]> git.saurik.com Git - wxWidgets.git/blame - interface/wx/affinematrix2d.h
Add the getters
[wxWidgets.git] / interface / wx / affinematrix2d.h
CommitLineData
0e5d4c38
VZ
1/////////////////////////////////////////////////////////////////////////////
2// Name: affinematrix2d.h
3// Purpose: interface of wxAffineMatrix2D
4// Author: wxWidgets team
5// Licence: wxWindows licence
6/////////////////////////////////////////////////////////////////////////////
7
8/**
9 @class wxAffineMatrix2D
10
11 A 3x2 matrix representing an affine 2D transformation.
12
13 @library{wxcore}
14 @category{misc}
15
16 @since 2.9.2
17*/
18class wxAffineMatrix2D
19{
20public:
21 /**
22 Default constructor.
23
24 The matrix elements are initialize to the identity matrix.
25 */
26 wxAffineMatrix2D();
27
28 /**
29 Get the component values of the matrix.
30
31 @param mat2D
32 The rotational components of the matrix (upper 2 x 2), must be
33 non-@NULL.
34 @param tr
35 The translational components of the matrix, may be @NULL.
36 */
37 void Get(wxMatrix2D* mat2D, wxPoint2DDouble* tr) const;
38
39 /**
40 Set all elements of this matrix.
41
42 @param mat2D
43 The rotational components of the matrix (upper 2 x 2).
44 @param tr
45 The translational components of the matrix.
46 */
47 void Set(const wxMatrix2D& mat2D, const wxPoint2DDouble& tr);
48
49 /**
50 Concatenate this matrix with another one.
51
52 The parameter matrix is the multiplicand.
53
15fa4de3 54 @param t
0e5d4c38
VZ
55 The multiplicand.
56
57 @code
58 // | t.m_11 t.m_12 0 | | m_11 m_12 0 |
59 // matrix' = | t.m_21 t.m_22 0 | x | m_21 m_22 0 |
60 // | t.m_tx t.m_ty 1 | | m_tx m_ty 1 |
61 @endcode
62 */
63 void Concat(const wxAffineMatrix2DBase& t);
64
65 /**
66 Invert this matrix.
67
68 If the matrix is not invertible, i.e. if its determinant is 0, returns
69 false and doesn't modify it.
70
71 @code
72 // | m_11 m_12 0 |
73 // Invert | m_21 m_22 0 |
74 // | m_tx m_ty 1 |
75 @endcode
76 */
77 bool Invert();
78
79 /**
80 Check if this is the identity matrix.
81 */
82 bool IsIdentity() const;
83
84 //@{
85 /**
86 Check that this matrix is identical with @t.
87
15fa4de3 88 @param t
0e5d4c38
VZ
89 The matrix compared with this.
90 */
91 void IsEqual(const wxAffineMatrix2DBase& t);
92 bool operator==(const wxAffineMatrix2DBase& t) const;
93 //@}
94
95 /**
96 Check that this matrix differs from @t.
97
15fa4de3 98 @param t
0e5d4c38
VZ
99 The matrix compared with this.
100 */
101 bool operator!=(const wxAffineMatrix2DBase& t) const;
102
103 /**
104 Add the translation to this matrix.
105
106 @param dx
107 The translation in x direction.
108 @param dy
109 The translation in y direction.
110 */
111 void Translate(wxDouble dx, wxDouble dy);
112
113 /**
114 Add scaling to this matrix.
115
116 @param xScale
117 Scaling in x direction.
118 @param yScale
119 Scaling in y direction.
120 */
121 void Scale(wxDouble xScale, wxDouble yScale);
122
123 /**
124 Add mirroring to this matrix.
125
126 @param direction
127 The direction(s) used for mirroring. One of wxHORIZONTAL,
128 wxVERTICAL or their combination wxBOTH.
129 */
130 void Mirror(int direction = wxHORIZONTAL);
131
132 /**
133 Add counter clockwise rotation to this matrix.
134
135 @param ccRadians
136 Rotation angle in radians.
137 */
138 void Rotate(wxDouble ccRadians);
139
140 /**
141 Applies this matrix to the point.
142
15fa4de3 143 @param p
0e5d4c38
VZ
144 The point receiving the transformations.
145
146 @return The point with the transformations applied.
147 */
148 wxPoint2DDouble TransformPoint(const wxPoint2DDouble& p) const;
149 void TransformPoint(wxDouble* x, wxDouble* y) const;
150
151 /**
152 Applies the linear part of this matrix, i.e. without translation.
153
15fa4de3 154 @param p
0e5d4c38
VZ
155 The source receiving the transformations.
156
157 @return The source with the transformations applied.
158 */
159 wxPoint2DDouble TransformDistance(const wxPoint2DDouble& p) const;
160 void TransformDistance(wxDouble* dx, wxDouble* dy) const;
161};