]> git.saurik.com Git - wxWidgets.git/blame - include/wx/matrix.h
wx.aui.AUI_ART_GRADIENT_TYPE --> wx.aui.AUI_DOCKART_GRADIENT_TYPE
[wxWidgets.git] / include / wx / matrix.h
CommitLineData
c801d85f 1/////////////////////////////////////////////////////////////////////////////
0433fd85
WS
2// Name: wx/matrix.h
3// Purpose: wxTransformMatrix class. NOT YET USED
4// Author: Chris Breeze, Julian Smart
555526fb 5// Modified by: Klaas Holwerda
0433fd85
WS
6// Created: 01/02/97
7// RCS-ID: $Id$
8// Copyright: (c) Julian Smart, Chris Breeze
9// Licence: wxWindows licence
c801d85f
KB
10/////////////////////////////////////////////////////////////////////////////
11
34138703
JS
12#ifndef _WX_MATRIXH__
13#define _WX_MATRIXH__
c801d85f 14
555526fb 15//! headerfiles="matrix.h wx/object.h"
c801d85f 16#include "wx/object.h"
0433fd85 17#include "wx/math.h"
c801d85f 18
555526fb
RR
19//! codefiles="matrix.cpp"
20
c801d85f
KB
21// A simple 3x3 matrix. This may be replaced by a more general matrix
22// class some day.
23//
24// Note: this is intended to be used in wxDC at some point to replace
25// the current system of scaling/translation. It is not yet used.
26
65b17727 27//:definition
555526fb 28// A 3x3 matrix to do 2D transformations.
65b17727
JS
29// It can be used to map data to window coordinates,
30// and also for manipulating your own data.
555526fb
RR
31// For example drawing a picture (composed of several primitives)
32// at a certain coordinate and angle within another parent picture.
33// At all times m_isIdentity is set if the matrix itself is an Identity matrix.
34// It is used where possible to optimize calculations.
c801d85f
KB
35class WXDLLEXPORT wxTransformMatrix: public wxObject
36{
37public:
555526fb
RR
38 wxTransformMatrix(void);
39 wxTransformMatrix(const wxTransformMatrix& mat);
40
41 //get the value in the matrix at col,row
42 //rows are horizontal (second index of m_matrix member)
43 //columns are vertical (first index of m_matrix member)
44 double GetValue(int col, int row) const;
45
46 //set the value in the matrix at col,row
47 //rows are horizontal (second index of m_matrix member)
48 //columns are vertical (first index of m_matrix member)
49 void SetValue(int col, int row, double value);
50
51 void operator = (const wxTransformMatrix& mat);
fbfb8bcc
VZ
52 bool operator == (const wxTransformMatrix& mat) const;
53 bool operator != (const wxTransformMatrix& mat) const;
555526fb
RR
54
55 //multiply every element by t
56 wxTransformMatrix& operator*=(const double& t);
57 //divide every element by t
58 wxTransformMatrix& operator/=(const double& t);
59 //add matrix m to this t
60 wxTransformMatrix& operator+=(const wxTransformMatrix& m);
61 //subtract matrix m from this
62 wxTransformMatrix& operator-=(const wxTransformMatrix& m);
63 //multiply matrix m with this
64 wxTransformMatrix& operator*=(const wxTransformMatrix& m);
65
66 // constant operators
67
68 //multiply every element by t and return result
69 wxTransformMatrix operator*(const double& t) const;
70 //divide this matrix by t and return result
71 wxTransformMatrix operator/(const double& t) const;
72 //add matrix m to this and return result
73 wxTransformMatrix operator+(const wxTransformMatrix& m) const;
74 //subtract matrix m from this and return result
75 wxTransformMatrix operator-(const wxTransformMatrix& m) const;
76 //multiply this by matrix m and return result
77 wxTransformMatrix operator*(const wxTransformMatrix& m) const;
78 wxTransformMatrix operator-() const;
79
80 //rows are horizontal (second index of m_matrix member)
81 //columns are vertical (first index of m_matrix member)
82 double& operator()(int col, int row);
83
84 //rows are horizontal (second index of m_matrix member)
85 //columns are vertical (first index of m_matrix member)
86 double operator()(int col, int row) const;
87
88 // Invert matrix
89 bool Invert(void);
90
91 // Make into identity matrix
92 bool Identity(void);
93
94 // Is the matrix the identity matrix?
95 // Only returns a flag, which is set whenever an operation
96 // is done.
97 inline bool IsIdentity(void) const { return m_isIdentity; };
98
99 // This does an actual check.
100 inline bool IsIdentity1(void) const ;
101
102 //Scale by scale (isotropic scaling i.e. the same in x and y):
103 //!ex:
104 //!code: | scale 0 0 |
105 //!code: matrix' = | 0 scale 0 | x matrix
106 //!code: | 0 0 scale |
107 bool Scale(double scale);
108
109 //Scale with center point and x/y scale
110 //
111 //!ex:
112 //!code: | xs 0 xc(1-xs) |
113 //!code: matrix' = | 0 ys yc(1-ys) | x matrix
114 //!code: | 0 0 1 |
115 wxTransformMatrix& Scale(const double &xs, const double &ys,const double &xc, const double &yc);
116
117 // mirror a matrix in x, y
118 //!ex:
119 //!code: | -1 0 0 |
120 //!code: matrix' = | 0 -1 0 | x matrix
121 //!code: | 0 0 1 |
4e32eea1 122 wxTransformMatrix& Mirror(bool x=true, bool y=false);
555526fb
RR
123 // Translate by dx, dy:
124 //!ex:
125 //!code: | 1 0 dx |
126 //!code: matrix' = | 0 1 dy | x matrix
127 //!code: | 0 0 1 |
128 bool Translate(double x, double y);
129
130 // Rotate clockwise by the given number of degrees:
131 //!ex:
132 //!code: | cos sin 0 |
133 //!code: matrix' = | -sin cos 0 | x matrix
134 //!code: | 0 0 1 |
135 bool Rotate(double angle);
136
137 //Rotate counter clockwise with point of rotation
138 //
139 //!ex:
140 //!code: | cos(r) -sin(r) x(1-cos(r))+y(sin(r)|
141 //!code: matrix' = | sin(r) cos(r) y(1-cos(r))-x(sin(r)| x matrix
142 //!code: | 0 0 1 |
143 wxTransformMatrix& Rotate(const double &r, const double &x, const double &y);
144
145 // Transform X value from logical to device
146 inline double TransformX(double x) const;
147
148 // Transform Y value from logical to device
149 inline double TransformY(double y) const;
150
151 // Transform a point from logical to device coordinates
152 bool TransformPoint(double x, double y, double& tx, double& ty) const;
153
154 // Transform a point from device to logical coordinates.
155 // Example of use:
156 // wxTransformMatrix mat = dc.GetTransformation();
157 // mat.Invert();
158 // mat.InverseTransformPoint(x, y, x1, y1);
159 // OR (shorthand:)
160 // dc.LogicalToDevice(x, y, x1, y1);
161 // The latter is slightly less efficient if we're doing several
162 // conversions, since the matrix is inverted several times.
163 // N.B. 'this' matrix is the inverse at this point
164 bool InverseTransformPoint(double x, double y, double& tx, double& ty) const;
165
166 double Get_scaleX();
167 double Get_scaleY();
168 double GetRotation();
169 void SetRotation(double rotation);
c801d85f 170
c801d85f
KB
171
172public:
555526fb
RR
173 double m_matrix[3][3];
174 bool m_isIdentity;
c801d85f
KB
175};
176
46dc76ba
RR
177
178/*
555526fb 179Chris Breeze reported, that
46dc76ba
RR
180some functions of wxTransformMatrix cannot work because it is not
181known if he matrix has been inverted. Be careful when using it.
555526fb 182*/
46dc76ba 183
c801d85f 184// Transform X value from logical to device
555526fb
RR
185// warning: this function can only be used for this purpose
186// because no rotation is involved when mapping logical to device coordinates
187// mirror and scaling for x and y will be part of the matrix
188// if you have a matrix that is rotated, eg a shape containing a matrix to place
189// it in the logical coordinate system, use TransformPoint
c801d85f
KB
190inline double wxTransformMatrix::TransformX(double x) const
191{
555526fb
RR
192 //normally like this, but since no rotation is involved (only mirror and scale)
193 //we can do without Y -> m_matrix[1]{0] is -sin(rotation angle) and therefore zero
194 //(x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]))
195 return (m_isIdentity ? x : (x * m_matrix[0][0] + m_matrix[2][0]));
c801d85f
KB
196}
197
198// Transform Y value from logical to device
555526fb
RR
199// warning: this function can only be used for this purpose
200// because no rotation is involved when mapping logical to device coordinates
201// mirror and scaling for x and y will be part of the matrix
202// if you have a matrix that is rotated, eg a shape containing a matrix to place
203// it in the logical coordinate system, use TransformPoint
c801d85f
KB
204inline double wxTransformMatrix::TransformY(double y) const
205{
555526fb
RR
206 //normally like this, but since no rotation is involved (only mirror and scale)
207 //we can do without X -> m_matrix[0]{1] is sin(rotation angle) and therefore zero
208 //(x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]))
209 return (m_isIdentity ? y : (y * m_matrix[1][1] + m_matrix[2][1]));
c801d85f 210}
555526fb 211
c801d85f
KB
212
213// Is the matrix the identity matrix?
555526fb 214// Each operation checks whether the result is still the identity matrix and sets a flag.
c801d85f
KB
215inline bool wxTransformMatrix::IsIdentity1(void) const
216{
555526fb 217 return
c77a6796
VZ
218 ( wxIsSameDouble(m_matrix[0][0], 1.0) &&
219 wxIsSameDouble(m_matrix[1][1], 1.0) &&
220 wxIsSameDouble(m_matrix[2][2], 1.0) &&
221 wxIsSameDouble(m_matrix[1][0], 0.0) &&
222 wxIsSameDouble(m_matrix[2][0], 0.0) &&
223 wxIsSameDouble(m_matrix[0][1], 0.0) &&
224 wxIsSameDouble(m_matrix[2][1], 0.0) &&
225 wxIsSameDouble(m_matrix[0][2], 0.0) &&
226 wxIsSameDouble(m_matrix[1][2], 0.0) );
c801d85f
KB
227}
228
229// Calculates the determinant of a 2 x 2 matrix
230inline double wxCalculateDet(double a11, double a21, double a12, double a22)
231{
555526fb 232 return a11 * a22 - a12 * a21;
c801d85f
KB
233}
234
c77a6796 235#endif // _WX_MATRIXH__