]>
Commit | Line | Data |
---|---|---|
e8482f24 GL |
1 | /* |
2 | * This source code is a product of Sun Microsystems, Inc. and is provided | |
3 | * for unrestricted use. Users may copy or modify this source code without | |
4 | * charge. | |
5 | * | |
6 | * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING | |
7 | * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR | |
8 | * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE. | |
9 | * | |
10 | * Sun source code is provided with no support and without any obligation on | |
11 | * the part of Sun Microsystems, Inc. to assist in its use, correction, | |
12 | * modification or enhancement. | |
13 | * | |
14 | * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE | |
15 | * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE | |
16 | * OR ANY PART THEREOF. | |
17 | * | |
18 | * In no event will Sun Microsystems, Inc. be liable for any lost revenue | |
19 | * or profits or other special, indirect and consequential damages, even if | |
20 | * Sun has been advised of the possibility of such damages. | |
21 | * | |
22 | * Sun Microsystems, Inc. | |
23 | * 2550 Garcia Avenue | |
24 | * Mountain View, California 94043 | |
25 | */ | |
26 | ||
27 | /* | |
28 | * g723_40.c | |
29 | * | |
30 | * Description: | |
31 | * | |
32 | * g723_40_encoder(), g723_40_decoder() | |
33 | * | |
34 | * These routines comprise an implementation of the CCITT G.723 40Kbps | |
35 | * ADPCM coding algorithm. Essentially, this implementation is identical to | |
36 | * the bit level description except for a few deviations which | |
37 | * take advantage of workstation attributes, such as hardware 2's | |
38 | * complement arithmetic. | |
39 | * | |
40 | * The deviation from the bit level specification (lookup tables), | |
41 | * preserves the bit level performance specifications. | |
42 | * | |
43 | * As outlined in the G.723 Recommendation, the algorithm is broken | |
44 | * down into modules. Each section of code below is preceded by | |
45 | * the name of the module which it is implementing. | |
46 | * | |
47 | */ | |
92a19c2e | 48 | #include "wx/wxprec.h" |
e8482f24 GL |
49 | #include "wx/mmedia/internal/g72x.h" |
50 | ||
51 | /* | |
52 | * Maps G.723_40 code word to ructeconstructed scale factor normalized log | |
53 | * magnitude values. | |
54 | */ | |
55 | static short _dqlntab[32] = {-2048, -66, 28, 104, 169, 224, 274, 318, | |
56 | 358, 395, 429, 459, 488, 514, 539, 566, | |
57 | 566, 539, 514, 488, 459, 429, 395, 358, | |
58 | 318, 274, 224, 169, 104, 28, -66, -2048}; | |
59 | ||
60 | /* Maps G.723_40 code word to log of scale factor multiplier. */ | |
61 | static short _witab[32] = {448, 448, 768, 1248, 1280, 1312, 1856, 3200, | |
62 | 4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272, | |
63 | 22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512, | |
64 | 3200, 1856, 1312, 1280, 1248, 768, 448, 448}; | |
65 | ||
66 | /* | |
67 | * Maps G.723_40 code words to a set of values whose long and short | |
68 | * term averages are computed and then compared to give an indication | |
69 | * how stationary (steady state) the signal is. | |
70 | */ | |
71 | static short _fitab[32] = {0, 0, 0, 0, 0, 0x200, 0x200, 0x200, | |
72 | 0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00, | |
73 | 0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200, | |
74 | 0x200, 0x200, 0x200, 0, 0, 0, 0, 0}; | |
75 | ||
76 | static short qtab_723_40[15] = {-122, -16, 68, 139, 198, 250, 298, 339, | |
77 | 378, 413, 445, 475, 502, 528, 553}; | |
78 | ||
79 | /* | |
80 | * g723_40_encoder() | |
81 | * | |
82 | * Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens | |
83 | * the resulting 5-bit CCITT G.723 40Kbps code. | |
84 | * Returns -1 if the input coding value is invalid. | |
85 | */ | |
86 | int | |
87 | g723_40_encoder( | |
88 | int sl, | |
89 | int in_coding, | |
90 | struct g72x_state *state_ptr) | |
91 | { | |
92 | short sei, sezi, se, sez; /* ACCUM */ | |
93 | short d; /* SUBTA */ | |
94 | short y; /* MIX */ | |
95 | short sr; /* ADDB */ | |
96 | short dqsez; /* ADDC */ | |
97 | short dq, i; | |
98 | ||
99 | switch (in_coding) { /* linearize input sample to 14-bit PCM */ | |
100 | case AUDIO_ENCODING_ALAW: | |
101 | sl = alaw2linear(sl) >> 2; | |
102 | break; | |
103 | case AUDIO_ENCODING_ULAW: | |
104 | sl = ulaw2linear(sl) >> 2; | |
105 | break; | |
106 | case AUDIO_ENCODING_LINEAR: | |
107 | sl = ((short) sl) >> 2; /* sl of 14-bit dynamic range */ | |
108 | break; | |
109 | default: | |
110 | return (-1); | |
111 | } | |
112 | ||
113 | sezi = predictor_zero(state_ptr); | |
114 | sez = sezi >> 1; | |
115 | sei = sezi + predictor_pole(state_ptr); | |
116 | se = sei >> 1; /* se = estimated signal */ | |
117 | ||
118 | d = sl - se; /* d = estimation difference */ | |
119 | ||
120 | /* quantize prediction difference */ | |
121 | y = step_size(state_ptr); /* adaptive quantizer step size */ | |
122 | i = quantize(d, y, qtab_723_40, 15); /* i = ADPCM code */ | |
123 | ||
124 | dq = reconstruct(i & 0x10, _dqlntab[i], y); /* quantized diff */ | |
125 | ||
126 | sr = (dq < 0) ? se - (dq & 0x7FFF) : se + dq; /* reconstructed signal */ | |
127 | ||
128 | dqsez = sr + sez - se; /* dqsez = pole prediction diff. */ | |
129 | ||
130 | update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); | |
131 | ||
132 | return (i); | |
133 | } | |
134 | ||
135 | /* | |
136 | * g723_40_decoder() | |
137 | * | |
138 | * Decodes a 5-bit CCITT G.723 40Kbps code and returns | |
139 | * the resulting 16-bit linear PCM, A-law or u-law sample value. | |
140 | * -1 is returned if the output coding is unknown. | |
141 | */ | |
142 | int | |
143 | g723_40_decoder( | |
144 | int i, | |
145 | int out_coding, | |
146 | struct g72x_state *state_ptr) | |
147 | { | |
148 | short sezi, sei, sez, se; /* ACCUM */ | |
149 | short y; /* MIX */ | |
150 | short sr; /* ADDB */ | |
151 | short dq; | |
152 | short dqsez; | |
153 | ||
154 | i &= 0x1f; /* mask to get proper bits */ | |
155 | sezi = predictor_zero(state_ptr); | |
156 | sez = sezi >> 1; | |
157 | sei = sezi + predictor_pole(state_ptr); | |
158 | se = sei >> 1; /* se = estimated signal */ | |
159 | ||
160 | y = step_size(state_ptr); /* adaptive quantizer step size */ | |
161 | dq = reconstruct(i & 0x10, _dqlntab[i], y); /* estimation diff. */ | |
162 | ||
163 | sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq); /* reconst. signal */ | |
164 | ||
165 | dqsez = sr - se + sez; /* pole prediction diff. */ | |
166 | ||
167 | update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr); | |
168 | ||
169 | switch (out_coding) { | |
170 | case AUDIO_ENCODING_ALAW: | |
171 | return (tandem_adjust_alaw(sr, se, y, i, 0x10, qtab_723_40)); | |
172 | case AUDIO_ENCODING_ULAW: | |
173 | return (tandem_adjust_ulaw(sr, se, y, i, 0x10, qtab_723_40)); | |
174 | case AUDIO_ENCODING_LINEAR: | |
175 | return (sr << 2); /* sr was of 14-bit dynamic range */ | |
176 | default: | |
177 | return (-1); | |
178 | } | |
179 | } |