]>
Commit | Line | Data |
---|---|---|
e1929140 RR |
1 | /* |
2 | * jdmaster.c | |
3 | * | |
4 | * Copyright (C) 1991-1997, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains master control logic for the JPEG decompressor. | |
9 | * These routines are concerned with selecting the modules to be executed | |
10 | * and with determining the number of passes and the work to be done in each | |
11 | * pass. | |
12 | */ | |
13 | ||
14 | #define JPEG_INTERNALS | |
15 | #include "jinclude.h" | |
16 | #include "jpeglib.h" | |
17 | ||
7bfbbc0e DW |
18 | #if defined(__VISAGECPP__) |
19 | /* Visual Age fixups for multiple declarations */ | |
20 | # define start_input_pass start_input_pass2 /* already in jcmaint.c */ | |
21 | #endif | |
e1929140 RR |
22 | |
23 | /* Private state */ | |
24 | ||
25 | typedef struct { | |
26 | struct jpeg_decomp_master pub; /* public fields */ | |
27 | ||
28 | int pass_number; /* # of passes completed */ | |
29 | ||
30 | boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ | |
31 | ||
32 | /* Saved references to initialized quantizer modules, | |
33 | * in case we need to switch modes. | |
34 | */ | |
35 | struct jpeg_color_quantizer * quantizer_1pass; | |
36 | struct jpeg_color_quantizer * quantizer_2pass; | |
37 | } my_decomp_master; | |
38 | ||
39 | typedef my_decomp_master * my_master_ptr; | |
40 | ||
41 | ||
42 | /* | |
43 | * Determine whether merged upsample/color conversion should be used. | |
44 | * CRUCIAL: this must match the actual capabilities of jdmerge.c! | |
45 | */ | |
46 | ||
47 | LOCAL(boolean) | |
48 | use_merged_upsample (j_decompress_ptr cinfo) | |
49 | { | |
50 | #ifdef UPSAMPLE_MERGING_SUPPORTED | |
51 | /* Merging is the equivalent of plain box-filter upsampling */ | |
52 | if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling) | |
53 | return FALSE; | |
54 | /* jdmerge.c only supports YCC=>RGB color conversion */ | |
55 | if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || | |
56 | cinfo->out_color_space != JCS_RGB || | |
57 | cinfo->out_color_components != RGB_PIXELSIZE) | |
58 | return FALSE; | |
59 | /* and it only handles 2h1v or 2h2v sampling ratios */ | |
60 | if (cinfo->comp_info[0].h_samp_factor != 2 || | |
61 | cinfo->comp_info[1].h_samp_factor != 1 || | |
62 | cinfo->comp_info[2].h_samp_factor != 1 || | |
63 | cinfo->comp_info[0].v_samp_factor > 2 || | |
64 | cinfo->comp_info[1].v_samp_factor != 1 || | |
65 | cinfo->comp_info[2].v_samp_factor != 1) | |
66 | return FALSE; | |
67 | /* furthermore, it doesn't work if we've scaled the IDCTs differently */ | |
68 | if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size || | |
69 | cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size || | |
70 | cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size) | |
71 | return FALSE; | |
72 | /* ??? also need to test for upsample-time rescaling, when & if supported */ | |
73 | return TRUE; /* by golly, it'll work... */ | |
74 | #else | |
75 | return FALSE; | |
76 | #endif | |
77 | } | |
78 | ||
79 | ||
80 | /* | |
81 | * Compute output image dimensions and related values. | |
82 | * NOTE: this is exported for possible use by application. | |
83 | * Hence it mustn't do anything that can't be done twice. | |
84 | * Also note that it may be called before the master module is initialized! | |
85 | */ | |
86 | ||
87 | GLOBAL(void) | |
88 | jpeg_calc_output_dimensions (j_decompress_ptr cinfo) | |
89 | /* Do computations that are needed before master selection phase */ | |
90 | { | |
91 | #ifdef IDCT_SCALING_SUPPORTED | |
92 | int ci; | |
93 | jpeg_component_info *compptr; | |
94 | #endif | |
95 | ||
96 | /* Prevent application from calling me at wrong times */ | |
97 | if (cinfo->global_state != DSTATE_READY) | |
98 | ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |
99 | ||
100 | #ifdef IDCT_SCALING_SUPPORTED | |
101 | ||
102 | /* Compute actual output image dimensions and DCT scaling choices. */ | |
103 | if (cinfo->scale_num * 8 <= cinfo->scale_denom) { | |
104 | /* Provide 1/8 scaling */ | |
105 | cinfo->output_width = (JDIMENSION) | |
106 | jdiv_round_up((long) cinfo->image_width, 8L); | |
107 | cinfo->output_height = (JDIMENSION) | |
108 | jdiv_round_up((long) cinfo->image_height, 8L); | |
109 | cinfo->min_DCT_scaled_size = 1; | |
110 | } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) { | |
111 | /* Provide 1/4 scaling */ | |
112 | cinfo->output_width = (JDIMENSION) | |
113 | jdiv_round_up((long) cinfo->image_width, 4L); | |
114 | cinfo->output_height = (JDIMENSION) | |
115 | jdiv_round_up((long) cinfo->image_height, 4L); | |
116 | cinfo->min_DCT_scaled_size = 2; | |
117 | } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) { | |
118 | /* Provide 1/2 scaling */ | |
119 | cinfo->output_width = (JDIMENSION) | |
120 | jdiv_round_up((long) cinfo->image_width, 2L); | |
121 | cinfo->output_height = (JDIMENSION) | |
122 | jdiv_round_up((long) cinfo->image_height, 2L); | |
123 | cinfo->min_DCT_scaled_size = 4; | |
124 | } else { | |
125 | /* Provide 1/1 scaling */ | |
126 | cinfo->output_width = cinfo->image_width; | |
127 | cinfo->output_height = cinfo->image_height; | |
128 | cinfo->min_DCT_scaled_size = DCTSIZE; | |
129 | } | |
130 | /* In selecting the actual DCT scaling for each component, we try to | |
131 | * scale up the chroma components via IDCT scaling rather than upsampling. | |
132 | * This saves time if the upsampler gets to use 1:1 scaling. | |
133 | * Note this code assumes that the supported DCT scalings are powers of 2. | |
134 | */ | |
135 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
136 | ci++, compptr++) { | |
137 | int ssize = cinfo->min_DCT_scaled_size; | |
138 | while (ssize < DCTSIZE && | |
139 | (compptr->h_samp_factor * ssize * 2 <= | |
140 | cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) && | |
141 | (compptr->v_samp_factor * ssize * 2 <= | |
142 | cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) { | |
143 | ssize = ssize * 2; | |
144 | } | |
145 | compptr->DCT_scaled_size = ssize; | |
146 | } | |
147 | ||
148 | /* Recompute downsampled dimensions of components; | |
149 | * application needs to know these if using raw downsampled data. | |
150 | */ | |
151 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
152 | ci++, compptr++) { | |
153 | /* Size in samples, after IDCT scaling */ | |
154 | compptr->downsampled_width = (JDIMENSION) | |
155 | jdiv_round_up((long) cinfo->image_width * | |
156 | (long) (compptr->h_samp_factor * compptr->DCT_scaled_size), | |
157 | (long) (cinfo->max_h_samp_factor * DCTSIZE)); | |
158 | compptr->downsampled_height = (JDIMENSION) | |
159 | jdiv_round_up((long) cinfo->image_height * | |
160 | (long) (compptr->v_samp_factor * compptr->DCT_scaled_size), | |
161 | (long) (cinfo->max_v_samp_factor * DCTSIZE)); | |
162 | } | |
163 | ||
164 | #else /* !IDCT_SCALING_SUPPORTED */ | |
165 | ||
166 | /* Hardwire it to "no scaling" */ | |
167 | cinfo->output_width = cinfo->image_width; | |
168 | cinfo->output_height = cinfo->image_height; | |
169 | /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE, | |
170 | * and has computed unscaled downsampled_width and downsampled_height. | |
171 | */ | |
172 | ||
173 | #endif /* IDCT_SCALING_SUPPORTED */ | |
174 | ||
175 | /* Report number of components in selected colorspace. */ | |
176 | /* Probably this should be in the color conversion module... */ | |
177 | switch (cinfo->out_color_space) { | |
178 | case JCS_GRAYSCALE: | |
179 | cinfo->out_color_components = 1; | |
180 | break; | |
181 | case JCS_RGB: | |
182 | #if RGB_PIXELSIZE != 3 | |
183 | cinfo->out_color_components = RGB_PIXELSIZE; | |
184 | break; | |
185 | #endif /* else share code with YCbCr */ | |
186 | case JCS_YCbCr: | |
187 | cinfo->out_color_components = 3; | |
188 | break; | |
189 | case JCS_CMYK: | |
190 | case JCS_YCCK: | |
191 | cinfo->out_color_components = 4; | |
192 | break; | |
193 | default: /* else must be same colorspace as in file */ | |
194 | cinfo->out_color_components = cinfo->num_components; | |
195 | break; | |
196 | } | |
197 | cinfo->output_components = (cinfo->quantize_colors ? 1 : | |
198 | cinfo->out_color_components); | |
199 | ||
200 | /* See if upsampler will want to emit more than one row at a time */ | |
201 | if (use_merged_upsample(cinfo)) | |
202 | cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; | |
203 | else | |
204 | cinfo->rec_outbuf_height = 1; | |
205 | } | |
206 | ||
207 | ||
208 | /* | |
209 | * Several decompression processes need to range-limit values to the range | |
210 | * 0..MAXJSAMPLE; the input value may fall somewhat outside this range | |
211 | * due to noise introduced by quantization, roundoff error, etc. These | |
212 | * processes are inner loops and need to be as fast as possible. On most | |
213 | * machines, particularly CPUs with pipelines or instruction prefetch, | |
214 | * a (subscript-check-less) C table lookup | |
215 | * x = sample_range_limit[x]; | |
216 | * is faster than explicit tests | |
217 | * if (x < 0) x = 0; | |
218 | * else if (x > MAXJSAMPLE) x = MAXJSAMPLE; | |
219 | * These processes all use a common table prepared by the routine below. | |
220 | * | |
221 | * For most steps we can mathematically guarantee that the initial value | |
222 | * of x is within MAXJSAMPLE+1 of the legal range, so a table running from | |
223 | * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial | |
7bfbbc0e | 224 | * limiting step (just after the IDCT), a wildly out-of-range value is |
e1929140 RR |
225 | * possible if the input data is corrupt. To avoid any chance of indexing |
226 | * off the end of memory and getting a bad-pointer trap, we perform the | |
227 | * post-IDCT limiting thus: | |
228 | * x = range_limit[x & MASK]; | |
229 | * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit | |
230 | * samples. Under normal circumstances this is more than enough range and | |
231 | * a correct output will be generated; with bogus input data the mask will | |
232 | * cause wraparound, and we will safely generate a bogus-but-in-range output. | |
233 | * For the post-IDCT step, we want to convert the data from signed to unsigned | |
234 | * representation by adding CENTERJSAMPLE at the same time that we limit it. | |
235 | * So the post-IDCT limiting table ends up looking like this: | |
236 | * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, | |
237 | * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), | |
238 | * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), | |
239 | * 0,1,...,CENTERJSAMPLE-1 | |
240 | * Negative inputs select values from the upper half of the table after | |
241 | * masking. | |
242 | * | |
243 | * We can save some space by overlapping the start of the post-IDCT table | |
244 | * with the simpler range limiting table. The post-IDCT table begins at | |
245 | * sample_range_limit + CENTERJSAMPLE. | |
246 | * | |
247 | * Note that the table is allocated in near data space on PCs; it's small | |
248 | * enough and used often enough to justify this. | |
249 | */ | |
250 | ||
251 | LOCAL(void) | |
252 | prepare_range_limit_table (j_decompress_ptr cinfo) | |
253 | /* Allocate and fill in the sample_range_limit table */ | |
254 | { | |
255 | JSAMPLE * table; | |
256 | int i; | |
257 | ||
258 | table = (JSAMPLE *) | |
259 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
260 | (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE)); | |
261 | table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */ | |
262 | cinfo->sample_range_limit = table; | |
263 | /* First segment of "simple" table: limit[x] = 0 for x < 0 */ | |
264 | MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE)); | |
265 | /* Main part of "simple" table: limit[x] = x */ | |
266 | for (i = 0; i <= MAXJSAMPLE; i++) | |
267 | table[i] = (JSAMPLE) i; | |
268 | table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ | |
269 | /* End of simple table, rest of first half of post-IDCT table */ | |
270 | for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) | |
271 | table[i] = MAXJSAMPLE; | |
272 | /* Second half of post-IDCT table */ | |
273 | MEMZERO(table + (2 * (MAXJSAMPLE+1)), | |
274 | (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE)); | |
275 | MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), | |
276 | cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE)); | |
277 | } | |
278 | ||
279 | ||
280 | /* | |
281 | * Master selection of decompression modules. | |
282 | * This is done once at jpeg_start_decompress time. We determine | |
283 | * which modules will be used and give them appropriate initialization calls. | |
284 | * We also initialize the decompressor input side to begin consuming data. | |
285 | * | |
286 | * Since jpeg_read_header has finished, we know what is in the SOF | |
287 | * and (first) SOS markers. We also have all the application parameter | |
288 | * settings. | |
289 | */ | |
290 | ||
291 | LOCAL(void) | |
292 | master_selection (j_decompress_ptr cinfo) | |
293 | { | |
294 | my_master_ptr master = (my_master_ptr) cinfo->master; | |
295 | boolean use_c_buffer; | |
296 | long samplesperrow; | |
297 | JDIMENSION jd_samplesperrow; | |
298 | ||
299 | /* Initialize dimensions and other stuff */ | |
300 | jpeg_calc_output_dimensions(cinfo); | |
301 | prepare_range_limit_table(cinfo); | |
302 | ||
303 | /* Width of an output scanline must be representable as JDIMENSION. */ | |
304 | samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; | |
305 | jd_samplesperrow = (JDIMENSION) samplesperrow; | |
306 | if ((long) jd_samplesperrow != samplesperrow) | |
307 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | |
308 | ||
309 | /* Initialize my private state */ | |
310 | master->pass_number = 0; | |
311 | master->using_merged_upsample = use_merged_upsample(cinfo); | |
312 | ||
313 | /* Color quantizer selection */ | |
314 | master->quantizer_1pass = NULL; | |
315 | master->quantizer_2pass = NULL; | |
316 | /* No mode changes if not using buffered-image mode. */ | |
317 | if (! cinfo->quantize_colors || ! cinfo->buffered_image) { | |
318 | cinfo->enable_1pass_quant = FALSE; | |
319 | cinfo->enable_external_quant = FALSE; | |
320 | cinfo->enable_2pass_quant = FALSE; | |
321 | } | |
322 | if (cinfo->quantize_colors) { | |
323 | if (cinfo->raw_data_out) | |
324 | ERREXIT(cinfo, JERR_NOTIMPL); | |
325 | /* 2-pass quantizer only works in 3-component color space. */ | |
326 | if (cinfo->out_color_components != 3) { | |
327 | cinfo->enable_1pass_quant = TRUE; | |
328 | cinfo->enable_external_quant = FALSE; | |
329 | cinfo->enable_2pass_quant = FALSE; | |
330 | cinfo->colormap = NULL; | |
331 | } else if (cinfo->colormap != NULL) { | |
332 | cinfo->enable_external_quant = TRUE; | |
333 | } else if (cinfo->two_pass_quantize) { | |
334 | cinfo->enable_2pass_quant = TRUE; | |
335 | } else { | |
336 | cinfo->enable_1pass_quant = TRUE; | |
337 | } | |
338 | ||
339 | if (cinfo->enable_1pass_quant) { | |
340 | #ifdef QUANT_1PASS_SUPPORTED | |
341 | jinit_1pass_quantizer(cinfo); | |
342 | master->quantizer_1pass = cinfo->cquantize; | |
343 | #else | |
344 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
345 | #endif | |
346 | } | |
347 | ||
348 | /* We use the 2-pass code to map to external colormaps. */ | |
349 | if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { | |
350 | #ifdef QUANT_2PASS_SUPPORTED | |
351 | jinit_2pass_quantizer(cinfo); | |
352 | master->quantizer_2pass = cinfo->cquantize; | |
353 | #else | |
354 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
355 | #endif | |
356 | } | |
357 | /* If both quantizers are initialized, the 2-pass one is left active; | |
358 | * this is necessary for starting with quantization to an external map. | |
359 | */ | |
360 | } | |
361 | ||
362 | /* Post-processing: in particular, color conversion first */ | |
363 | if (! cinfo->raw_data_out) { | |
364 | if (master->using_merged_upsample) { | |
365 | #ifdef UPSAMPLE_MERGING_SUPPORTED | |
366 | jinit_merged_upsampler(cinfo); /* does color conversion too */ | |
367 | #else | |
368 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
369 | #endif | |
370 | } else { | |
371 | jinit_color_deconverter(cinfo); | |
372 | jinit_upsampler(cinfo); | |
373 | } | |
374 | jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); | |
375 | } | |
376 | /* Inverse DCT */ | |
377 | jinit_inverse_dct(cinfo); | |
378 | /* Entropy decoding: either Huffman or arithmetic coding. */ | |
379 | if (cinfo->arith_code) { | |
380 | ERREXIT(cinfo, JERR_ARITH_NOTIMPL); | |
381 | } else { | |
382 | if (cinfo->progressive_mode) { | |
383 | #ifdef D_PROGRESSIVE_SUPPORTED | |
384 | jinit_phuff_decoder(cinfo); | |
385 | #else | |
386 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
387 | #endif | |
388 | } else | |
389 | jinit_huff_decoder(cinfo); | |
390 | } | |
391 | ||
392 | /* Initialize principal buffer controllers. */ | |
393 | use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; | |
394 | jinit_d_coef_controller(cinfo, use_c_buffer); | |
395 | ||
396 | if (! cinfo->raw_data_out) | |
397 | jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); | |
398 | ||
399 | /* We can now tell the memory manager to allocate virtual arrays. */ | |
400 | (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); | |
401 | ||
402 | /* Initialize input side of decompressor to consume first scan. */ | |
403 | (*cinfo->inputctl->start_input_pass) (cinfo); | |
404 | ||
405 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
406 | /* If jpeg_start_decompress will read the whole file, initialize | |
407 | * progress monitoring appropriately. The input step is counted | |
408 | * as one pass. | |
409 | */ | |
410 | if (cinfo->progress != NULL && ! cinfo->buffered_image && | |
411 | cinfo->inputctl->has_multiple_scans) { | |
412 | int nscans; | |
413 | /* Estimate number of scans to set pass_limit. */ | |
414 | if (cinfo->progressive_mode) { | |
415 | /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ | |
416 | nscans = 2 + 3 * cinfo->num_components; | |
417 | } else { | |
418 | /* For a nonprogressive multiscan file, estimate 1 scan per component. */ | |
419 | nscans = cinfo->num_components; | |
420 | } | |
421 | cinfo->progress->pass_counter = 0L; | |
422 | cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; | |
423 | cinfo->progress->completed_passes = 0; | |
424 | cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); | |
425 | /* Count the input pass as done */ | |
426 | master->pass_number++; | |
427 | } | |
428 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ | |
429 | } | |
430 | ||
431 | ||
432 | /* | |
433 | * Per-pass setup. | |
434 | * This is called at the beginning of each output pass. We determine which | |
435 | * modules will be active during this pass and give them appropriate | |
436 | * start_pass calls. We also set is_dummy_pass to indicate whether this | |
437 | * is a "real" output pass or a dummy pass for color quantization. | |
438 | * (In the latter case, jdapistd.c will crank the pass to completion.) | |
439 | */ | |
440 | ||
441 | METHODDEF(void) | |
442 | prepare_for_output_pass (j_decompress_ptr cinfo) | |
443 | { | |
444 | my_master_ptr master = (my_master_ptr) cinfo->master; | |
445 | ||
446 | if (master->pub.is_dummy_pass) { | |
447 | #ifdef QUANT_2PASS_SUPPORTED | |
448 | /* Final pass of 2-pass quantization */ | |
449 | master->pub.is_dummy_pass = FALSE; | |
450 | (*cinfo->cquantize->start_pass) (cinfo, FALSE); | |
451 | (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); | |
452 | (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); | |
453 | #else | |
454 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
455 | #endif /* QUANT_2PASS_SUPPORTED */ | |
456 | } else { | |
457 | if (cinfo->quantize_colors && cinfo->colormap == NULL) { | |
458 | /* Select new quantization method */ | |
459 | if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { | |
460 | cinfo->cquantize = master->quantizer_2pass; | |
461 | master->pub.is_dummy_pass = TRUE; | |
462 | } else if (cinfo->enable_1pass_quant) { | |
463 | cinfo->cquantize = master->quantizer_1pass; | |
464 | } else { | |
465 | ERREXIT(cinfo, JERR_MODE_CHANGE); | |
466 | } | |
467 | } | |
468 | (*cinfo->idct->start_pass) (cinfo); | |
469 | (*cinfo->coef->start_output_pass) (cinfo); | |
470 | if (! cinfo->raw_data_out) { | |
471 | if (! master->using_merged_upsample) | |
472 | (*cinfo->cconvert->start_pass) (cinfo); | |
473 | (*cinfo->upsample->start_pass) (cinfo); | |
474 | if (cinfo->quantize_colors) | |
475 | (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); | |
476 | (*cinfo->post->start_pass) (cinfo, | |
477 | (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); | |
478 | (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); | |
479 | } | |
480 | } | |
481 | ||
482 | /* Set up progress monitor's pass info if present */ | |
483 | if (cinfo->progress != NULL) { | |
484 | cinfo->progress->completed_passes = master->pass_number; | |
485 | cinfo->progress->total_passes = master->pass_number + | |
486 | (master->pub.is_dummy_pass ? 2 : 1); | |
487 | /* In buffered-image mode, we assume one more output pass if EOI not | |
488 | * yet reached, but no more passes if EOI has been reached. | |
489 | */ | |
490 | if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { | |
491 | cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); | |
492 | } | |
493 | } | |
494 | } | |
495 | ||
496 | ||
497 | /* | |
498 | * Finish up at end of an output pass. | |
499 | */ | |
500 | ||
501 | METHODDEF(void) | |
502 | finish_output_pass (j_decompress_ptr cinfo) | |
503 | { | |
504 | my_master_ptr master = (my_master_ptr) cinfo->master; | |
505 | ||
506 | if (cinfo->quantize_colors) | |
507 | (*cinfo->cquantize->finish_pass) (cinfo); | |
508 | master->pass_number++; | |
509 | } | |
510 | ||
511 | ||
512 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
513 | ||
514 | /* | |
515 | * Switch to a new external colormap between output passes. | |
516 | */ | |
517 | ||
518 | GLOBAL(void) | |
519 | jpeg_new_colormap (j_decompress_ptr cinfo) | |
520 | { | |
521 | my_master_ptr master = (my_master_ptr) cinfo->master; | |
522 | ||
523 | /* Prevent application from calling me at wrong times */ | |
524 | if (cinfo->global_state != DSTATE_BUFIMAGE) | |
525 | ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |
526 | ||
527 | if (cinfo->quantize_colors && cinfo->enable_external_quant && | |
528 | cinfo->colormap != NULL) { | |
529 | /* Select 2-pass quantizer for external colormap use */ | |
530 | cinfo->cquantize = master->quantizer_2pass; | |
531 | /* Notify quantizer of colormap change */ | |
532 | (*cinfo->cquantize->new_color_map) (cinfo); | |
533 | master->pub.is_dummy_pass = FALSE; /* just in case */ | |
534 | } else | |
535 | ERREXIT(cinfo, JERR_MODE_CHANGE); | |
536 | } | |
537 | ||
538 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ | |
539 | ||
540 | ||
541 | /* | |
542 | * Initialize master decompression control and select active modules. | |
543 | * This is performed at the start of jpeg_start_decompress. | |
544 | */ | |
545 | ||
546 | GLOBAL(void) | |
547 | jinit_master_decompress (j_decompress_ptr cinfo) | |
548 | { | |
549 | my_master_ptr master; | |
550 | ||
551 | master = (my_master_ptr) | |
552 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
553 | SIZEOF(my_decomp_master)); | |
554 | cinfo->master = (struct jpeg_decomp_master *) master; | |
555 | master->pub.prepare_for_output_pass = prepare_for_output_pass; | |
556 | master->pub.finish_output_pass = finish_output_pass; | |
557 | ||
558 | master->pub.is_dummy_pass = FALSE; | |
559 | ||
560 | master_selection(cinfo); | |
561 | } | |
7bfbbc0e DW |
562 | |
563 | #if defined(__VISAGECPP__) | |
564 | # ifdef start_input_pass2 | |
565 | # undef start_input_pass2 | |
566 | # endif | |
567 | #endif | |
568 |