]>
Commit | Line | Data |
---|---|---|
e1929140 RR |
1 | /* |
2 | * jquant2.c | |
3 | * | |
4 | * Copyright (C) 1991-1996, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains 2-pass color quantization (color mapping) routines. | |
9 | * These routines provide selection of a custom color map for an image, | |
10 | * followed by mapping of the image to that color map, with optional | |
11 | * Floyd-Steinberg dithering. | |
12 | * It is also possible to use just the second pass to map to an arbitrary | |
13 | * externally-given color map. | |
14 | * | |
15 | * Note: ordered dithering is not supported, since there isn't any fast | |
16 | * way to compute intercolor distances; it's unclear that ordered dither's | |
17 | * fundamental assumptions even hold with an irregularly spaced color map. | |
18 | */ | |
19 | ||
20 | #define JPEG_INTERNALS | |
21 | #include "jinclude.h" | |
22 | #include "jpeglib.h" | |
23 | ||
24 | #ifdef QUANT_2PASS_SUPPORTED | |
25 | ||
26 | ||
27 | /* | |
28 | * This module implements the well-known Heckbert paradigm for color | |
29 | * quantization. Most of the ideas used here can be traced back to | |
30 | * Heckbert's seminal paper | |
31 | * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", | |
32 | * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. | |
33 | * | |
34 | * In the first pass over the image, we accumulate a histogram showing the | |
35 | * usage count of each possible color. To keep the histogram to a reasonable | |
36 | * size, we reduce the precision of the input; typical practice is to retain | |
37 | * 5 or 6 bits per color, so that 8 or 4 different input values are counted | |
38 | * in the same histogram cell. | |
39 | * | |
40 | * Next, the color-selection step begins with a box representing the whole | |
41 | * color space, and repeatedly splits the "largest" remaining box until we | |
42 | * have as many boxes as desired colors. Then the mean color in each | |
43 | * remaining box becomes one of the possible output colors. | |
44 | * | |
45 | * The second pass over the image maps each input pixel to the closest output | |
46 | * color (optionally after applying a Floyd-Steinberg dithering correction). | |
47 | * This mapping is logically trivial, but making it go fast enough requires | |
48 | * considerable care. | |
49 | * | |
50 | * Heckbert-style quantizers vary a good deal in their policies for choosing | |
51 | * the "largest" box and deciding where to cut it. The particular policies | |
52 | * used here have proved out well in experimental comparisons, but better ones | |
53 | * may yet be found. | |
54 | * | |
55 | * In earlier versions of the IJG code, this module quantized in YCbCr color | |
56 | * space, processing the raw upsampled data without a color conversion step. | |
57 | * This allowed the color conversion math to be done only once per colormap | |
58 | * entry, not once per pixel. However, that optimization precluded other | |
59 | * useful optimizations (such as merging color conversion with upsampling) | |
60 | * and it also interfered with desired capabilities such as quantizing to an | |
61 | * externally-supplied colormap. We have therefore abandoned that approach. | |
62 | * The present code works in the post-conversion color space, typically RGB. | |
63 | * | |
64 | * To improve the visual quality of the results, we actually work in scaled | |
65 | * RGB space, giving G distances more weight than R, and R in turn more than | |
66 | * B. To do everything in integer math, we must use integer scale factors. | |
67 | * The 2/3/1 scale factors used here correspond loosely to the relative | |
68 | * weights of the colors in the NTSC grayscale equation. | |
69 | * If you want to use this code to quantize a non-RGB color space, you'll | |
70 | * probably need to change these scale factors. | |
71 | */ | |
72 | ||
73 | #define R_SCALE 2 /* scale R distances by this much */ | |
74 | #define G_SCALE 3 /* scale G distances by this much */ | |
75 | #define B_SCALE 1 /* and B by this much */ | |
76 | ||
77 | /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined | |
78 | * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B | |
79 | * and B,G,R orders. If you define some other weird order in jmorecfg.h, | |
80 | * you'll get compile errors until you extend this logic. In that case | |
81 | * you'll probably want to tweak the histogram sizes too. | |
82 | */ | |
83 | ||
84 | #if RGB_RED == 0 | |
85 | #define C0_SCALE R_SCALE | |
86 | #endif | |
87 | #if RGB_BLUE == 0 | |
88 | #define C0_SCALE B_SCALE | |
89 | #endif | |
90 | #if RGB_GREEN == 1 | |
91 | #define C1_SCALE G_SCALE | |
92 | #endif | |
93 | #if RGB_RED == 2 | |
94 | #define C2_SCALE R_SCALE | |
95 | #endif | |
96 | #if RGB_BLUE == 2 | |
97 | #define C2_SCALE B_SCALE | |
98 | #endif | |
99 | ||
100 | ||
101 | /* | |
102 | * First we have the histogram data structure and routines for creating it. | |
103 | * | |
104 | * The number of bits of precision can be adjusted by changing these symbols. | |
105 | * We recommend keeping 6 bits for G and 5 each for R and B. | |
106 | * If you have plenty of memory and cycles, 6 bits all around gives marginally | |
107 | * better results; if you are short of memory, 5 bits all around will save | |
108 | * some space but degrade the results. | |
109 | * To maintain a fully accurate histogram, we'd need to allocate a "long" | |
110 | * (preferably unsigned long) for each cell. In practice this is overkill; | |
111 | * we can get by with 16 bits per cell. Few of the cell counts will overflow, | |
112 | * and clamping those that do overflow to the maximum value will give close- | |
113 | * enough results. This reduces the recommended histogram size from 256Kb | |
114 | * to 128Kb, which is a useful savings on PC-class machines. | |
115 | * (In the second pass the histogram space is re-used for pixel mapping data; | |
116 | * in that capacity, each cell must be able to store zero to the number of | |
117 | * desired colors. 16 bits/cell is plenty for that too.) | |
118 | * Since the JPEG code is intended to run in small memory model on 80x86 | |
119 | * machines, we can't just allocate the histogram in one chunk. Instead | |
120 | * of a true 3-D array, we use a row of pointers to 2-D arrays. Each | |
121 | * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and | |
122 | * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that | |
123 | * on 80x86 machines, the pointer row is in near memory but the actual | |
124 | * arrays are in far memory (same arrangement as we use for image arrays). | |
125 | */ | |
126 | ||
127 | #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ | |
128 | ||
129 | /* These will do the right thing for either R,G,B or B,G,R color order, | |
130 | * but you may not like the results for other color orders. | |
131 | */ | |
132 | #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ | |
133 | #define HIST_C1_BITS 6 /* bits of precision in G histogram */ | |
134 | #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ | |
135 | ||
136 | /* Number of elements along histogram axes. */ | |
137 | #define HIST_C0_ELEMS (1<<HIST_C0_BITS) | |
138 | #define HIST_C1_ELEMS (1<<HIST_C1_BITS) | |
139 | #define HIST_C2_ELEMS (1<<HIST_C2_BITS) | |
140 | ||
141 | /* These are the amounts to shift an input value to get a histogram index. */ | |
142 | #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) | |
143 | #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) | |
144 | #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) | |
145 | ||
146 | ||
147 | typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ | |
148 | ||
149 | typedef histcell FAR * histptr; /* for pointers to histogram cells */ | |
150 | ||
151 | typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ | |
152 | typedef hist1d FAR * hist2d; /* type for the 2nd-level pointers */ | |
153 | typedef hist2d * hist3d; /* type for top-level pointer */ | |
154 | ||
155 | ||
156 | /* Declarations for Floyd-Steinberg dithering. | |
157 | * | |
158 | * Errors are accumulated into the array fserrors[], at a resolution of | |
159 | * 1/16th of a pixel count. The error at a given pixel is propagated | |
160 | * to its not-yet-processed neighbors using the standard F-S fractions, | |
161 | * ... (here) 7/16 | |
162 | * 3/16 5/16 1/16 | |
163 | * We work left-to-right on even rows, right-to-left on odd rows. | |
164 | * | |
165 | * We can get away with a single array (holding one row's worth of errors) | |
166 | * by using it to store the current row's errors at pixel columns not yet | |
167 | * processed, but the next row's errors at columns already processed. We | |
168 | * need only a few extra variables to hold the errors immediately around the | |
169 | * current column. (If we are lucky, those variables are in registers, but | |
170 | * even if not, they're probably cheaper to access than array elements are.) | |
171 | * | |
172 | * The fserrors[] array has (#columns + 2) entries; the extra entry at | |
173 | * each end saves us from special-casing the first and last pixels. | |
174 | * Each entry is three values long, one value for each color component. | |
175 | * | |
176 | * Note: on a wide image, we might not have enough room in a PC's near data | |
177 | * segment to hold the error array; so it is allocated with alloc_large. | |
178 | */ | |
179 | ||
180 | #if BITS_IN_JSAMPLE == 8 | |
181 | typedef INT16 FSERROR; /* 16 bits should be enough */ | |
182 | typedef int LOCFSERROR; /* use 'int' for calculation temps */ | |
183 | #else | |
184 | typedef INT32 FSERROR; /* may need more than 16 bits */ | |
185 | typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ | |
186 | #endif | |
187 | ||
188 | typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */ | |
189 | ||
190 | ||
191 | /* Private subobject */ | |
192 | ||
193 | typedef struct { | |
194 | struct jpeg_color_quantizer pub; /* public fields */ | |
195 | ||
196 | /* Space for the eventually created colormap is stashed here */ | |
197 | JSAMPARRAY sv_colormap; /* colormap allocated at init time */ | |
198 | int desired; /* desired # of colors = size of colormap */ | |
199 | ||
200 | /* Variables for accumulating image statistics */ | |
201 | hist3d histogram; /* pointer to the histogram */ | |
202 | ||
203 | boolean needs_zeroed; /* TRUE if next pass must zero histogram */ | |
204 | ||
205 | /* Variables for Floyd-Steinberg dithering */ | |
206 | FSERRPTR fserrors; /* accumulated errors */ | |
207 | boolean on_odd_row; /* flag to remember which row we are on */ | |
208 | int * error_limiter; /* table for clamping the applied error */ | |
209 | } my_cquantizer; | |
210 | ||
211 | typedef my_cquantizer * my_cquantize_ptr; | |
212 | ||
213 | ||
214 | /* | |
215 | * Prescan some rows of pixels. | |
216 | * In this module the prescan simply updates the histogram, which has been | |
217 | * initialized to zeroes by start_pass. | |
218 | * An output_buf parameter is required by the method signature, but no data | |
219 | * is actually output (in fact the buffer controller is probably passing a | |
220 | * NULL pointer). | |
221 | */ | |
222 | ||
223 | METHODDEF(void) | |
224 | prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
225 | JSAMPARRAY output_buf, int num_rows) | |
226 | { | |
227 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
228 | register JSAMPROW ptr; | |
229 | register histptr histp; | |
230 | register hist3d histogram = cquantize->histogram; | |
231 | int row; | |
232 | JDIMENSION col; | |
233 | JDIMENSION width = cinfo->output_width; | |
234 | ||
235 | for (row = 0; row < num_rows; row++) { | |
236 | ptr = input_buf[row]; | |
237 | for (col = width; col > 0; col--) { | |
238 | /* get pixel value and index into the histogram */ | |
239 | histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] | |
240 | [GETJSAMPLE(ptr[1]) >> C1_SHIFT] | |
241 | [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; | |
242 | /* increment, check for overflow and undo increment if so. */ | |
243 | if (++(*histp) <= 0) | |
244 | (*histp)--; | |
245 | ptr += 3; | |
246 | } | |
247 | } | |
248 | } | |
249 | ||
250 | ||
251 | /* | |
252 | * Next we have the really interesting routines: selection of a colormap | |
253 | * given the completed histogram. | |
254 | * These routines work with a list of "boxes", each representing a rectangular | |
255 | * subset of the input color space (to histogram precision). | |
256 | */ | |
257 | ||
258 | typedef struct { | |
259 | /* The bounds of the box (inclusive); expressed as histogram indexes */ | |
260 | int c0min, c0max; | |
261 | int c1min, c1max; | |
262 | int c2min, c2max; | |
263 | /* The volume (actually 2-norm) of the box */ | |
264 | INT32 volume; | |
265 | /* The number of nonzero histogram cells within this box */ | |
266 | long colorcount; | |
267 | } box; | |
268 | ||
269 | typedef box * boxptr; | |
270 | ||
271 | ||
272 | LOCAL(boxptr) | |
273 | find_biggest_color_pop (boxptr boxlist, int numboxes) | |
274 | /* Find the splittable box with the largest color population */ | |
275 | /* Returns NULL if no splittable boxes remain */ | |
276 | { | |
277 | register boxptr boxp; | |
278 | register int i; | |
279 | register long maxc = 0; | |
280 | boxptr which = NULL; | |
281 | ||
282 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | |
283 | if (boxp->colorcount > maxc && boxp->volume > 0) { | |
284 | which = boxp; | |
285 | maxc = boxp->colorcount; | |
286 | } | |
287 | } | |
288 | return which; | |
289 | } | |
290 | ||
291 | ||
292 | LOCAL(boxptr) | |
293 | find_biggest_volume (boxptr boxlist, int numboxes) | |
294 | /* Find the splittable box with the largest (scaled) volume */ | |
295 | /* Returns NULL if no splittable boxes remain */ | |
296 | { | |
297 | register boxptr boxp; | |
298 | register int i; | |
299 | register INT32 maxv = 0; | |
300 | boxptr which = NULL; | |
301 | ||
302 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | |
303 | if (boxp->volume > maxv) { | |
304 | which = boxp; | |
305 | maxv = boxp->volume; | |
306 | } | |
307 | } | |
308 | return which; | |
309 | } | |
310 | ||
311 | ||
312 | LOCAL(void) | |
313 | update_box (j_decompress_ptr cinfo, boxptr boxp) | |
314 | /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ | |
315 | /* and recompute its volume and population */ | |
316 | { | |
317 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
318 | hist3d histogram = cquantize->histogram; | |
319 | histptr histp; | |
320 | int c0,c1,c2; | |
321 | int c0min,c0max,c1min,c1max,c2min,c2max; | |
322 | INT32 dist0,dist1,dist2; | |
323 | long ccount; | |
324 | ||
325 | c0min = boxp->c0min; c0max = boxp->c0max; | |
326 | c1min = boxp->c1min; c1max = boxp->c1max; | |
327 | c2min = boxp->c2min; c2max = boxp->c2max; | |
328 | ||
329 | if (c0max > c0min) | |
330 | for (c0 = c0min; c0 <= c0max; c0++) | |
331 | for (c1 = c1min; c1 <= c1max; c1++) { | |
332 | histp = & histogram[c0][c1][c2min]; | |
333 | for (c2 = c2min; c2 <= c2max; c2++) | |
334 | if (*histp++ != 0) { | |
335 | boxp->c0min = c0min = c0; | |
336 | goto have_c0min; | |
337 | } | |
338 | } | |
339 | have_c0min: | |
340 | if (c0max > c0min) | |
341 | for (c0 = c0max; c0 >= c0min; c0--) | |
342 | for (c1 = c1min; c1 <= c1max; c1++) { | |
343 | histp = & histogram[c0][c1][c2min]; | |
344 | for (c2 = c2min; c2 <= c2max; c2++) | |
345 | if (*histp++ != 0) { | |
346 | boxp->c0max = c0max = c0; | |
347 | goto have_c0max; | |
348 | } | |
349 | } | |
350 | have_c0max: | |
351 | if (c1max > c1min) | |
352 | for (c1 = c1min; c1 <= c1max; c1++) | |
353 | for (c0 = c0min; c0 <= c0max; c0++) { | |
354 | histp = & histogram[c0][c1][c2min]; | |
355 | for (c2 = c2min; c2 <= c2max; c2++) | |
356 | if (*histp++ != 0) { | |
357 | boxp->c1min = c1min = c1; | |
358 | goto have_c1min; | |
359 | } | |
360 | } | |
361 | have_c1min: | |
362 | if (c1max > c1min) | |
363 | for (c1 = c1max; c1 >= c1min; c1--) | |
364 | for (c0 = c0min; c0 <= c0max; c0++) { | |
365 | histp = & histogram[c0][c1][c2min]; | |
366 | for (c2 = c2min; c2 <= c2max; c2++) | |
367 | if (*histp++ != 0) { | |
368 | boxp->c1max = c1max = c1; | |
369 | goto have_c1max; | |
370 | } | |
371 | } | |
372 | have_c1max: | |
373 | if (c2max > c2min) | |
374 | for (c2 = c2min; c2 <= c2max; c2++) | |
375 | for (c0 = c0min; c0 <= c0max; c0++) { | |
376 | histp = & histogram[c0][c1min][c2]; | |
377 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) | |
378 | if (*histp != 0) { | |
379 | boxp->c2min = c2min = c2; | |
380 | goto have_c2min; | |
381 | } | |
382 | } | |
383 | have_c2min: | |
384 | if (c2max > c2min) | |
385 | for (c2 = c2max; c2 >= c2min; c2--) | |
386 | for (c0 = c0min; c0 <= c0max; c0++) { | |
387 | histp = & histogram[c0][c1min][c2]; | |
388 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) | |
389 | if (*histp != 0) { | |
390 | boxp->c2max = c2max = c2; | |
391 | goto have_c2max; | |
392 | } | |
393 | } | |
394 | have_c2max: | |
395 | ||
396 | /* Update box volume. | |
397 | * We use 2-norm rather than real volume here; this biases the method | |
398 | * against making long narrow boxes, and it has the side benefit that | |
399 | * a box is splittable iff norm > 0. | |
400 | * Since the differences are expressed in histogram-cell units, | |
401 | * we have to shift back to JSAMPLE units to get consistent distances; | |
402 | * after which, we scale according to the selected distance scale factors. | |
403 | */ | |
404 | dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; | |
405 | dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; | |
406 | dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; | |
407 | boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; | |
408 | ||
409 | /* Now scan remaining volume of box and compute population */ | |
410 | ccount = 0; | |
411 | for (c0 = c0min; c0 <= c0max; c0++) | |
412 | for (c1 = c1min; c1 <= c1max; c1++) { | |
413 | histp = & histogram[c0][c1][c2min]; | |
414 | for (c2 = c2min; c2 <= c2max; c2++, histp++) | |
415 | if (*histp != 0) { | |
416 | ccount++; | |
417 | } | |
418 | } | |
419 | boxp->colorcount = ccount; | |
420 | } | |
421 | ||
422 | ||
423 | LOCAL(int) | |
424 | median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, | |
425 | int desired_colors) | |
426 | /* Repeatedly select and split the largest box until we have enough boxes */ | |
427 | { | |
428 | int n,lb; | |
429 | int c0,c1,c2,cmax; | |
430 | register boxptr b1,b2; | |
431 | ||
432 | while (numboxes < desired_colors) { | |
433 | /* Select box to split. | |
434 | * Current algorithm: by population for first half, then by volume. | |
435 | */ | |
436 | if (numboxes*2 <= desired_colors) { | |
437 | b1 = find_biggest_color_pop(boxlist, numboxes); | |
438 | } else { | |
439 | b1 = find_biggest_volume(boxlist, numboxes); | |
440 | } | |
441 | if (b1 == NULL) /* no splittable boxes left! */ | |
442 | break; | |
443 | b2 = &boxlist[numboxes]; /* where new box will go */ | |
444 | /* Copy the color bounds to the new box. */ | |
445 | b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; | |
446 | b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; | |
447 | /* Choose which axis to split the box on. | |
448 | * Current algorithm: longest scaled axis. | |
449 | * See notes in update_box about scaling distances. | |
450 | */ | |
451 | c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; | |
452 | c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; | |
453 | c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; | |
454 | /* We want to break any ties in favor of green, then red, blue last. | |
455 | * This code does the right thing for R,G,B or B,G,R color orders only. | |
456 | */ | |
457 | #if RGB_RED == 0 | |
458 | cmax = c1; n = 1; | |
459 | if (c0 > cmax) { cmax = c0; n = 0; } | |
460 | if (c2 > cmax) { n = 2; } | |
461 | #else | |
462 | cmax = c1; n = 1; | |
463 | if (c2 > cmax) { cmax = c2; n = 2; } | |
464 | if (c0 > cmax) { n = 0; } | |
465 | #endif | |
466 | /* Choose split point along selected axis, and update box bounds. | |
467 | * Current algorithm: split at halfway point. | |
468 | * (Since the box has been shrunk to minimum volume, | |
469 | * any split will produce two nonempty subboxes.) | |
470 | * Note that lb value is max for lower box, so must be < old max. | |
471 | */ | |
472 | switch (n) { | |
473 | case 0: | |
474 | lb = (b1->c0max + b1->c0min) / 2; | |
475 | b1->c0max = lb; | |
476 | b2->c0min = lb+1; | |
477 | break; | |
478 | case 1: | |
479 | lb = (b1->c1max + b1->c1min) / 2; | |
480 | b1->c1max = lb; | |
481 | b2->c1min = lb+1; | |
482 | break; | |
483 | case 2: | |
484 | lb = (b1->c2max + b1->c2min) / 2; | |
485 | b1->c2max = lb; | |
486 | b2->c2min = lb+1; | |
487 | break; | |
488 | } | |
489 | /* Update stats for boxes */ | |
490 | update_box(cinfo, b1); | |
491 | update_box(cinfo, b2); | |
492 | numboxes++; | |
493 | } | |
494 | return numboxes; | |
495 | } | |
496 | ||
497 | ||
498 | LOCAL(void) | |
499 | compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) | |
500 | /* Compute representative color for a box, put it in colormap[icolor] */ | |
501 | { | |
502 | /* Current algorithm: mean weighted by pixels (not colors) */ | |
503 | /* Note it is important to get the rounding correct! */ | |
504 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
505 | hist3d histogram = cquantize->histogram; | |
506 | histptr histp; | |
507 | int c0,c1,c2; | |
508 | int c0min,c0max,c1min,c1max,c2min,c2max; | |
509 | long count; | |
510 | long total = 0; | |
511 | long c0total = 0; | |
512 | long c1total = 0; | |
513 | long c2total = 0; | |
514 | ||
515 | c0min = boxp->c0min; c0max = boxp->c0max; | |
516 | c1min = boxp->c1min; c1max = boxp->c1max; | |
517 | c2min = boxp->c2min; c2max = boxp->c2max; | |
518 | ||
519 | for (c0 = c0min; c0 <= c0max; c0++) | |
520 | for (c1 = c1min; c1 <= c1max; c1++) { | |
521 | histp = & histogram[c0][c1][c2min]; | |
522 | for (c2 = c2min; c2 <= c2max; c2++) { | |
523 | if ((count = *histp++) != 0) { | |
524 | total += count; | |
525 | c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; | |
526 | c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; | |
527 | c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; | |
528 | } | |
529 | } | |
530 | } | |
531 | ||
532 | cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); | |
533 | cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); | |
534 | cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); | |
535 | } | |
536 | ||
537 | ||
538 | LOCAL(void) | |
539 | select_colors (j_decompress_ptr cinfo, int desired_colors) | |
540 | /* Master routine for color selection */ | |
541 | { | |
542 | boxptr boxlist; | |
543 | int numboxes; | |
544 | int i; | |
545 | ||
546 | /* Allocate workspace for box list */ | |
547 | boxlist = (boxptr) (*cinfo->mem->alloc_small) | |
548 | ((j_common_ptr) cinfo, JPOOL_IMAGE, desired_colors * SIZEOF(box)); | |
549 | /* Initialize one box containing whole space */ | |
550 | numboxes = 1; | |
551 | boxlist[0].c0min = 0; | |
552 | boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; | |
553 | boxlist[0].c1min = 0; | |
554 | boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; | |
555 | boxlist[0].c2min = 0; | |
556 | boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; | |
557 | /* Shrink it to actually-used volume and set its statistics */ | |
558 | update_box(cinfo, & boxlist[0]); | |
559 | /* Perform median-cut to produce final box list */ | |
560 | numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); | |
561 | /* Compute the representative color for each box, fill colormap */ | |
562 | for (i = 0; i < numboxes; i++) | |
563 | compute_color(cinfo, & boxlist[i], i); | |
564 | cinfo->actual_number_of_colors = numboxes; | |
565 | TRACEMS1(cinfo, 1, JTRC_QUANT_SELECTED, numboxes); | |
566 | } | |
567 | ||
568 | ||
569 | /* | |
570 | * These routines are concerned with the time-critical task of mapping input | |
571 | * colors to the nearest color in the selected colormap. | |
572 | * | |
573 | * We re-use the histogram space as an "inverse color map", essentially a | |
574 | * cache for the results of nearest-color searches. All colors within a | |
575 | * histogram cell will be mapped to the same colormap entry, namely the one | |
576 | * closest to the cell's center. This may not be quite the closest entry to | |
577 | * the actual input color, but it's almost as good. A zero in the cache | |
578 | * indicates we haven't found the nearest color for that cell yet; the array | |
579 | * is cleared to zeroes before starting the mapping pass. When we find the | |
580 | * nearest color for a cell, its colormap index plus one is recorded in the | |
581 | * cache for future use. The pass2 scanning routines call fill_inverse_cmap | |
582 | * when they need to use an unfilled entry in the cache. | |
583 | * | |
584 | * Our method of efficiently finding nearest colors is based on the "locally | |
585 | * sorted search" idea described by Heckbert and on the incremental distance | |
586 | * calculation described by Spencer W. Thomas in chapter III.1 of Graphics | |
587 | * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that | |
588 | * the distances from a given colormap entry to each cell of the histogram can | |
589 | * be computed quickly using an incremental method: the differences between | |
590 | * distances to adjacent cells themselves differ by a constant. This allows a | |
591 | * fairly fast implementation of the "brute force" approach of computing the | |
592 | * distance from every colormap entry to every histogram cell. Unfortunately, | |
593 | * it needs a work array to hold the best-distance-so-far for each histogram | |
594 | * cell (because the inner loop has to be over cells, not colormap entries). | |
595 | * The work array elements have to be INT32s, so the work array would need | |
596 | * 256Kb at our recommended precision. This is not feasible in DOS machines. | |
597 | * | |
598 | * To get around these problems, we apply Thomas' method to compute the | |
599 | * nearest colors for only the cells within a small subbox of the histogram. | |
600 | * The work array need be only as big as the subbox, so the memory usage | |
601 | * problem is solved. Furthermore, we need not fill subboxes that are never | |
602 | * referenced in pass2; many images use only part of the color gamut, so a | |
603 | * fair amount of work is saved. An additional advantage of this | |
604 | * approach is that we can apply Heckbert's locality criterion to quickly | |
605 | * eliminate colormap entries that are far away from the subbox; typically | |
606 | * three-fourths of the colormap entries are rejected by Heckbert's criterion, | |
607 | * and we need not compute their distances to individual cells in the subbox. | |
608 | * The speed of this approach is heavily influenced by the subbox size: too | |
609 | * small means too much overhead, too big loses because Heckbert's criterion | |
610 | * can't eliminate as many colormap entries. Empirically the best subbox | |
611 | * size seems to be about 1/512th of the histogram (1/8th in each direction). | |
612 | * | |
613 | * Thomas' article also describes a refined method which is asymptotically | |
614 | * faster than the brute-force method, but it is also far more complex and | |
615 | * cannot efficiently be applied to small subboxes. It is therefore not | |
616 | * useful for programs intended to be portable to DOS machines. On machines | |
617 | * with plenty of memory, filling the whole histogram in one shot with Thomas' | |
618 | * refined method might be faster than the present code --- but then again, | |
619 | * it might not be any faster, and it's certainly more complicated. | |
620 | */ | |
621 | ||
622 | ||
623 | /* log2(histogram cells in update box) for each axis; this can be adjusted */ | |
624 | #define BOX_C0_LOG (HIST_C0_BITS-3) | |
625 | #define BOX_C1_LOG (HIST_C1_BITS-3) | |
626 | #define BOX_C2_LOG (HIST_C2_BITS-3) | |
627 | ||
628 | #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ | |
629 | #define BOX_C1_ELEMS (1<<BOX_C1_LOG) | |
630 | #define BOX_C2_ELEMS (1<<BOX_C2_LOG) | |
631 | ||
632 | #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) | |
633 | #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) | |
634 | #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) | |
635 | ||
636 | ||
637 | /* | |
638 | * The next three routines implement inverse colormap filling. They could | |
639 | * all be folded into one big routine, but splitting them up this way saves | |
640 | * some stack space (the mindist[] and bestdist[] arrays need not coexist) | |
641 | * and may allow some compilers to produce better code by registerizing more | |
642 | * inner-loop variables. | |
643 | */ | |
644 | ||
645 | LOCAL(int) | |
646 | find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | |
647 | JSAMPLE colorlist[]) | |
648 | /* Locate the colormap entries close enough to an update box to be candidates | |
649 | * for the nearest entry to some cell(s) in the update box. The update box | |
650 | * is specified by the center coordinates of its first cell. The number of | |
651 | * candidate colormap entries is returned, and their colormap indexes are | |
652 | * placed in colorlist[]. | |
653 | * This routine uses Heckbert's "locally sorted search" criterion to select | |
654 | * the colors that need further consideration. | |
655 | */ | |
656 | { | |
657 | int numcolors = cinfo->actual_number_of_colors; | |
658 | int maxc0, maxc1, maxc2; | |
659 | int centerc0, centerc1, centerc2; | |
660 | int i, x, ncolors; | |
661 | INT32 minmaxdist, min_dist, max_dist, tdist; | |
662 | INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ | |
663 | ||
664 | /* Compute true coordinates of update box's upper corner and center. | |
665 | * Actually we compute the coordinates of the center of the upper-corner | |
666 | * histogram cell, which are the upper bounds of the volume we care about. | |
667 | * Note that since ">>" rounds down, the "center" values may be closer to | |
668 | * min than to max; hence comparisons to them must be "<=", not "<". | |
669 | */ | |
670 | maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); | |
671 | centerc0 = (minc0 + maxc0) >> 1; | |
672 | maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); | |
673 | centerc1 = (minc1 + maxc1) >> 1; | |
674 | maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); | |
675 | centerc2 = (minc2 + maxc2) >> 1; | |
676 | ||
677 | /* For each color in colormap, find: | |
678 | * 1. its minimum squared-distance to any point in the update box | |
679 | * (zero if color is within update box); | |
680 | * 2. its maximum squared-distance to any point in the update box. | |
681 | * Both of these can be found by considering only the corners of the box. | |
682 | * We save the minimum distance for each color in mindist[]; | |
683 | * only the smallest maximum distance is of interest. | |
684 | */ | |
685 | minmaxdist = 0x7FFFFFFFL; | |
686 | ||
687 | for (i = 0; i < numcolors; i++) { | |
688 | /* We compute the squared-c0-distance term, then add in the other two. */ | |
689 | x = GETJSAMPLE(cinfo->colormap[0][i]); | |
690 | if (x < minc0) { | |
691 | tdist = (x - minc0) * C0_SCALE; | |
692 | min_dist = tdist*tdist; | |
693 | tdist = (x - maxc0) * C0_SCALE; | |
694 | max_dist = tdist*tdist; | |
695 | } else if (x > maxc0) { | |
696 | tdist = (x - maxc0) * C0_SCALE; | |
697 | min_dist = tdist*tdist; | |
698 | tdist = (x - minc0) * C0_SCALE; | |
699 | max_dist = tdist*tdist; | |
700 | } else { | |
701 | /* within cell range so no contribution to min_dist */ | |
702 | min_dist = 0; | |
703 | if (x <= centerc0) { | |
704 | tdist = (x - maxc0) * C0_SCALE; | |
705 | max_dist = tdist*tdist; | |
706 | } else { | |
707 | tdist = (x - minc0) * C0_SCALE; | |
708 | max_dist = tdist*tdist; | |
709 | } | |
710 | } | |
711 | ||
712 | x = GETJSAMPLE(cinfo->colormap[1][i]); | |
713 | if (x < minc1) { | |
714 | tdist = (x - minc1) * C1_SCALE; | |
715 | min_dist += tdist*tdist; | |
716 | tdist = (x - maxc1) * C1_SCALE; | |
717 | max_dist += tdist*tdist; | |
718 | } else if (x > maxc1) { | |
719 | tdist = (x - maxc1) * C1_SCALE; | |
720 | min_dist += tdist*tdist; | |
721 | tdist = (x - minc1) * C1_SCALE; | |
722 | max_dist += tdist*tdist; | |
723 | } else { | |
724 | /* within cell range so no contribution to min_dist */ | |
725 | if (x <= centerc1) { | |
726 | tdist = (x - maxc1) * C1_SCALE; | |
727 | max_dist += tdist*tdist; | |
728 | } else { | |
729 | tdist = (x - minc1) * C1_SCALE; | |
730 | max_dist += tdist*tdist; | |
731 | } | |
732 | } | |
733 | ||
734 | x = GETJSAMPLE(cinfo->colormap[2][i]); | |
735 | if (x < minc2) { | |
736 | tdist = (x - minc2) * C2_SCALE; | |
737 | min_dist += tdist*tdist; | |
738 | tdist = (x - maxc2) * C2_SCALE; | |
739 | max_dist += tdist*tdist; | |
740 | } else if (x > maxc2) { | |
741 | tdist = (x - maxc2) * C2_SCALE; | |
742 | min_dist += tdist*tdist; | |
743 | tdist = (x - minc2) * C2_SCALE; | |
744 | max_dist += tdist*tdist; | |
745 | } else { | |
746 | /* within cell range so no contribution to min_dist */ | |
747 | if (x <= centerc2) { | |
748 | tdist = (x - maxc2) * C2_SCALE; | |
749 | max_dist += tdist*tdist; | |
750 | } else { | |
751 | tdist = (x - minc2) * C2_SCALE; | |
752 | max_dist += tdist*tdist; | |
753 | } | |
754 | } | |
755 | ||
756 | mindist[i] = min_dist; /* save away the results */ | |
757 | if (max_dist < minmaxdist) | |
758 | minmaxdist = max_dist; | |
759 | } | |
760 | ||
761 | /* Now we know that no cell in the update box is more than minmaxdist | |
762 | * away from some colormap entry. Therefore, only colors that are | |
763 | * within minmaxdist of some part of the box need be considered. | |
764 | */ | |
765 | ncolors = 0; | |
766 | for (i = 0; i < numcolors; i++) { | |
767 | if (mindist[i] <= minmaxdist) | |
768 | colorlist[ncolors++] = (JSAMPLE) i; | |
769 | } | |
770 | return ncolors; | |
771 | } | |
772 | ||
773 | ||
774 | LOCAL(void) | |
775 | find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | |
776 | int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) | |
777 | /* Find the closest colormap entry for each cell in the update box, | |
778 | * given the list of candidate colors prepared by find_nearby_colors. | |
779 | * Return the indexes of the closest entries in the bestcolor[] array. | |
780 | * This routine uses Thomas' incremental distance calculation method to | |
781 | * find the distance from a colormap entry to successive cells in the box. | |
782 | */ | |
783 | { | |
784 | int ic0, ic1, ic2; | |
785 | int i, icolor; | |
786 | register INT32 * bptr; /* pointer into bestdist[] array */ | |
787 | JSAMPLE * cptr; /* pointer into bestcolor[] array */ | |
788 | INT32 dist0, dist1; /* initial distance values */ | |
789 | register INT32 dist2; /* current distance in inner loop */ | |
790 | INT32 xx0, xx1; /* distance increments */ | |
791 | register INT32 xx2; | |
792 | INT32 inc0, inc1, inc2; /* initial values for increments */ | |
793 | /* This array holds the distance to the nearest-so-far color for each cell */ | |
794 | INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; | |
795 | ||
796 | /* Initialize best-distance for each cell of the update box */ | |
797 | bptr = bestdist; | |
798 | for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) | |
799 | *bptr++ = 0x7FFFFFFFL; | |
800 | ||
801 | /* For each color selected by find_nearby_colors, | |
802 | * compute its distance to the center of each cell in the box. | |
803 | * If that's less than best-so-far, update best distance and color number. | |
804 | */ | |
805 | ||
806 | /* Nominal steps between cell centers ("x" in Thomas article) */ | |
807 | #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) | |
808 | #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) | |
809 | #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) | |
810 | ||
811 | for (i = 0; i < numcolors; i++) { | |
812 | icolor = GETJSAMPLE(colorlist[i]); | |
813 | /* Compute (square of) distance from minc0/c1/c2 to this color */ | |
814 | inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; | |
815 | dist0 = inc0*inc0; | |
816 | inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; | |
817 | dist0 += inc1*inc1; | |
818 | inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; | |
819 | dist0 += inc2*inc2; | |
820 | /* Form the initial difference increments */ | |
821 | inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; | |
822 | inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; | |
823 | inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; | |
824 | /* Now loop over all cells in box, updating distance per Thomas method */ | |
825 | bptr = bestdist; | |
826 | cptr = bestcolor; | |
827 | xx0 = inc0; | |
828 | for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { | |
829 | dist1 = dist0; | |
830 | xx1 = inc1; | |
831 | for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { | |
832 | dist2 = dist1; | |
833 | xx2 = inc2; | |
834 | for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { | |
835 | if (dist2 < *bptr) { | |
836 | *bptr = dist2; | |
837 | *cptr = (JSAMPLE) icolor; | |
838 | } | |
839 | dist2 += xx2; | |
840 | xx2 += 2 * STEP_C2 * STEP_C2; | |
841 | bptr++; | |
842 | cptr++; | |
843 | } | |
844 | dist1 += xx1; | |
845 | xx1 += 2 * STEP_C1 * STEP_C1; | |
846 | } | |
847 | dist0 += xx0; | |
848 | xx0 += 2 * STEP_C0 * STEP_C0; | |
849 | } | |
850 | } | |
851 | } | |
852 | ||
853 | ||
854 | LOCAL(void) | |
855 | fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) | |
856 | /* Fill the inverse-colormap entries in the update box that contains */ | |
857 | /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ | |
858 | /* we can fill as many others as we wish.) */ | |
859 | { | |
860 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
861 | hist3d histogram = cquantize->histogram; | |
862 | int minc0, minc1, minc2; /* lower left corner of update box */ | |
863 | int ic0, ic1, ic2; | |
864 | register JSAMPLE * cptr; /* pointer into bestcolor[] array */ | |
865 | register histptr cachep; /* pointer into main cache array */ | |
866 | /* This array lists the candidate colormap indexes. */ | |
867 | JSAMPLE colorlist[MAXNUMCOLORS]; | |
868 | int numcolors; /* number of candidate colors */ | |
869 | /* This array holds the actually closest colormap index for each cell. */ | |
870 | JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; | |
871 | ||
872 | /* Convert cell coordinates to update box ID */ | |
873 | c0 >>= BOX_C0_LOG; | |
874 | c1 >>= BOX_C1_LOG; | |
875 | c2 >>= BOX_C2_LOG; | |
876 | ||
877 | /* Compute true coordinates of update box's origin corner. | |
878 | * Actually we compute the coordinates of the center of the corner | |
879 | * histogram cell, which are the lower bounds of the volume we care about. | |
880 | */ | |
881 | minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); | |
882 | minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); | |
883 | minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); | |
884 | ||
885 | /* Determine which colormap entries are close enough to be candidates | |
886 | * for the nearest entry to some cell in the update box. | |
887 | */ | |
888 | numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); | |
889 | ||
890 | /* Determine the actually nearest colors. */ | |
891 | find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, | |
892 | bestcolor); | |
893 | ||
894 | /* Save the best color numbers (plus 1) in the main cache array */ | |
895 | c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ | |
896 | c1 <<= BOX_C1_LOG; | |
897 | c2 <<= BOX_C2_LOG; | |
898 | cptr = bestcolor; | |
899 | for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { | |
900 | for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { | |
901 | cachep = & histogram[c0+ic0][c1+ic1][c2]; | |
902 | for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { | |
903 | *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); | |
904 | } | |
905 | } | |
906 | } | |
907 | } | |
908 | ||
909 | ||
910 | /* | |
911 | * Map some rows of pixels to the output colormapped representation. | |
912 | */ | |
913 | ||
914 | METHODDEF(void) | |
915 | pass2_no_dither (j_decompress_ptr cinfo, | |
916 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | |
917 | /* This version performs no dithering */ | |
918 | { | |
919 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
920 | hist3d histogram = cquantize->histogram; | |
921 | register JSAMPROW inptr, outptr; | |
922 | register histptr cachep; | |
923 | register int c0, c1, c2; | |
924 | int row; | |
925 | JDIMENSION col; | |
926 | JDIMENSION width = cinfo->output_width; | |
927 | ||
928 | for (row = 0; row < num_rows; row++) { | |
929 | inptr = input_buf[row]; | |
930 | outptr = output_buf[row]; | |
931 | for (col = width; col > 0; col--) { | |
932 | /* get pixel value and index into the cache */ | |
933 | c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; | |
934 | c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; | |
935 | c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; | |
936 | cachep = & histogram[c0][c1][c2]; | |
937 | /* If we have not seen this color before, find nearest colormap entry */ | |
938 | /* and update the cache */ | |
939 | if (*cachep == 0) | |
940 | fill_inverse_cmap(cinfo, c0,c1,c2); | |
941 | /* Now emit the colormap index for this cell */ | |
942 | *outptr++ = (JSAMPLE) (*cachep - 1); | |
943 | } | |
944 | } | |
945 | } | |
946 | ||
947 | ||
948 | METHODDEF(void) | |
949 | pass2_fs_dither (j_decompress_ptr cinfo, | |
950 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | |
951 | /* This version performs Floyd-Steinberg dithering */ | |
952 | { | |
953 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
954 | hist3d histogram = cquantize->histogram; | |
955 | register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ | |
956 | LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ | |
957 | LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ | |
958 | register FSERRPTR errorptr; /* => fserrors[] at column before current */ | |
959 | JSAMPROW inptr; /* => current input pixel */ | |
960 | JSAMPROW outptr; /* => current output pixel */ | |
961 | histptr cachep; | |
962 | int dir; /* +1 or -1 depending on direction */ | |
963 | int dir3; /* 3*dir, for advancing inptr & errorptr */ | |
964 | int row; | |
965 | JDIMENSION col; | |
966 | JDIMENSION width = cinfo->output_width; | |
967 | JSAMPLE *range_limit = cinfo->sample_range_limit; | |
968 | int *error_limit = cquantize->error_limiter; | |
969 | JSAMPROW colormap0 = cinfo->colormap[0]; | |
970 | JSAMPROW colormap1 = cinfo->colormap[1]; | |
971 | JSAMPROW colormap2 = cinfo->colormap[2]; | |
972 | SHIFT_TEMPS | |
973 | ||
974 | for (row = 0; row < num_rows; row++) { | |
975 | inptr = input_buf[row]; | |
976 | outptr = output_buf[row]; | |
977 | if (cquantize->on_odd_row) { | |
978 | /* work right to left in this row */ | |
979 | inptr += (width-1) * 3; /* so point to rightmost pixel */ | |
980 | outptr += width-1; | |
981 | dir = -1; | |
982 | dir3 = -3; | |
983 | errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ | |
984 | cquantize->on_odd_row = FALSE; /* flip for next time */ | |
985 | } else { | |
986 | /* work left to right in this row */ | |
987 | dir = 1; | |
988 | dir3 = 3; | |
989 | errorptr = cquantize->fserrors; /* => entry before first real column */ | |
990 | cquantize->on_odd_row = TRUE; /* flip for next time */ | |
991 | } | |
992 | /* Preset error values: no error propagated to first pixel from left */ | |
993 | cur0 = cur1 = cur2 = 0; | |
994 | /* and no error propagated to row below yet */ | |
995 | belowerr0 = belowerr1 = belowerr2 = 0; | |
996 | bpreverr0 = bpreverr1 = bpreverr2 = 0; | |
997 | ||
998 | for (col = width; col > 0; col--) { | |
999 | /* curN holds the error propagated from the previous pixel on the | |
1000 | * current line. Add the error propagated from the previous line | |
1001 | * to form the complete error correction term for this pixel, and | |
1002 | * round the error term (which is expressed * 16) to an integer. | |
1003 | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | |
1004 | * for either sign of the error value. | |
1005 | * Note: errorptr points to *previous* column's array entry. | |
1006 | */ | |
1007 | cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); | |
1008 | cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); | |
1009 | cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); | |
1010 | /* Limit the error using transfer function set by init_error_limit. | |
1011 | * See comments with init_error_limit for rationale. | |
1012 | */ | |
1013 | cur0 = error_limit[cur0]; | |
1014 | cur1 = error_limit[cur1]; | |
1015 | cur2 = error_limit[cur2]; | |
1016 | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | |
1017 | * The maximum error is +- MAXJSAMPLE (or less with error limiting); | |
1018 | * this sets the required size of the range_limit array. | |
1019 | */ | |
1020 | cur0 += GETJSAMPLE(inptr[0]); | |
1021 | cur1 += GETJSAMPLE(inptr[1]); | |
1022 | cur2 += GETJSAMPLE(inptr[2]); | |
1023 | cur0 = GETJSAMPLE(range_limit[cur0]); | |
1024 | cur1 = GETJSAMPLE(range_limit[cur1]); | |
1025 | cur2 = GETJSAMPLE(range_limit[cur2]); | |
1026 | /* Index into the cache with adjusted pixel value */ | |
1027 | cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; | |
1028 | /* If we have not seen this color before, find nearest colormap */ | |
1029 | /* entry and update the cache */ | |
1030 | if (*cachep == 0) | |
1031 | fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); | |
1032 | /* Now emit the colormap index for this cell */ | |
1033 | { register int pixcode = *cachep - 1; | |
1034 | *outptr = (JSAMPLE) pixcode; | |
1035 | /* Compute representation error for this pixel */ | |
1036 | cur0 -= GETJSAMPLE(colormap0[pixcode]); | |
1037 | cur1 -= GETJSAMPLE(colormap1[pixcode]); | |
1038 | cur2 -= GETJSAMPLE(colormap2[pixcode]); | |
1039 | } | |
1040 | /* Compute error fractions to be propagated to adjacent pixels. | |
1041 | * Add these into the running sums, and simultaneously shift the | |
1042 | * next-line error sums left by 1 column. | |
1043 | */ | |
1044 | { register LOCFSERROR bnexterr, delta; | |
1045 | ||
1046 | bnexterr = cur0; /* Process component 0 */ | |
1047 | delta = cur0 * 2; | |
1048 | cur0 += delta; /* form error * 3 */ | |
1049 | errorptr[0] = (FSERROR) (bpreverr0 + cur0); | |
1050 | cur0 += delta; /* form error * 5 */ | |
1051 | bpreverr0 = belowerr0 + cur0; | |
1052 | belowerr0 = bnexterr; | |
1053 | cur0 += delta; /* form error * 7 */ | |
1054 | bnexterr = cur1; /* Process component 1 */ | |
1055 | delta = cur1 * 2; | |
1056 | cur1 += delta; /* form error * 3 */ | |
1057 | errorptr[1] = (FSERROR) (bpreverr1 + cur1); | |
1058 | cur1 += delta; /* form error * 5 */ | |
1059 | bpreverr1 = belowerr1 + cur1; | |
1060 | belowerr1 = bnexterr; | |
1061 | cur1 += delta; /* form error * 7 */ | |
1062 | bnexterr = cur2; /* Process component 2 */ | |
1063 | delta = cur2 * 2; | |
1064 | cur2 += delta; /* form error * 3 */ | |
1065 | errorptr[2] = (FSERROR) (bpreverr2 + cur2); | |
1066 | cur2 += delta; /* form error * 5 */ | |
1067 | bpreverr2 = belowerr2 + cur2; | |
1068 | belowerr2 = bnexterr; | |
1069 | cur2 += delta; /* form error * 7 */ | |
1070 | } | |
1071 | /* At this point curN contains the 7/16 error value to be propagated | |
1072 | * to the next pixel on the current line, and all the errors for the | |
1073 | * next line have been shifted over. We are therefore ready to move on. | |
1074 | */ | |
1075 | inptr += dir3; /* Advance pixel pointers to next column */ | |
1076 | outptr += dir; | |
1077 | errorptr += dir3; /* advance errorptr to current column */ | |
1078 | } | |
1079 | /* Post-loop cleanup: we must unload the final error values into the | |
1080 | * final fserrors[] entry. Note we need not unload belowerrN because | |
1081 | * it is for the dummy column before or after the actual array. | |
1082 | */ | |
1083 | errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ | |
1084 | errorptr[1] = (FSERROR) bpreverr1; | |
1085 | errorptr[2] = (FSERROR) bpreverr2; | |
1086 | } | |
1087 | } | |
1088 | ||
1089 | ||
1090 | /* | |
1091 | * Initialize the error-limiting transfer function (lookup table). | |
1092 | * The raw F-S error computation can potentially compute error values of up to | |
1093 | * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be | |
1094 | * much less, otherwise obviously wrong pixels will be created. (Typical | |
1095 | * effects include weird fringes at color-area boundaries, isolated bright | |
1096 | * pixels in a dark area, etc.) The standard advice for avoiding this problem | |
1097 | * is to ensure that the "corners" of the color cube are allocated as output | |
1098 | * colors; then repeated errors in the same direction cannot cause cascading | |
1099 | * error buildup. However, that only prevents the error from getting | |
1100 | * completely out of hand; Aaron Giles reports that error limiting improves | |
1101 | * the results even with corner colors allocated. | |
1102 | * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty | |
1103 | * well, but the smoother transfer function used below is even better. Thanks | |
1104 | * to Aaron Giles for this idea. | |
1105 | */ | |
1106 | ||
1107 | LOCAL(void) | |
1108 | init_error_limit (j_decompress_ptr cinfo) | |
1109 | /* Allocate and fill in the error_limiter table */ | |
1110 | { | |
1111 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1112 | int * table; | |
1113 | int in, out; | |
1114 | ||
1115 | table = (int *) (*cinfo->mem->alloc_small) | |
1116 | ((j_common_ptr) cinfo, JPOOL_IMAGE, (MAXJSAMPLE*2+1) * SIZEOF(int)); | |
1117 | table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ | |
1118 | cquantize->error_limiter = table; | |
1119 | ||
1120 | #define STEPSIZE ((MAXJSAMPLE+1)/16) | |
1121 | /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ | |
1122 | out = 0; | |
1123 | for (in = 0; in < STEPSIZE; in++, out++) { | |
1124 | table[in] = out; table[-in] = -out; | |
1125 | } | |
1126 | /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ | |
1127 | for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { | |
1128 | table[in] = out; table[-in] = -out; | |
1129 | } | |
1130 | /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ | |
1131 | for (; in <= MAXJSAMPLE; in++) { | |
1132 | table[in] = out; table[-in] = -out; | |
1133 | } | |
1134 | #undef STEPSIZE | |
1135 | } | |
1136 | ||
1137 | ||
1138 | /* | |
1139 | * Finish up at the end of each pass. | |
1140 | */ | |
1141 | ||
1142 | METHODDEF(void) | |
1143 | finish_pass1 (j_decompress_ptr cinfo) | |
1144 | { | |
1145 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1146 | ||
1147 | /* Select the representative colors and fill in cinfo->colormap */ | |
1148 | cinfo->colormap = cquantize->sv_colormap; | |
1149 | select_colors(cinfo, cquantize->desired); | |
1150 | /* Force next pass to zero the color index table */ | |
1151 | cquantize->needs_zeroed = TRUE; | |
1152 | } | |
1153 | ||
1154 | ||
1155 | METHODDEF(void) | |
1156 | finish_pass2 (j_decompress_ptr cinfo) | |
1157 | { | |
1158 | /* no work */ | |
1159 | } | |
1160 | ||
1161 | ||
1162 | /* | |
1163 | * Initialize for each processing pass. | |
1164 | */ | |
1165 | ||
1166 | METHODDEF(void) | |
1167 | start_pass_2_quant (j_decompress_ptr cinfo, boolean is_pre_scan) | |
1168 | { | |
1169 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1170 | hist3d histogram = cquantize->histogram; | |
1171 | int i; | |
1172 | ||
1173 | /* Only F-S dithering or no dithering is supported. */ | |
1174 | /* If user asks for ordered dither, give him F-S. */ | |
1175 | if (cinfo->dither_mode != JDITHER_NONE) | |
1176 | cinfo->dither_mode = JDITHER_FS; | |
1177 | ||
1178 | if (is_pre_scan) { | |
1179 | /* Set up method pointers */ | |
1180 | cquantize->pub.color_quantize = prescan_quantize; | |
1181 | cquantize->pub.finish_pass = finish_pass1; | |
1182 | cquantize->needs_zeroed = TRUE; /* Always zero histogram */ | |
1183 | } else { | |
1184 | /* Set up method pointers */ | |
1185 | if (cinfo->dither_mode == JDITHER_FS) | |
1186 | cquantize->pub.color_quantize = pass2_fs_dither; | |
1187 | else | |
1188 | cquantize->pub.color_quantize = pass2_no_dither; | |
1189 | cquantize->pub.finish_pass = finish_pass2; | |
1190 | ||
1191 | /* Make sure color count is acceptable */ | |
1192 | i = cinfo->actual_number_of_colors; | |
1193 | if (i < 1) | |
1194 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 1); | |
1195 | if (i > MAXNUMCOLORS) | |
1196 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); | |
1197 | ||
1198 | if (cinfo->dither_mode == JDITHER_FS) { | |
1199 | size_t arraysize = (size_t) ((cinfo->output_width + 2) * | |
1200 | (3 * SIZEOF(FSERROR))); | |
1201 | /* Allocate Floyd-Steinberg workspace if we didn't already. */ | |
1202 | if (cquantize->fserrors == NULL) | |
1203 | cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) | |
1204 | ((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); | |
1205 | /* Initialize the propagated errors to zero. */ | |
1206 | jzero_far((void FAR *) cquantize->fserrors, arraysize); | |
1207 | /* Make the error-limit table if we didn't already. */ | |
1208 | if (cquantize->error_limiter == NULL) | |
1209 | init_error_limit(cinfo); | |
1210 | cquantize->on_odd_row = FALSE; | |
1211 | } | |
1212 | ||
1213 | } | |
1214 | /* Zero the histogram or inverse color map, if necessary */ | |
1215 | if (cquantize->needs_zeroed) { | |
1216 | for (i = 0; i < HIST_C0_ELEMS; i++) { | |
1217 | jzero_far((void FAR *) histogram[i], | |
1218 | HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); | |
1219 | } | |
1220 | cquantize->needs_zeroed = FALSE; | |
1221 | } | |
1222 | } | |
1223 | ||
1224 | ||
1225 | /* | |
1226 | * Switch to a new external colormap between output passes. | |
1227 | */ | |
1228 | ||
1229 | METHODDEF(void) | |
1230 | new_color_map_2_quant (j_decompress_ptr cinfo) | |
1231 | { | |
1232 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1233 | ||
1234 | /* Reset the inverse color map */ | |
1235 | cquantize->needs_zeroed = TRUE; | |
1236 | } | |
1237 | ||
1238 | ||
1239 | /* | |
1240 | * Module initialization routine for 2-pass color quantization. | |
1241 | */ | |
1242 | ||
1243 | GLOBAL(void) | |
1244 | jinit_2pass_quantizer (j_decompress_ptr cinfo) | |
1245 | { | |
1246 | my_cquantize_ptr cquantize; | |
1247 | int i; | |
1248 | ||
1249 | cquantize = (my_cquantize_ptr) | |
1250 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
1251 | SIZEOF(my_cquantizer)); | |
1252 | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; | |
1253 | cquantize->pub.start_pass = start_pass_2_quant; | |
1254 | cquantize->pub.new_color_map = new_color_map_2_quant; | |
1255 | cquantize->fserrors = NULL; /* flag optional arrays not allocated */ | |
1256 | cquantize->error_limiter = NULL; | |
1257 | ||
1258 | /* Make sure jdmaster didn't give me a case I can't handle */ | |
1259 | if (cinfo->out_color_components != 3) | |
1260 | ERREXIT(cinfo, JERR_NOTIMPL); | |
1261 | ||
1262 | /* Allocate the histogram/inverse colormap storage */ | |
1263 | cquantize->histogram = (hist3d) (*cinfo->mem->alloc_small) | |
1264 | ((j_common_ptr) cinfo, JPOOL_IMAGE, HIST_C0_ELEMS * SIZEOF(hist2d)); | |
1265 | for (i = 0; i < HIST_C0_ELEMS; i++) { | |
1266 | cquantize->histogram[i] = (hist2d) (*cinfo->mem->alloc_large) | |
1267 | ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
1268 | HIST_C1_ELEMS*HIST_C2_ELEMS * SIZEOF(histcell)); | |
1269 | } | |
1270 | cquantize->needs_zeroed = TRUE; /* histogram is garbage now */ | |
1271 | ||
1272 | /* Allocate storage for the completed colormap, if required. | |
1273 | * We do this now since it is FAR storage and may affect | |
1274 | * the memory manager's space calculations. | |
1275 | */ | |
1276 | if (cinfo->enable_2pass_quant) { | |
1277 | /* Make sure color count is acceptable */ | |
1278 | int desired = cinfo->desired_number_of_colors; | |
1279 | /* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */ | |
1280 | if (desired < 8) | |
1281 | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, 8); | |
1282 | /* Make sure colormap indexes can be represented by JSAMPLEs */ | |
1283 | if (desired > MAXNUMCOLORS) | |
1284 | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXNUMCOLORS); | |
1285 | cquantize->sv_colormap = (*cinfo->mem->alloc_sarray) | |
1286 | ((j_common_ptr) cinfo,JPOOL_IMAGE, (JDIMENSION) desired, (JDIMENSION) 3); | |
1287 | cquantize->desired = desired; | |
1288 | } else | |
1289 | cquantize->sv_colormap = NULL; | |
1290 | ||
1291 | /* Only F-S dithering or no dithering is supported. */ | |
1292 | /* If user asks for ordered dither, give him F-S. */ | |
1293 | if (cinfo->dither_mode != JDITHER_NONE) | |
1294 | cinfo->dither_mode = JDITHER_FS; | |
1295 | ||
1296 | /* Allocate Floyd-Steinberg workspace if necessary. | |
1297 | * This isn't really needed until pass 2, but again it is FAR storage. | |
1298 | * Although we will cope with a later change in dither_mode, | |
1299 | * we do not promise to honor max_memory_to_use if dither_mode changes. | |
1300 | */ | |
1301 | if (cinfo->dither_mode == JDITHER_FS) { | |
1302 | cquantize->fserrors = (FSERRPTR) (*cinfo->mem->alloc_large) | |
1303 | ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
1304 | (size_t) ((cinfo->output_width + 2) * (3 * SIZEOF(FSERROR)))); | |
1305 | /* Might as well create the error-limiting table too. */ | |
1306 | init_error_limit(cinfo); | |
1307 | } | |
1308 | } | |
1309 | ||
1310 | #endif /* QUANT_2PASS_SUPPORTED */ |