]>
Commit | Line | Data |
---|---|---|
e1929140 RR |
1 | /* |
2 | * jidctint.c | |
3 | * | |
4 | * Copyright (C) 1991-1998, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains a slow-but-accurate integer implementation of the | |
9 | * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine | |
10 | * must also perform dequantization of the input coefficients. | |
11 | * | |
12 | * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT | |
13 | * on each row (or vice versa, but it's more convenient to emit a row at | |
14 | * a time). Direct algorithms are also available, but they are much more | |
15 | * complex and seem not to be any faster when reduced to code. | |
16 | * | |
17 | * This implementation is based on an algorithm described in | |
18 | * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT | |
19 | * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, | |
20 | * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. | |
21 | * The primary algorithm described there uses 11 multiplies and 29 adds. | |
22 | * We use their alternate method with 12 multiplies and 32 adds. | |
23 | * The advantage of this method is that no data path contains more than one | |
24 | * multiplication; this allows a very simple and accurate implementation in | |
25 | * scaled fixed-point arithmetic, with a minimal number of shifts. | |
26 | */ | |
27 | ||
28 | #define JPEG_INTERNALS | |
29 | #include "jinclude.h" | |
30 | #include "jpeglib.h" | |
31 | #include "jdct.h" /* Private declarations for DCT subsystem */ | |
32 | ||
33 | #ifdef DCT_ISLOW_SUPPORTED | |
34 | ||
35 | ||
36 | /* | |
37 | * This module is specialized to the case DCTSIZE = 8. | |
38 | */ | |
39 | ||
40 | #if DCTSIZE != 8 | |
41 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | |
42 | #endif | |
43 | ||
44 | ||
45 | /* | |
46 | * The poop on this scaling stuff is as follows: | |
47 | * | |
48 | * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) | |
49 | * larger than the true IDCT outputs. The final outputs are therefore | |
50 | * a factor of N larger than desired; since N=8 this can be cured by | |
51 | * a simple right shift at the end of the algorithm. The advantage of | |
52 | * this arrangement is that we save two multiplications per 1-D IDCT, | |
53 | * because the y0 and y4 inputs need not be divided by sqrt(N). | |
54 | * | |
55 | * We have to do addition and subtraction of the integer inputs, which | |
56 | * is no problem, and multiplication by fractional constants, which is | |
57 | * a problem to do in integer arithmetic. We multiply all the constants | |
58 | * by CONST_SCALE and convert them to integer constants (thus retaining | |
59 | * CONST_BITS bits of precision in the constants). After doing a | |
60 | * multiplication we have to divide the product by CONST_SCALE, with proper | |
61 | * rounding, to produce the correct output. This division can be done | |
62 | * cheaply as a right shift of CONST_BITS bits. We postpone shifting | |
63 | * as long as possible so that partial sums can be added together with | |
64 | * full fractional precision. | |
65 | * | |
66 | * The outputs of the first pass are scaled up by PASS1_BITS bits so that | |
67 | * they are represented to better-than-integral precision. These outputs | |
68 | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word | |
69 | * with the recommended scaling. (To scale up 12-bit sample data further, an | |
70 | * intermediate INT32 array would be needed.) | |
71 | * | |
72 | * To avoid overflow of the 32-bit intermediate results in pass 2, we must | |
73 | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis | |
74 | * shows that the values given below are the most effective. | |
75 | */ | |
76 | ||
77 | #if BITS_IN_JSAMPLE == 8 | |
78 | #define CONST_BITS 13 | |
79 | #define PASS1_BITS 2 | |
80 | #else | |
81 | #define CONST_BITS 13 | |
82 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | |
83 | #endif | |
84 | ||
85 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | |
86 | * causing a lot of useless floating-point operations at run time. | |
87 | * To get around this we use the following pre-calculated constants. | |
88 | * If you change CONST_BITS you may want to add appropriate values. | |
89 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) | |
90 | */ | |
91 | ||
92 | #if CONST_BITS == 13 | |
93 | #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ | |
94 | #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ | |
95 | #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ | |
96 | #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ | |
97 | #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ | |
98 | #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ | |
99 | #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ | |
100 | #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ | |
101 | #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ | |
102 | #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ | |
103 | #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ | |
104 | #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ | |
105 | #else | |
106 | #define FIX_0_298631336 FIX(0.298631336) | |
107 | #define FIX_0_390180644 FIX(0.390180644) | |
108 | #define FIX_0_541196100 FIX(0.541196100) | |
109 | #define FIX_0_765366865 FIX(0.765366865) | |
110 | #define FIX_0_899976223 FIX(0.899976223) | |
111 | #define FIX_1_175875602 FIX(1.175875602) | |
112 | #define FIX_1_501321110 FIX(1.501321110) | |
113 | #define FIX_1_847759065 FIX(1.847759065) | |
114 | #define FIX_1_961570560 FIX(1.961570560) | |
115 | #define FIX_2_053119869 FIX(2.053119869) | |
116 | #define FIX_2_562915447 FIX(2.562915447) | |
117 | #define FIX_3_072711026 FIX(3.072711026) | |
118 | #endif | |
119 | ||
120 | ||
121 | /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. | |
122 | * For 8-bit samples with the recommended scaling, all the variable | |
123 | * and constant values involved are no more than 16 bits wide, so a | |
124 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. | |
125 | * For 12-bit samples, a full 32-bit multiplication will be needed. | |
126 | */ | |
127 | ||
128 | #if BITS_IN_JSAMPLE == 8 | |
129 | #define MULTIPLY(var,const) MULTIPLY16C16(var,const) | |
130 | #else | |
131 | #define MULTIPLY(var,const) ((var) * (const)) | |
132 | #endif | |
133 | ||
134 | ||
135 | /* Dequantize a coefficient by multiplying it by the multiplier-table | |
136 | * entry; produce an int result. In this module, both inputs and result | |
137 | * are 16 bits or less, so either int or short multiply will work. | |
138 | */ | |
139 | ||
140 | #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval)) | |
141 | ||
142 | ||
143 | /* | |
144 | * Perform dequantization and inverse DCT on one block of coefficients. | |
145 | */ | |
146 | ||
147 | GLOBAL(void) | |
148 | jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, | |
149 | JCOEFPTR coef_block, | |
150 | JSAMPARRAY output_buf, JDIMENSION output_col) | |
151 | { | |
152 | INT32 tmp0, tmp1, tmp2, tmp3; | |
153 | INT32 tmp10, tmp11, tmp12, tmp13; | |
154 | INT32 z1, z2, z3, z4, z5; | |
155 | JCOEFPTR inptr; | |
156 | ISLOW_MULT_TYPE * quantptr; | |
157 | int * wsptr; | |
158 | JSAMPROW outptr; | |
159 | JSAMPLE *range_limit = IDCT_range_limit(cinfo); | |
160 | int ctr; | |
161 | int workspace[DCTSIZE2]; /* buffers data between passes */ | |
162 | SHIFT_TEMPS | |
163 | ||
164 | /* Pass 1: process columns from input, store into work array. */ | |
165 | /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ | |
166 | /* furthermore, we scale the results by 2**PASS1_BITS. */ | |
167 | ||
168 | inptr = coef_block; | |
169 | quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; | |
170 | wsptr = workspace; | |
171 | for (ctr = DCTSIZE; ctr > 0; ctr--) { | |
172 | /* Due to quantization, we will usually find that many of the input | |
173 | * coefficients are zero, especially the AC terms. We can exploit this | |
174 | * by short-circuiting the IDCT calculation for any column in which all | |
175 | * the AC terms are zero. In that case each output is equal to the | |
176 | * DC coefficient (with scale factor as needed). | |
177 | * With typical images and quantization tables, half or more of the | |
178 | * column DCT calculations can be simplified this way. | |
179 | */ | |
180 | ||
181 | if (inptr[DCTSIZE*1] == 0 && inptr[DCTSIZE*2] == 0 && | |
182 | inptr[DCTSIZE*3] == 0 && inptr[DCTSIZE*4] == 0 && | |
183 | inptr[DCTSIZE*5] == 0 && inptr[DCTSIZE*6] == 0 && | |
184 | inptr[DCTSIZE*7] == 0) { | |
185 | /* AC terms all zero */ | |
186 | int dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]) << PASS1_BITS; | |
187 | ||
188 | wsptr[DCTSIZE*0] = dcval; | |
189 | wsptr[DCTSIZE*1] = dcval; | |
190 | wsptr[DCTSIZE*2] = dcval; | |
191 | wsptr[DCTSIZE*3] = dcval; | |
192 | wsptr[DCTSIZE*4] = dcval; | |
193 | wsptr[DCTSIZE*5] = dcval; | |
194 | wsptr[DCTSIZE*6] = dcval; | |
195 | wsptr[DCTSIZE*7] = dcval; | |
196 | ||
197 | inptr++; /* advance pointers to next column */ | |
198 | quantptr++; | |
199 | wsptr++; | |
200 | continue; | |
201 | } | |
202 | ||
203 | /* Even part: reverse the even part of the forward DCT. */ | |
204 | /* The rotator is sqrt(2)*c(-6). */ | |
205 | ||
206 | z2 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]); | |
207 | z3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]); | |
208 | ||
209 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); | |
210 | tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); | |
211 | tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); | |
212 | ||
213 | z2 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]); | |
214 | z3 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]); | |
215 | ||
216 | tmp0 = (z2 + z3) << CONST_BITS; | |
217 | tmp1 = (z2 - z3) << CONST_BITS; | |
218 | ||
219 | tmp10 = tmp0 + tmp3; | |
220 | tmp13 = tmp0 - tmp3; | |
221 | tmp11 = tmp1 + tmp2; | |
222 | tmp12 = tmp1 - tmp2; | |
223 | ||
224 | /* Odd part per figure 8; the matrix is unitary and hence its | |
225 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
226 | */ | |
227 | ||
228 | tmp0 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]); | |
229 | tmp1 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]); | |
230 | tmp2 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]); | |
231 | tmp3 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]); | |
232 | ||
233 | z1 = tmp0 + tmp3; | |
234 | z2 = tmp1 + tmp2; | |
235 | z3 = tmp0 + tmp2; | |
236 | z4 = tmp1 + tmp3; | |
237 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ | |
238 | ||
239 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ | |
240 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ | |
241 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ | |
242 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ | |
243 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ | |
244 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ | |
245 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ | |
246 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ | |
247 | ||
248 | z3 += z5; | |
249 | z4 += z5; | |
250 | ||
251 | tmp0 += z1 + z3; | |
252 | tmp1 += z2 + z4; | |
253 | tmp2 += z2 + z3; | |
254 | tmp3 += z1 + z4; | |
255 | ||
256 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
257 | ||
258 | wsptr[DCTSIZE*0] = (int) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS); | |
259 | wsptr[DCTSIZE*7] = (int) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS); | |
260 | wsptr[DCTSIZE*1] = (int) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS); | |
261 | wsptr[DCTSIZE*6] = (int) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS); | |
262 | wsptr[DCTSIZE*2] = (int) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS); | |
263 | wsptr[DCTSIZE*5] = (int) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS); | |
264 | wsptr[DCTSIZE*3] = (int) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS); | |
265 | wsptr[DCTSIZE*4] = (int) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS); | |
266 | ||
267 | inptr++; /* advance pointers to next column */ | |
268 | quantptr++; | |
269 | wsptr++; | |
270 | } | |
271 | ||
272 | /* Pass 2: process rows from work array, store into output array. */ | |
273 | /* Note that we must descale the results by a factor of 8 == 2**3, */ | |
274 | /* and also undo the PASS1_BITS scaling. */ | |
275 | ||
276 | wsptr = workspace; | |
277 | for (ctr = 0; ctr < DCTSIZE; ctr++) { | |
278 | outptr = output_buf[ctr] + output_col; | |
279 | /* Rows of zeroes can be exploited in the same way as we did with columns. | |
280 | * However, the column calculation has created many nonzero AC terms, so | |
281 | * the simplification applies less often (typically 5% to 10% of the time). | |
282 | * On machines with very fast multiplication, it's possible that the | |
283 | * test takes more time than it's worth. In that case this section | |
284 | * may be commented out. | |
285 | */ | |
286 | ||
287 | #ifndef NO_ZERO_ROW_TEST | |
288 | if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 && wsptr[4] == 0 && | |
289 | wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) { | |
290 | /* AC terms all zero */ | |
291 | JSAMPLE dcval = range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) | |
292 | & RANGE_MASK]; | |
293 | ||
294 | outptr[0] = dcval; | |
295 | outptr[1] = dcval; | |
296 | outptr[2] = dcval; | |
297 | outptr[3] = dcval; | |
298 | outptr[4] = dcval; | |
299 | outptr[5] = dcval; | |
300 | outptr[6] = dcval; | |
301 | outptr[7] = dcval; | |
302 | ||
303 | wsptr += DCTSIZE; /* advance pointer to next row */ | |
304 | continue; | |
305 | } | |
306 | #endif | |
307 | ||
308 | /* Even part: reverse the even part of the forward DCT. */ | |
309 | /* The rotator is sqrt(2)*c(-6). */ | |
310 | ||
311 | z2 = (INT32) wsptr[2]; | |
312 | z3 = (INT32) wsptr[6]; | |
313 | ||
314 | z1 = MULTIPLY(z2 + z3, FIX_0_541196100); | |
315 | tmp2 = z1 + MULTIPLY(z3, - FIX_1_847759065); | |
316 | tmp3 = z1 + MULTIPLY(z2, FIX_0_765366865); | |
317 | ||
318 | tmp0 = ((INT32) wsptr[0] + (INT32) wsptr[4]) << CONST_BITS; | |
319 | tmp1 = ((INT32) wsptr[0] - (INT32) wsptr[4]) << CONST_BITS; | |
320 | ||
321 | tmp10 = tmp0 + tmp3; | |
322 | tmp13 = tmp0 - tmp3; | |
323 | tmp11 = tmp1 + tmp2; | |
324 | tmp12 = tmp1 - tmp2; | |
325 | ||
326 | /* Odd part per figure 8; the matrix is unitary and hence its | |
327 | * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. | |
328 | */ | |
329 | ||
330 | tmp0 = (INT32) wsptr[7]; | |
331 | tmp1 = (INT32) wsptr[5]; | |
332 | tmp2 = (INT32) wsptr[3]; | |
333 | tmp3 = (INT32) wsptr[1]; | |
334 | ||
335 | z1 = tmp0 + tmp3; | |
336 | z2 = tmp1 + tmp2; | |
337 | z3 = tmp0 + tmp2; | |
338 | z4 = tmp1 + tmp3; | |
339 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ | |
340 | ||
341 | tmp0 = MULTIPLY(tmp0, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ | |
342 | tmp1 = MULTIPLY(tmp1, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ | |
343 | tmp2 = MULTIPLY(tmp2, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ | |
344 | tmp3 = MULTIPLY(tmp3, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ | |
345 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ | |
346 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ | |
347 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ | |
348 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ | |
349 | ||
350 | z3 += z5; | |
351 | z4 += z5; | |
352 | ||
353 | tmp0 += z1 + z3; | |
354 | tmp1 += z2 + z4; | |
355 | tmp2 += z2 + z3; | |
356 | tmp3 += z1 + z4; | |
357 | ||
358 | /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ | |
359 | ||
360 | outptr[0] = range_limit[(int) DESCALE(tmp10 + tmp3, | |
361 | CONST_BITS+PASS1_BITS+3) | |
362 | & RANGE_MASK]; | |
363 | outptr[7] = range_limit[(int) DESCALE(tmp10 - tmp3, | |
364 | CONST_BITS+PASS1_BITS+3) | |
365 | & RANGE_MASK]; | |
366 | outptr[1] = range_limit[(int) DESCALE(tmp11 + tmp2, | |
367 | CONST_BITS+PASS1_BITS+3) | |
368 | & RANGE_MASK]; | |
369 | outptr[6] = range_limit[(int) DESCALE(tmp11 - tmp2, | |
370 | CONST_BITS+PASS1_BITS+3) | |
371 | & RANGE_MASK]; | |
372 | outptr[2] = range_limit[(int) DESCALE(tmp12 + tmp1, | |
373 | CONST_BITS+PASS1_BITS+3) | |
374 | & RANGE_MASK]; | |
375 | outptr[5] = range_limit[(int) DESCALE(tmp12 - tmp1, | |
376 | CONST_BITS+PASS1_BITS+3) | |
377 | & RANGE_MASK]; | |
378 | outptr[3] = range_limit[(int) DESCALE(tmp13 + tmp0, | |
379 | CONST_BITS+PASS1_BITS+3) | |
380 | & RANGE_MASK]; | |
381 | outptr[4] = range_limit[(int) DESCALE(tmp13 - tmp0, | |
382 | CONST_BITS+PASS1_BITS+3) | |
383 | & RANGE_MASK]; | |
384 | ||
385 | wsptr += DCTSIZE; /* advance pointer to next row */ | |
386 | } | |
387 | } | |
388 | ||
389 | #endif /* DCT_ISLOW_SUPPORTED */ |