint16*) g; | |
1183 | uint16 *wb = (uint16*) b; | |
1184 | uint16 *wa = (uint16*) a; | |
1185 | ||
1186 | (void) img; (void) y; | |
1187 | while (h-- > 0) { | |
1188 | for (x = 0; x < w; x++) | |
1189 | *cp++ = PACKW4(*wr++, *wg++, *wb++, *wa++); | |
1190 | SKEW4(wr, wg, wb, wa, fromskew); | |
1191 | cp += toskew; | |
1192 | } | |
1193 | } | |
1194 | ||
1195 | /* | |
1196 | * 16-bit unpacked samples => RGBA w/ unassociated alpha | |
1197 | */ | |
1198 | DECLARESepPutFunc(putRGBUAseparate16bittile) | |
1199 | { | |
1200 | uint16 *wr = (uint16*) r; | |
1201 | uint16 *wg = (uint16*) g; | |
1202 | uint16 *wb = (uint16*) b; | |
1203 | uint16 *wa = (uint16*) a; | |
1204 | ||
1205 | (void) img; (void) y; | |
1206 | while (h-- > 0) { | |
1207 | uint32 r,g,b,a; | |
1208 | /* | |
1209 | * We shift alpha down four bits just in case unsigned | |
1210 | * arithmetic doesn't handle the full range. | |
1211 | * We still have plenty of accuracy, since the output is 8 bits. | |
1212 | * So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff) | |
1213 | * Since we want r*a * 0xff for eight bit output, | |
1214 | * we divide by (0xffff * 0xfff) / 0xff == 0x10eff. | |
1215 | */ | |
1216 | for (x = w; x-- > 0;) { | |
1217 | a = *wa++ >> 4; | |
1218 | r = (*wr++ * a) / 0x10eff; | |
1219 | g = (*wg++ * a) / 0x10eff; | |
1220 | b = (*wb++ * a) / 0x10eff; | |
1221 | *cp++ = PACK4(r,g,b,a); | |
1222 | } | |
1223 | SKEW4(wr, wg, wb, wa, fromskew); | |
1224 | cp += toskew; | |
1225 | } | |
1226 | } | |
1227 | ||
1228 | /* | |
1229 | * YCbCr -> RGB conversion and packing routines. The colorspace | |
1230 | * conversion algorithm comes from the IJG v5a code; see below | |
1231 | * for more information on how it works. | |
1232 | */ | |
1233 | ||
1234 | #define YCbCrtoRGB(dst, yc) { \ | |
1235 | int Y = (yc); \ | |
1236 | dst = PACK( \ | |
1237 | clamptab[Y+Crrtab[Cr]], \ | |
1238 | clamptab[Y + (int)((Cbgtab[Cb]+Crgtab[Cr])>>16)], \ | |
1239 | clamptab[Y+Cbbtab[Cb]]); \ | |
1240 | } | |
1241 | #define YCbCrSetup \ | |
1242 | TIFFYCbCrToRGB* ycbcr = img->ycbcr; \ | |
1243 | int* Crrtab = ycbcr->Cr_r_tab; \ | |
1244 | int* Cbbtab = ycbcr->Cb_b_tab; \ | |
1245 | int32* Crgtab = ycbcr->Cr_g_tab; \ | |
1246 | int32* Cbgtab = ycbcr->Cb_g_tab; \ | |
1247 | TIFFRGBValue* clamptab = ycbcr->clamptab | |
1248 | ||
1249 | /* | |
1250 | * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB | |
1251 | */ | |
1252 | DECLAREContigPutFunc(putcontig8bitYCbCr44tile) | |
1253 | { | |
1254 | YCbCrSetup; | |
1255 | uint32* cp1 = cp+w+toskew; | |
1256 | uint32* cp2 = cp1+w+toskew; | |
1257 | uint32* cp3 = cp2+w+toskew; | |
1258 | int32 incr = 3*w+4*toskew; | |
1259 | ||
1260 | (void) y; | |
1261 | /* XXX adjust fromskew */ | |
1262 | for (; h >= 4; h -= 4) { | |
1263 | x = w>>2; | |
1264 | do { | |
1265 | int Cb = pp[16]; | |
1266 | int Cr = pp[17]; | |
1267 | ||
1268 | YCbCrtoRGB(cp [0], pp[ 0]); | |
1269 | YCbCrtoRGB(cp [1], pp[ 1]); | |
1270 | YCbCrtoRGB(cp [2], pp[ 2]); | |
1271 | YCbCrtoRGB(cp [3], pp[ 3]); | |
1272 | YCbCrtoRGB(cp1[0], pp[ 4]); | |
1273 | YCbCrtoRGB(cp1[1], pp[ 5]); | |
1274 | YCbCrtoRGB(cp1[2], pp[ 6]); | |
1275 | YCbCrtoRGB(cp1[3], pp[ 7]); | |
1276 | YCbCrtoRGB(cp2[0], pp[ 8]); | |
1277 | YCbCrtoRGB(cp2[1], pp[ 9]); | |
1278 | YCbCrtoRGB(cp2[2], pp[10]); | |
1279 | YCbCrtoRGB(cp2[3], pp[11]); | |
1280 | YCbCrtoRGB(cp3[0], pp[12]); | |
1281 | YCbCrtoRGB(cp3[1], pp[13]); | |
1282 | YCbCrtoRGB(cp3[2], pp[14]); | |
1283 | YCbCrtoRGB(cp3[3], pp[15]); | |
1284 | ||
1285 | cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; | |
1286 | pp += 18; | |
1287 | } while (--x); | |
1288 | cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1289 | pp += fromskew; | |
1290 | } | |
1291 | } | |
1292 | ||
1293 | /* | |
1294 | * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB | |
1295 | */ | |
1296 | DECLAREContigPutFunc(putcontig8bitYCbCr42tile) | |
1297 | { | |
1298 | YCbCrSetup; | |
1299 | uint32* cp1 = cp+w+toskew; | |
1300 | int32 incr = 2*toskew+w; | |
1301 | ||
1302 | (void) y; | |
1303 | /* XXX adjust fromskew */ | |
1304 | for (; h >= 2; h -= 2) { | |
1305 | x = w>>2; | |
1306 | do { | |
1307 | int Cb = pp[8]; | |
1308 | int Cr = pp[9]; | |
1309 | ||
1310 | YCbCrtoRGB(cp [0], pp[0]); | |
1311 | YCbCrtoRGB(cp [1], pp[1]); | |
1312 | YCbCrtoRGB(cp [2], pp[2]); | |
1313 | YCbCrtoRGB(cp [3], pp[3]); | |
1314 | YCbCrtoRGB(cp1[0], pp[4]); | |
1315 | YCbCrtoRGB(cp1[1], pp[5]); | |
1316 | YCbCrtoRGB(cp1[2], pp[6]); | |
1317 | YCbCrtoRGB(cp1[3], pp[7]); | |
1318 | ||
1319 | cp += 4, cp1 += 4; | |
1320 | pp += 10; | |
1321 | } while (--x); | |
1322 | cp += incr, cp1 += incr; | |
1323 | pp += fromskew; | |
1324 | } | |
1325 | } | |
1326 | ||
1327 | /* | |
1328 | * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB | |
1329 | */ | |
1330 | DECLAREContigPutFunc(putcontig8bitYCbCr41tile) | |
1331 | { | |
1332 | YCbCrSetup; | |
1333 | ||
1334 | (void) y; | |
1335 | /* XXX adjust fromskew */ | |
1336 | do { | |
1337 | x = w>>2; | |
1338 | do { | |
1339 | int Cb = pp[4]; | |
1340 | int Cr = pp[5]; | |
1341 | ||
1342 | YCbCrtoRGB(cp [0], pp[0]); | |
1343 | YCbCrtoRGB(cp [1], pp[1]); | |
1344 | YCbCrtoRGB(cp [2], pp[2]); | |
1345 | YCbCrtoRGB(cp [3], pp[3]); | |
1346 | ||
1347 | cp += 4; | |
1348 | pp += 6; | |
1349 | } while (--x); | |
1350 | cp += toskew; | |
1351 | pp += fromskew; | |
1352 | } while (--h); | |
1353 | } | |
1354 | ||
1355 | /* | |
1356 | * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB | |
1357 | */ | |
1358 | DECLAREContigPutFunc(putcontig8bitYCbCr22tile) | |
1359 | { | |
1360 | YCbCrSetup; | |
1361 | uint32* cp1 = cp+w+toskew; | |
1362 | int32 incr = 2*toskew+w; | |
1363 | ||
1364 | (void) y; | |
1365 | /* XXX adjust fromskew */ | |
1366 | for (; h >= 2; h -= 2) { | |
1367 | x = w>>1; | |
1368 | do { | |
1369 | int Cb = pp[4]; | |
1370 | int Cr = pp[5]; | |
1371 | ||
1372 | YCbCrtoRGB(cp [0], pp[0]); | |
1373 | YCbCrtoRGB(cp [1], pp[1]); | |
1374 | YCbCrtoRGB(cp1[0], pp[2]); | |
1375 | YCbCrtoRGB(cp1[1], pp[3]); | |
1376 | ||
1377 | cp += 2, cp1 += 2; | |
1378 | pp += 6; | |
1379 | } while (--x); | |
1380 | cp += incr, cp1 += incr; | |
1381 | pp += fromskew; | |
1382 | } | |
1383 | } | |
1384 | ||
1385 | /* | |
1386 | * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB | |
1387 | */ | |
1388 | DECLAREContigPutFunc(putcontig8bitYCbCr21tile) | |
1389 | { | |
1390 | YCbCrSetup; | |
1391 | ||
1392 | (void) y; | |
1393 | /* XXX adjust fromskew */ | |
1394 | do { | |
1395 | x = w>>1; | |
1396 | do { | |
1397 | int Cb = pp[2]; | |
1398 | int Cr = pp[3]; | |
1399 | ||
1400 | YCbCrtoRGB(cp[0], pp[0]); | |
1401 | YCbCrtoRGB(cp[1], pp[1]); | |
1402 | ||
1403 | cp += 2; | |
1404 | pp += 4; | |
1405 | } while (--x); | |
1406 | cp += toskew; | |
1407 | pp += fromskew; | |
1408 | } while (--h); | |
1409 | } | |
1410 | ||
1411 | /* | |
1412 | * 8-bit packed YCbCr samples w/ no subsampling => RGB | |
1413 | */ | |
1414 | DECLAREContigPutFunc(putcontig8bitYCbCr11tile) | |
1415 | { | |
1416 | YCbCrSetup; | |
1417 | ||
1418 | (void) y; | |
1419 | /* XXX adjust fromskew */ | |
1420 | do { | |
1421 | x = w>>1; | |
1422 | do { | |
1423 | int Cb = pp[1]; | |
1424 | int Cr = pp[2]; | |
1425 | ||
1426 | YCbCrtoRGB(*cp++, pp[0]); | |
1427 | ||
1428 | pp += 3; | |
1429 | } while (--x); | |
1430 | cp += toskew; | |
1431 | pp += fromskew; | |
1432 | } while (--h); | |
1433 | } | |
1434 | #undef YCbCrSetup | |
1435 | #undef YCbCrtoRGB | |
1436 | ||
1437 | #define LumaRed coeffs[0] | |
1438 | #define LumaGreen coeffs[1] | |
1439 | #define LumaBlue coeffs[2] | |
1440 | #define SHIFT 16 | |
1441 | #define FIX(x) ((int32)((x) * (1L<<SHIFT) + 0.5)) | |
1442 | #define ONE_HALF ((int32)(1<<(SHIFT-1))) | |
1443 | ||
1444 | /* | |
1445 | * Initialize the YCbCr->RGB conversion tables. The conversion | |
1446 | * is done according to the 6.0 spec: | |
1447 | * | |
1448 | * R = Y + Cr*(2 - 2*LumaRed) | |
1449 | * B = Y + Cb*(2 - 2*LumaBlue) | |
1450 | * G = Y | |
1451 | * - LumaBlue*Cb*(2-2*LumaBlue)/LumaGreen | |
1452 | * - LumaRed*Cr*(2-2*LumaRed)/LumaGreen | |
1453 | * | |
1454 | * To avoid floating point arithmetic the fractional constants that | |
1455 | * come out of the equations are represented as fixed point values | |
1456 | * in the range 0...2^16. We also eliminate multiplications by | |
1457 | * pre-calculating possible values indexed by Cb and Cr (this code | |
1458 | * assumes conversion is being done for 8-bit samples). | |
1459 | */ | |
1460 | static void | |
1461 | TIFFYCbCrToRGBInit(TIFFYCbCrToRGB* ycbcr, TIFF* tif) | |
1462 | { | |
1463 | TIFFRGBValue* clamptab; | |
1464 | float* coeffs; | |
1465 | int i; | |
1466 | ||
1467 | clamptab = (TIFFRGBValue*)( | |
1468 | (tidata_t) ycbcr+TIFFroundup(sizeof (TIFFYCbCrToRGB), sizeof (long))); | |
1469 | _TIFFmemset(clamptab, 0, 256); /* v < 0 => 0 */ | |
1470 | ycbcr->clamptab = (clamptab += 256); | |
1471 | for (i = 0; i < 256; i++) | |
1472 | clamptab[i] = i; | |
1473 | _TIFFmemset(clamptab+256, 255, 2*256); /* v > 255 => 255 */ | |
1474 | TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRCOEFFICIENTS, &coeffs); | |
1475 | _TIFFmemcpy(ycbcr->coeffs, coeffs, 3*sizeof (float)); | |
1476 | { float f1 = 2-2*LumaRed; int32 D1 = FIX(f1); | |
1477 | float f2 = LumaRed*f1/LumaGreen; int32 D2 = -FIX(f2); | |
1478 | float f3 = 2-2*LumaBlue; int32 D3 = FIX(f3); | |
1479 | float f4 = LumaBlue*f3/LumaGreen; int32 D4 = -FIX(f4); | |
1480 | int x; | |
1481 | ||
1482 | ycbcr->Cr_r_tab = (int*) (clamptab + 3*256); | |
1483 | ycbcr->Cb_b_tab = ycbcr->Cr_r_tab + 256; | |
1484 | ycbcr->Cr_g_tab = (int32*) (ycbcr->Cb_b_tab + 256); | |
1485 | ycbcr->Cb_g_tab = ycbcr->Cr_g_tab + 256; | |
1486 | /* | |
1487 | * i is the actual input pixel value in the range 0..255 | |
1488 | * Cb and Cr values are in the range -128..127 (actually | |
1489 | * they are in a range defined by the ReferenceBlackWhite | |
1490 | * tag) so there is some range shifting to do here when | |
1491 | * constructing tables indexed by the raw pixel data. | |
1492 | * | |
1493 | * XXX handle ReferenceBlackWhite correctly to calculate | |
1494 | * Cb/Cr values to use in constructing the tables. | |
1495 | */ | |
1496 | for (i = 0, x = -128; i < 256; i++, x++) { | |
1497 | ycbcr->Cr_r_tab[i] = (int)((D1*x + ONE_HALF)>>SHIFT); | |
1498 | ycbcr->Cb_b_tab[i] = (int)((D3*x + ONE_HALF)>>SHIFT); | |
1499 | ycbcr->Cr_g_tab[i] = D2*x; | |
1500 | ycbcr->Cb_g_tab[i] = D4*x + ONE_HALF; | |
1501 | } | |
1502 | } | |
1503 | } | |
1504 | #undef SHIFT | |
1505 | #undef ONE_HALF | |
1506 | #undef FIX | |
1507 | #undef LumaBlue | |
1508 | #undef LumaGreen | |
1509 | #undef LumaRed | |
1510 | ||
1511 | static tileContigRoutine | |
1512 | initYCbCrConversion(TIFFRGBAImage* img) | |
1513 | { | |
1514 | uint16 hs, vs; | |
1515 | ||
1516 | if (img->ycbcr == NULL) { | |
1517 | img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc( | |
1518 | TIFFroundup(sizeof (TIFFYCbCrToRGB), sizeof (long)) | |
1519 | + 4*256*sizeof (TIFFRGBValue) | |
1520 | + 2*256*sizeof (int) | |
1521 | + 2*256*sizeof (int32) | |
1522 | ); | |
1523 | if (img->ycbcr == NULL) { | |
1524 | TIFFError(TIFFFileName(img->tif), | |
1525 | "No space for YCbCr->RGB conversion state"); | |
1526 | return (NULL); | |
1527 | } | |
1528 | TIFFYCbCrToRGBInit(img->ycbcr, img->tif); | |
1529 | } else { | |
1530 | float* coeffs; | |
1531 | ||
1532 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &coeffs); | |
1533 | if (_TIFFmemcmp(coeffs, img->ycbcr->coeffs, 3*sizeof (float)) != 0) | |
1534 | TIFFYCbCrToRGBInit(img->ycbcr, img->tif); | |
1535 | } | |
1536 | /* | |
1537 | * The 6.0 spec says that subsampling must be | |
1538 | * one of 1, 2, or 4, and that vertical subsampling | |
1539 | * must always be <= horizontal subsampling; so | |
1540 | * there are only a few possibilities and we just | |
1541 | * enumerate the cases. | |
1542 | */ | |
1543 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs); | |
1544 | switch ((hs<<4)|vs) { | |
1545 | case 0x44: return (putcontig8bitYCbCr44tile); | |
1546 | case 0x42: return (putcontig8bitYCbCr42tile); | |
1547 | case 0x41: return (putcontig8bitYCbCr41tile); | |
1548 | case 0x22: return (putcontig8bitYCbCr22tile); | |
1549 | case 0x21: return (putcontig8bitYCbCr21tile); | |
1550 | case 0x11: return (putcontig8bitYCbCr11tile); | |
1551 | } | |
1552 | return (NULL); | |
1553 | } | |
1554 | ||
1555 | /* | |
1556 | * Greyscale images with less than 8 bits/sample are handled | |
1557 | * with a table to avoid lots of shifts and masks. The table | |
1558 | * is setup so that put*bwtile (below) can retrieve 8/bitspersample | |
1559 | * pixel values simply by indexing into the table with one | |
1560 | * number. | |
1561 | */ | |
1562 | static int | |
1563 | makebwmap(TIFFRGBAImage* img) | |
1564 | { | |
1565 | TIFFRGBValue* Map = img->Map; | |
1566 | int bitspersample = img->bitspersample; | |
1567 | int nsamples = 8 / bitspersample; | |
1568 | int i; | |
1569 | uint32* p; | |
1570 | ||
1571 | img->BWmap = (uint32**) _TIFFmalloc( | |
1572 | 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | |
1573 | if (img->BWmap == NULL) { | |
1574 | TIFFError(TIFFFileName(img->tif), "No space for B&W mapping table"); | |
1575 | return (0); | |
1576 | } | |
1577 | p = (uint32*)(img->BWmap + 256); | |
1578 | for (i = 0; i < 256; i++) { | |
1579 | TIFFRGBValue c; | |
1580 | img->BWmap[i] = p; | |
1581 | switch (bitspersample) { | |
1582 | #define GREY(x) c = Map[x]; *p++ = PACK(c,c,c); | |
1583 | case 1: | |
1584 | GREY(i>>7); | |
1585 | GREY((i>>6)&1); | |
1586 | GREY((i>>5)&1); | |
1587 | GREY((i>>4)&1); | |
1588 | GREY((i>>3)&1); | |
1589 | GREY((i>>2)&1); | |
1590 | GREY((i>>1)&1); | |
1591 | GREY(i&1); | |
1592 | break; | |
1593 | case 2: | |
1594 | GREY(i>>6); | |
1595 | GREY((i>>4)&3); | |
1596 | GREY((i>>2)&3); | |
1597 | GREY(i&3); | |
1598 | break; | |
1599 | case 4: | |
1600 | GREY(i>>4); | |
1601 | GREY(i&0xf); | |
1602 | break; | |
1603 | case 8: | |
1604 | GREY(i); | |
1605 | break; | |
1606 | } | |
1607 | #undef GREY | |
1608 | } | |
1609 | return (1); | |
1610 | } | |
1611 | ||
1612 | /* | |
1613 | * Construct a mapping table to convert from the range | |
1614 | * of the data samples to [0,255] --for display. This | |
1615 | * process also handles inverting B&W images when needed. | |
1616 | */ | |
1617 | static int | |
1618 | setupMap(TIFFRGBAImage* img) | |
1619 | { | |
1620 | int32 x, range; | |
1621 | ||
1622 | range = (int32)((1L<<img->bitspersample)-1); | |
1623 | img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue)); | |
1624 | if (img->Map == NULL) { | |
1625 | TIFFError(TIFFFileName(img->tif), | |
1626 | "No space for photometric conversion table"); | |
1627 | return (0); | |
1628 | } | |
1629 | if (img->photometric == PHOTOMETRIC_MINISWHITE) { | |
1630 | for (x = 0; x <= range; x++) | |
1631 | img->Map[x] = ((range - x) * 255) / range; | |
1632 | } else { | |
1633 | for (x = 0; x <= range; x++) | |
1634 | img->Map[x] = (x * 255) / range; | |
1635 | } | |
1636 | if (img->bitspersample <= 8 && | |
1637 | (img->photometric == PHOTOMETRIC_MINISBLACK || | |
1638 | img->photometric == PHOTOMETRIC_MINISWHITE)) { | |
1639 | /* | |
1640 | * Use photometric mapping table to construct | |
1641 | * unpacking tables for samples <= 8 bits. | |
1642 | */ | |
1643 | if (!makebwmap(img)) | |
1644 | return (0); | |
1645 | /* no longer need Map, free it */ | |
1646 | _TIFFfree(img->Map), img->Map = NULL; | |
1647 | } | |
1648 | return (1); | |
1649 | } | |
1650 | ||
1651 | static int | |
1652 | checkcmap(TIFFRGBAImage* img) | |
1653 | { | |
1654 | uint16* r = img->redcmap; | |
1655 | uint16* g = img->greencmap; | |
1656 | uint16* b = img->bluecmap; | |
1657 | long n = 1L<<img->bitspersample; | |
1658 | ||
1659 | while (n-- > 0) | |
1660 | if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256) | |
1661 | return (16); | |
1662 | return (8); | |
1663 | } | |
1664 | ||
1665 | static void | |
1666 | cvtcmap(TIFFRGBAImage* img) | |
1667 | { | |
1668 | uint16* r = img->redcmap; | |
1669 | uint16* g = img->greencmap; | |
1670 | uint16* b = img->bluecmap; | |
1671 | long i; | |
1672 | ||
1673 | for (i = (1L<<img->bitspersample)-1; i >= 0; i--) { | |
1674 | #define CVT(x) ((uint16)((x)>>8)) | |
1675 | r[i] = CVT(r[i]); | |
1676 | g[i] = CVT(g[i]); | |
1677 | b[i] = CVT(b[i]); | |
1678 | #undef CVT | |
1679 | } | |
1680 | } | |
1681 | ||
1682 | /* | |
1683 | * Palette images with <= 8 bits/sample are handled | |
1684 | * with a table to avoid lots of shifts and masks. The table | |
1685 | * is setup so that put*cmaptile (below) can retrieve 8/bitspersample | |
1686 | * pixel values simply by indexing into the table with one | |
1687 | * number. | |
1688 | */ | |
1689 | static int | |
1690 | makecmap(TIFFRGBAImage* img) | |
1691 | { | |
1692 | int bitspersample = img->bitspersample; | |
1693 | int nsamples = 8 / bitspersample; | |
1694 | uint16* r = img->redcmap; | |
1695 | uint16* g = img->greencmap; | |
1696 | uint16* b = img->bluecmap; | |
1697 | uint32 *p; | |
1698 | int i; | |
1699 | ||
1700 | img->PALmap = (uint32**) _TIFFmalloc( | |
1701 | 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | |
1702 | if (img->PALmap == NULL) { | |
1703 | TIFFError(TIFFFileName(img->tif), "No space for Palette mapping table"); | |
1704 | return (0); | |
1705 | } | |
1706 | p = (uint32*)(img->PALmap + 256); | |
1707 | for (i = 0; i < 256; i++) { | |
1708 | TIFFRGBValue c; | |
1709 | img->PALmap[i] = p; | |
1710 | #define CMAP(x) c = x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff); | |
1711 | switch (bitspersample) { | |
1712 | case 1: | |
1713 | CMAP(i>>7); | |
1714 | CMAP((i>>6)&1); | |
1715 | CMAP((i>>5)&1); | |
1716 | CMAP((i>>4)&1); | |
1717 | CMAP((i>>3)&1); | |
1718 | CMAP((i>>2)&1); | |
1719 | CMAP((i>>1)&1); | |
1720 | CMAP(i&1); | |
1721 | break; | |
1722 | case 2: | |
1723 | CMAP(i>>6); | |
1724 | CMAP((i>>4)&3); | |
1725 | CMAP((i>>2)&3); | |
1726 | CMAP(i&3); | |
1727 | break; | |
1728 | case 4: | |
1729 | CMAP(i>>4); | |
1730 | CMAP(i&0xf); | |
1731 | break; | |
1732 | case 8: | |
1733 | CMAP(i); | |
1734 | break; | |
1735 | } | |
1736 | #undef CMAP | |
1737 | } | |
1738 | return (1); | |
1739 | } | |
1740 | ||
1741 | /* | |
1742 | * Construct any mapping table used | |
1743 | * by the associated put routine. | |
1744 | */ | |
1745 | static int | |
1746 | buildMap(TIFFRGBAImage* img) | |
1747 | { | |
1748 | switch (img->photometric) { | |
1749 | case PHOTOMETRIC_RGB: | |
1750 | case PHOTOMETRIC_YCBCR: | |
1751 | case PHOTOMETRIC_SEPARATED: | |
1752 | if (img->bitspersample == 8) | |
1753 | break; | |
1754 | /* fall thru... */ | |
1755 | case PHOTOMETRIC_MINISBLACK: | |
1756 | case PHOTOMETRIC_MINISWHITE: | |
1757 | if (!setupMap(img)) | |
1758 | return (0); | |
1759 | break; | |
1760 | case PHOTOMETRIC_PALETTE: | |
1761 | /* | |
1762 | * Convert 16-bit colormap to 8-bit (unless it looks | |
1763 | * like an old-style 8-bit colormap). | |
1764 | */ | |
1765 | if (checkcmap(img) == 16) | |
1766 | cvtcmap(img); | |
1767 | else | |
1768 | TIFFWarning(TIFFFileName(img->tif), "Assuming 8-bit colormap"); | |
1769 | /* | |
1770 | * Use mapping table and colormap to construct | |
1771 | * unpacking tables for samples < 8 bits. | |
1772 | */ | |
1773 | if (img->bitspersample <= 8 && !makecmap(img)) | |
1774 | return (0); | |
1775 | break; | |
1776 | } | |
1777 | return (1); | |
1778 | } | |
1779 | ||
1780 | /* | |
1781 | * Select the appropriate conversion routine for packed data. | |
1782 | */ | |
1783 | static int | |
1784 | pickTileContigCase(TIFFRGBAImage* img) | |
1785 | { | |
1786 | tileContigRoutine put = 0; | |
1787 | ||
1788 | if (buildMap(img)) { | |
1789 | switch (img->photometric) { | |
1790 | case PHOTOMETRIC_RGB: | |
1791 | switch (img->bitspersample) { | |
1792 | case 8: | |
1793 | if (!img->Map) { | |
1794 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
1795 | put = putRGBAAcontig8bittile; | |
1796 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
1797 | put = putRGBUAcontig8bittile; | |
1798 | else | |
1799 | put = putRGBcontig8bittile; | |
1800 | } else | |
1801 | put = putRGBcontig8bitMaptile; | |
1802 | break; | |
1803 | case 16: | |
1804 | put = putRGBcontig16bittile; | |
1805 | if (!img->Map) { | |
1806 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
1807 | put = putRGBAAcontig16bittile; | |
1808 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
1809 | put = putRGBUAcontig16bittile; | |
1810 | } | |
1811 | break; | |
1812 | } | |
1813 | break; | |
1814 | case PHOTOMETRIC_SEPARATED: | |
1815 | if (img->bitspersample == 8) { | |
1816 | if (!img->Map) | |
1817 | put = putRGBcontig8bitCMYKtile; | |
1818 | else | |
1819 | put = putRGBcontig8bitCMYKMaptile; | |
1820 | } | |
1821 | break; | |
1822 | case PHOTOMETRIC_PALETTE: | |
1823 | switch (img->bitspersample) { | |
1824 | case 8: put = put8bitcmaptile; break; | |
1825 | case 4: put = put4bitcmaptile; break; | |
1826 | case 2: put = put2bitcmaptile; break; | |
1827 | case 1: put = put1bitcmaptile; break; | |
1828 | } | |
1829 | break; | |
1830 | case PHOTOMETRIC_MINISWHITE: | |
1831 | case PHOTOMETRIC_MINISBLACK: | |
1832 | switch (img->bitspersample) { | |
1833 | case 8: put = putgreytile; break; | |
1834 | case 4: put = put4bitbwtile; break; | |
1835 | case 2: put = put2bitbwtile; break; | |
1836 | case 1: put = put1bitbwtile; break; | |
1837 | } | |
1838 | break; | |
1839 | case PHOTOMETRIC_YCBCR: | |
1840 | if (img->bitspersample == 8) | |
1841 | put = initYCbCrConversion(img); | |
1842 | break; | |
1843 | } | |
1844 | } | |
1845 | return ((img->put.contig = put) != 0); | |
1846 | } | |
1847 | ||
1848 | /* | |
1849 | * Select the appropriate conversion routine for unpacked data. | |
1850 | * | |
1851 | * NB: we assume that unpacked single channel data is directed | |
1852 | * to the "packed routines. | |
1853 | */ | |
1854 | static int | |
1855 | pickTileSeparateCase(TIFFRGBAImage* img) | |
1856 | { | |
1857 | tileSeparateRoutine put = 0; | |
1858 | ||
1859 | if (buildMap(img)) { | |
1860 | switch (img->photometric) { | |
1861 | case PHOTOMETRIC_RGB: | |
1862 | switch (img->bitspersample) { | |
1863 | case 8: | |
1864 | if (!img->Map) { | |
1865 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
1866 | put = putRGBAAseparate8bittile; | |
1867 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
1868 | put = putRGBUAseparate8bittile; | |
1869 | else | |
1870 | put = putRGBseparate8bittile; | |
1871 | } else | |
1872 | put = putRGBseparate8bitMaptile; | |
1873 | break; | |
1874 | case 16: | |
1875 | put = putRGBseparate16bittile; | |
1876 | if (!img->Map) { | |
1877 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
1878 | put = putRGBAAseparate16bittile; | |
1879 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
1880 | put = putRGBUAseparate16bittile; | |
1881 | } | |
1882 | break; | |
1883 | } | |
1884 | break; | |
1885 | } | |
1886 | } | |
1887 | return ((img->put.separate = put) != 0); | |
1888 | } | |
1889 | ||
1890 | /* | |
1891 | * Read a whole strip off data from the file, and convert to RGBA form. | |
1892 | * If this is the last strip, then it will only contain the portion of | |
1893 | * the strip that is actually within the image space. The result is | |
1894 | * organized in bottom to top form. | |
1895 | */ | |
1896 | ||
1897 | ||
1898 | int | |
1899 | TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster ) | |
1900 | ||
1901 | { | |
1902 | char emsg[1024]; | |
1903 | TIFFRGBAImage img; | |
1904 | int ok; | |
1905 | uint32 rowsperstrip, rows_to_read; | |
1906 | ||
1907 | if( TIFFIsTiled( tif ) ) | |
1908 | { | |
1909 | TIFFError(TIFFFileName(tif), | |
1910 | "Can't use TIFFReadRGBAStrip() with tiled file."); | |
1911 | return (0); | |
1912 | } | |
1913 | ||
1914 | TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
1915 | if( (row % rowsperstrip) != 0 ) | |
1916 | { | |
1917 | TIFFError(TIFFFileName(tif), | |
1918 | "Row passed to TIFFReadRGBAStrip() must be first in a strip."); | |
1919 | return (0); | |
1920 | } | |
1921 | ||
1922 | if (TIFFRGBAImageBegin(&img, tif, 0, emsg)) { | |
1923 | ||
1924 | img.row_offset = row; | |
1925 | img.col_offset = 0; | |
1926 | ||
1927 | if( row + rowsperstrip > img.height ) | |
1928 | rows_to_read = img.height - row; | |
1929 | else | |
1930 | rows_to_read = rowsperstrip; | |
1931 | ||
1932 | ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read ); | |
1933 | ||
1934 | TIFFRGBAImageEnd(&img); | |
1935 | } else { | |
1936 | TIFFError(TIFFFileName(tif), emsg); | |
1937 | ok = 0; | |
1938 | } | |
1939 | ||
1940 | return (ok); | |
1941 | } | |
1942 | ||
1943 | /* | |
1944 | * Read a whole tile off data from the file, and convert to RGBA form. | |
1945 | * The returned RGBA data is organized from bottom to top of tile, | |
1946 | * and may include zeroed areas if the tile extends off the image. | |
1947 | */ | |
1948 | ||
1949 | int | |
1950 | TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster) | |
1951 | ||
1952 | { | |
1953 | char emsg[1024]; | |
1954 | TIFFRGBAImage img; | |
1955 | int ok; | |
1956 | uint32 tile_xsize, tile_ysize; | |
1957 | uint32 read_xsize, read_ysize; | |
1958 | int i_row; | |
1959 | ||
1960 | /* | |
1961 | * Verify that our request is legal - on a tile file, and on a | |
1962 | * tile boundary. | |
1963 | */ | |
1964 | ||
1965 | if( !TIFFIsTiled( tif ) ) | |
1966 | { | |
1967 | TIFFError(TIFFFileName(tif), | |
1968 | "Can't use TIFFReadRGBATile() with stripped file."); | |
1969 | return (0); | |
1970 | } | |
1971 | ||
1972 | TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize); | |
1973 | TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize); | |
1974 | if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 ) | |
1975 | { | |
1976 | TIFFError(TIFFFileName(tif), | |
1977 | "Row/col passed to TIFFReadRGBATile() must be top" | |
1978 | "left corner of a tile."); | |
1979 | return (0); | |
1980 | } | |
1981 | ||
1982 | /* | |
1983 | * Setup the RGBA reader. | |
1984 | */ | |
1985 | ||
1986 | if ( !TIFFRGBAImageBegin(&img, tif, 0, emsg)) { | |
1987 | TIFFError(TIFFFileName(tif), emsg); | |
1988 | return( 0 ); | |
1989 | } | |
1990 | ||
1991 | /* | |
1992 | * The TIFFRGBAImageGet() function doesn't allow us to get off the | |
1993 | * edge of the image, even to fill an otherwise valid tile. So we | |
1994 | * figure out how much we can read, and fix up the tile buffer to | |
1995 | * a full tile configuration afterwards. | |
1996 | */ | |
1997 | ||
1998 | if( row + tile_ysize > img.height ) | |
1999 | read_ysize = img.height - row; | |
2000 | else | |
2001 | read_ysize = tile_ysize; | |
2002 | ||
2003 | if( col + tile_xsize > img.width ) | |
2004 | read_xsize = img.width - col; | |
2005 | else | |
2006 | read_xsize = tile_xsize; | |
2007 | ||
2008 | /* | |
2009 | * Read the chunk of imagery. | |
2010 | */ | |
2011 | ||
2012 | img.row_offset = row; | |
2013 | img.col_offset = col; | |
2014 | ||
2015 | ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize ); | |
2016 | ||
2017 | TIFFRGBAImageEnd(&img); | |
2018 | ||
2019 | /* | |
2020 | * If our read was incomplete we will need to fix up the tile by | |
2021 | * shifting the data around as if a full tile of data is being returned. | |
2022 | * | |
2023 | * This is all the more complicated because the image is organized in | |
2024 | * bottom to top format. | |
2025 | */ | |
2026 | ||
2027 | if( read_xsize == tile_xsize && read_ysize == tile_ysize ) | |
2028 | return( ok ); | |
2029 | ||
2030 | for( i_row = 0; i_row < read_ysize; i_row++ ) | |
2031 | { | |
2032 | _TIFFmemcpy( raster + (tile_ysize - i_row - 1) * tile_xsize, | |
2033 | raster + (read_ysize - i_row - 1) * read_xsize, | |
2034 | read_xsize * sizeof(uint32) ); | |
2035 | _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize, | |
2036 | 0, sizeof(uint32) * (tile_xsize - read_xsize) ); | |
2037 | } | |
2038 | ||
2039 | for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) | |
2040 | { | |
2041 | _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize, | |
2042 | 0, sizeof(uint32) * tile_xsize ); | |
2043 | } | |
2044 | ||
2045 | return (ok); | |
2046 | } |