]> git.saurik.com Git - wxWidgets.git/blame - docs/latex/wx/tconstr.tex
CodeWarrior Support (no defines in project possible)
[wxWidgets.git] / docs / latex / wx / tconstr.tex
CommitLineData
a660d684
KB
1\section{Constraints overview}\label{constraintsoverview}
2
3Classes: \helpref{wxLayoutConstraints}{wxlayoutconstraints}, \helpref{wxIndividualLayoutConstraint}{wxindividuallayoutconstraint}.
4
5Objects of class wxLayoutConstraint can be associated with a window to define the
6way its subwindows are laid out, with respect to their siblings or parent.
7
8The class consists of the following eight constraints of class wxIndividualLayoutConstraint,
9some or all of which should be accessed directly to set the appropriate
10constraints.
11
12\begin{itemize}\itemsep=0pt
13\item {\bf left:} represents the left hand edge of the window
14\item {\bf right:} represents the right hand edge of the window
15\item {\bf top:} represents the top edge of the window
16\item {\bf bottom:} represents the bottom edge of the window
17\item {\bf width:} represents the width of the window
18\item {\bf height:} represents the height of the window
19\item {\bf centreX:} represents the horizontal centre point of the window
20\item {\bf centreY:} represents the vertical centre point of the window
21\end{itemize}
22
23Most constraints are initially set to have the relationship wxUnconstrained,
24which means that their values should be calculated by looking at known constraints.
25The exceptions are {\it width} and {\it height}, which are set to wxAsIs to
26ensure that if the user does not specify a constraint, the existing
27width and height will be used, to be compatible with panel items which often
28have take a default size. If the constraint is wxAsIs, the dimension will
29not be changed.
30
31To call the \helpref{wxWindow::Layout}{wxwindowlayout} function which evaluates
32constraints, you can either call wxWindow::SetAutoLayout to tell
33default OnSize handlers to call Layout, or override OnSize and call Layout yourself.
34
35\subsection{Constraint layout: more detail}
36
37By default, windows do not have a wxLayoutConstraints object. In this case, much layout
38must be done explicitly, by performing calculations in OnSize members, except
39for the case of frames that have one subwindow, where wxFrame::OnSize takes care
40of resizing the child.
41
42To avoid the need for these rather awkward calculations, the user can create
43a wxLayoutConstraints object and associate it with a window with wxWindow::SetConstraints.
44This object contains a constraint for each of the window edges, two for the centre point,
45and two for the window size. By setting some or all of these constraints appropriately,
46the user can achieve quite complex layout by defining relationships between windows.
47
48In wxWindows, each window can be constrained relative to either its {\it
49siblings} on the same window, or the {\it parent}. The layout algorithm
50therefore operates in a top-down manner, finding the correct layout for
51the children of a window, then the layout for the grandchildren, and so
52on. Note that this differs markedly from native Motif layout, where
53constraints can ripple upwards and can eventually change the frame
54window or dialog box size. We assume in wxWindows that the {\it user} is
55always `boss' and specifies the size of the outer window, to which
56subwindows must conform. Obviously, this might be a limitation in some
57circumstances, but it suffices for most situations, and the
58simplification avoids some of the nightmarish problems associated with
59programming Motif.
60
61When the user sets constraints, many of the constraints for windows
62edges and dimensions remain unconstrained. For a given window,
63the wxWindow::Layout algorithm first resets all constraints
64in all children to have unknown edge or dimension values, and then iterates through the constraints,
65evaulating them. For unconstrained edges and dimensions, it
66tries to find the value using known relationships that always hold. For example,
67an unconstrained {\it width} may be calculated from the {\it left} and {\it right edges}, if
68both are currently known. For edges and dimensions with user-supplied constraints, these
69constraints are evaulated if the inputs of the constraint are known.
70
71The algorithm stops when all child edges and dimension are known (success), or there
72there are unknown edges or dimensions but there has been no change in this cycle (failure).
73
74It then sets all the window positions and sizes according to the values it has found.
75
76Because the algorithm is iterative, the order in which constraints are considered is
77irrelevant.
78
79\subsection{Window layout examples}\label{layoutexamples}
80
81\subsubsection{Example 1: subwindow layout}
82
fe604ccd 83This example specifies a panel and a window side by side,
a660d684
KB
84with a text subwindow below it.
85
86\begin{verbatim}
fe604ccd
JS
87 frame->panel = new wxPanel(frame, -1, wxPoint(0, 0), wxSize(1000, 500), 0);
88 frame->scrollWindow = new MyScrolledWindow(frame, -1, wxPoint(0, 0), wxSize(400, 400), wxRETAINED);
89 frame->text_window = new MyTextWindow(frame, -1, wxPoint(0, 250), wxSize(400, 250));
a660d684
KB
90
91 // Set constraints for panel subwindow
92 wxLayoutConstraints *c1 = new wxLayoutConstraints;
93
94 c1->left.SameAs (frame, wxLeft);
95 c1->top.SameAs (frame, wxTop);
96 c1->right.PercentOf (frame, wxWidth, 50);
97 c1->height.PercentOf (frame, wxHeight, 50);
98
99 frame->panel->SetConstraints(c1);
100
fe604ccd 101 // Set constraints for scrollWindow subwindow
a660d684
KB
102 wxLayoutConstraints *c2 = new wxLayoutConstraints;
103
104 c2->left.SameAs (frame->panel, wxRight);
105 c2->top.SameAs (frame, wxTop);
106 c2->right.SameAs (frame, wxRight);
107 c2->height.PercentOf (frame, wxHeight, 50);
108
fe604ccd 109 frame->scrollWindow->SetConstraints(c2);
a660d684
KB
110
111 // Set constraints for text subwindow
112 wxLayoutConstraints *c3 = new wxLayoutConstraints;
113 c3->left.SameAs (frame, wxLeft);
114 c3->top.Below (frame->panel);
115 c3->right.SameAs (frame, wxRight);
116 c3->bottom.SameAs (frame, wxBottom);
117
118 frame->text_window->SetConstraints(c3);
119\end{verbatim}
120
121\subsubsection{Example 2: panel item layout}
122
123This example sizes a button width to 80 percent of the panel width, and centres
124it horizontally. A listbox and multitext item are placed below it. The listbox
125takes up 40 percent of the panel width, and the multitext item takes up
126the remainder of the width. Margins of 5 pixels are used.
127
128\begin{verbatim}
129 // Create some panel items
fe604ccd 130 wxButton *btn1 = new wxButton(frame->panel, -1, "A button") ;
a660d684
KB
131
132 wxLayoutConstraints *b1 = new wxLayoutConstraints;
133 b1->centreX.SameAs (frame->panel, wxCentreX);
134 b1->top.SameAs (frame->panel, wxTop, 5);
135 b1->width.PercentOf (frame->panel, wxWidth, 80);
136 b1->height.PercentOf (frame->panel, wxHeight, 10);
137 btn1->SetConstraints(b1);
138
fe604ccd
JS
139 wxListBox *list = new wxListBox(frame->panel, -1, "A list",
140 wxPoint(-1, -1), wxSize(200, 100));
a660d684
KB
141
142 wxLayoutConstraints *b2 = new wxLayoutConstraints;
143 b2->top.Below (btn1, 5);
144 b2->left.SameAs (frame->panel, wxLeft, 5);
145 b2->width.PercentOf (frame->panel, wxWidth, 40);
146 b2->bottom.SameAs (frame->panel, wxBottom, 5);
147 list->SetConstraints(b2);
148
fe604ccd
JS
149 wxTextCtrl *mtext = new wxTextCtrl(frame->panel, -1, "Multiline text", "Some text",
150 wxPoint(-1, -1), wxSize(150, 100), wxTE_MULTILINE);
a660d684
KB
151
152 wxLayoutConstraints *b3 = new wxLayoutConstraints;
153 b3->top.Below (btn1, 5);
154 b3->left.RightOf (list, 5);
155 b3->right.SameAs (frame->panel, wxRight, 5);
156 b3->bottom.SameAs (frame->panel, wxBottom, 5);
157 mtext->SetConstraints(b3);
158\end{verbatim}
159
160