]>
Commit | Line | Data |
---|---|---|
e1929140 RR |
1 | /* |
2 | * jdmaster.c | |
3 | * | |
4 | * Copyright (C) 1991-1997, Thomas G. Lane. | |
5 | * This file is part of the Independent JPEG Group's software. | |
6 | * For conditions of distribution and use, see the accompanying README file. | |
7 | * | |
8 | * This file contains master control logic for the JPEG decompressor. | |
9 | * These routines are concerned with selecting the modules to be executed | |
10 | * and with determining the number of passes and the work to be done in each | |
11 | * pass. | |
12 | */ | |
13 | ||
14 | #define JPEG_INTERNALS | |
15 | #include "jinclude.h" | |
16 | #include "jpeglib.h" | |
17 | ||
18 | ||
19 | /* Private state */ | |
20 | ||
21 | typedef struct { | |
22 | struct jpeg_decomp_master pub; /* public fields */ | |
23 | ||
24 | int pass_number; /* # of passes completed */ | |
25 | ||
26 | boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */ | |
27 | ||
28 | /* Saved references to initialized quantizer modules, | |
29 | * in case we need to switch modes. | |
30 | */ | |
31 | struct jpeg_color_quantizer * quantizer_1pass; | |
32 | struct jpeg_color_quantizer * quantizer_2pass; | |
33 | } my_decomp_master; | |
34 | ||
35 | typedef my_decomp_master * my_master_ptr; | |
36 | ||
37 | ||
38 | /* | |
39 | * Determine whether merged upsample/color conversion should be used. | |
40 | * CRUCIAL: this must match the actual capabilities of jdmerge.c! | |
41 | */ | |
42 | ||
43 | LOCAL(boolean) | |
44 | use_merged_upsample (j_decompress_ptr cinfo) | |
45 | { | |
46 | #ifdef UPSAMPLE_MERGING_SUPPORTED | |
47 | /* Merging is the equivalent of plain box-filter upsampling */ | |
48 | if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling) | |
49 | return FALSE; | |
50 | /* jdmerge.c only supports YCC=>RGB color conversion */ | |
51 | if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 || | |
52 | cinfo->out_color_space != JCS_RGB || | |
53 | cinfo->out_color_components != RGB_PIXELSIZE) | |
54 | return FALSE; | |
55 | /* and it only handles 2h1v or 2h2v sampling ratios */ | |
56 | if (cinfo->comp_info[0].h_samp_factor != 2 || | |
57 | cinfo->comp_info[1].h_samp_factor != 1 || | |
58 | cinfo->comp_info[2].h_samp_factor != 1 || | |
59 | cinfo->comp_info[0].v_samp_factor > 2 || | |
60 | cinfo->comp_info[1].v_samp_factor != 1 || | |
61 | cinfo->comp_info[2].v_samp_factor != 1) | |
62 | return FALSE; | |
63 | /* furthermore, it doesn't work if we've scaled the IDCTs differently */ | |
64 | if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size || | |
65 | cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size || | |
66 | cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size) | |
67 | return FALSE; | |
68 | /* ??? also need to test for upsample-time rescaling, when & if supported */ | |
69 | return TRUE; /* by golly, it'll work... */ | |
70 | #else | |
71 | return FALSE; | |
72 | #endif | |
73 | } | |
74 | ||
75 | ||
76 | /* | |
77 | * Compute output image dimensions and related values. | |
78 | * NOTE: this is exported for possible use by application. | |
79 | * Hence it mustn't do anything that can't be done twice. | |
80 | * Also note that it may be called before the master module is initialized! | |
81 | */ | |
82 | ||
83 | GLOBAL(void) | |
84 | jpeg_calc_output_dimensions (j_decompress_ptr cinfo) | |
85 | /* Do computations that are needed before master selection phase */ | |
86 | { | |
87 | #ifdef IDCT_SCALING_SUPPORTED | |
88 | int ci; | |
89 | jpeg_component_info *compptr; | |
90 | #endif | |
91 | ||
92 | /* Prevent application from calling me at wrong times */ | |
93 | if (cinfo->global_state != DSTATE_READY) | |
94 | ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |
95 | ||
96 | #ifdef IDCT_SCALING_SUPPORTED | |
97 | ||
98 | /* Compute actual output image dimensions and DCT scaling choices. */ | |
99 | if (cinfo->scale_num * 8 <= cinfo->scale_denom) { | |
100 | /* Provide 1/8 scaling */ | |
101 | cinfo->output_width = (JDIMENSION) | |
102 | jdiv_round_up((long) cinfo->image_width, 8L); | |
103 | cinfo->output_height = (JDIMENSION) | |
104 | jdiv_round_up((long) cinfo->image_height, 8L); | |
105 | cinfo->min_DCT_scaled_size = 1; | |
106 | } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) { | |
107 | /* Provide 1/4 scaling */ | |
108 | cinfo->output_width = (JDIMENSION) | |
109 | jdiv_round_up((long) cinfo->image_width, 4L); | |
110 | cinfo->output_height = (JDIMENSION) | |
111 | jdiv_round_up((long) cinfo->image_height, 4L); | |
112 | cinfo->min_DCT_scaled_size = 2; | |
113 | } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) { | |
114 | /* Provide 1/2 scaling */ | |
115 | cinfo->output_width = (JDIMENSION) | |
116 | jdiv_round_up((long) cinfo->image_width, 2L); | |
117 | cinfo->output_height = (JDIMENSION) | |
118 | jdiv_round_up((long) cinfo->image_height, 2L); | |
119 | cinfo->min_DCT_scaled_size = 4; | |
120 | } else { | |
121 | /* Provide 1/1 scaling */ | |
122 | cinfo->output_width = cinfo->image_width; | |
123 | cinfo->output_height = cinfo->image_height; | |
124 | cinfo->min_DCT_scaled_size = DCTSIZE; | |
125 | } | |
126 | /* In selecting the actual DCT scaling for each component, we try to | |
127 | * scale up the chroma components via IDCT scaling rather than upsampling. | |
128 | * This saves time if the upsampler gets to use 1:1 scaling. | |
129 | * Note this code assumes that the supported DCT scalings are powers of 2. | |
130 | */ | |
131 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
132 | ci++, compptr++) { | |
133 | int ssize = cinfo->min_DCT_scaled_size; | |
134 | while (ssize < DCTSIZE && | |
135 | (compptr->h_samp_factor * ssize * 2 <= | |
136 | cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) && | |
137 | (compptr->v_samp_factor * ssize * 2 <= | |
138 | cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) { | |
139 | ssize = ssize * 2; | |
140 | } | |
141 | compptr->DCT_scaled_size = ssize; | |
142 | } | |
143 | ||
144 | /* Recompute downsampled dimensions of components; | |
145 | * application needs to know these if using raw downsampled data. | |
146 | */ | |
147 | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | |
148 | ci++, compptr++) { | |
149 | /* Size in samples, after IDCT scaling */ | |
150 | compptr->downsampled_width = (JDIMENSION) | |
151 | jdiv_round_up((long) cinfo->image_width * | |
152 | (long) (compptr->h_samp_factor * compptr->DCT_scaled_size), | |
153 | (long) (cinfo->max_h_samp_factor * DCTSIZE)); | |
154 | compptr->downsampled_height = (JDIMENSION) | |
155 | jdiv_round_up((long) cinfo->image_height * | |
156 | (long) (compptr->v_samp_factor * compptr->DCT_scaled_size), | |
157 | (long) (cinfo->max_v_samp_factor * DCTSIZE)); | |
158 | } | |
159 | ||
160 | #else /* !IDCT_SCALING_SUPPORTED */ | |
161 | ||
162 | /* Hardwire it to "no scaling" */ | |
163 | cinfo->output_width = cinfo->image_width; | |
164 | cinfo->output_height = cinfo->image_height; | |
165 | /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE, | |
166 | * and has computed unscaled downsampled_width and downsampled_height. | |
167 | */ | |
168 | ||
169 | #endif /* IDCT_SCALING_SUPPORTED */ | |
170 | ||
171 | /* Report number of components in selected colorspace. */ | |
172 | /* Probably this should be in the color conversion module... */ | |
173 | switch (cinfo->out_color_space) { | |
174 | case JCS_GRAYSCALE: | |
175 | cinfo->out_color_components = 1; | |
176 | break; | |
177 | case JCS_RGB: | |
178 | #if RGB_PIXELSIZE != 3 | |
179 | cinfo->out_color_components = RGB_PIXELSIZE; | |
180 | break; | |
181 | #endif /* else share code with YCbCr */ | |
182 | case JCS_YCbCr: | |
183 | cinfo->out_color_components = 3; | |
184 | break; | |
185 | case JCS_CMYK: | |
186 | case JCS_YCCK: | |
187 | cinfo->out_color_components = 4; | |
188 | break; | |
189 | default: /* else must be same colorspace as in file */ | |
190 | cinfo->out_color_components = cinfo->num_components; | |
191 | break; | |
192 | } | |
193 | cinfo->output_components = (cinfo->quantize_colors ? 1 : | |
194 | cinfo->out_color_components); | |
195 | ||
196 | /* See if upsampler will want to emit more than one row at a time */ | |
197 | if (use_merged_upsample(cinfo)) | |
198 | cinfo->rec_outbuf_height = cinfo->max_v_samp_factor; | |
199 | else | |
200 | cinfo->rec_outbuf_height = 1; | |
201 | } | |
202 | ||
203 | ||
204 | /* | |
205 | * Several decompression processes need to range-limit values to the range | |
206 | * 0..MAXJSAMPLE; the input value may fall somewhat outside this range | |
207 | * due to noise introduced by quantization, roundoff error, etc. These | |
208 | * processes are inner loops and need to be as fast as possible. On most | |
209 | * machines, particularly CPUs with pipelines or instruction prefetch, | |
210 | * a (subscript-check-less) C table lookup | |
211 | * x = sample_range_limit[x]; | |
212 | * is faster than explicit tests | |
213 | * if (x < 0) x = 0; | |
214 | * else if (x > MAXJSAMPLE) x = MAXJSAMPLE; | |
215 | * These processes all use a common table prepared by the routine below. | |
216 | * | |
217 | * For most steps we can mathematically guarantee that the initial value | |
218 | * of x is within MAXJSAMPLE+1 of the legal range, so a table running from | |
219 | * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial | |
220 | * limiting step (just after the IDCT), a wildly out-of-range value is | |
221 | * possible if the input data is corrupt. To avoid any chance of indexing | |
222 | * off the end of memory and getting a bad-pointer trap, we perform the | |
223 | * post-IDCT limiting thus: | |
224 | * x = range_limit[x & MASK]; | |
225 | * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit | |
226 | * samples. Under normal circumstances this is more than enough range and | |
227 | * a correct output will be generated; with bogus input data the mask will | |
228 | * cause wraparound, and we will safely generate a bogus-but-in-range output. | |
229 | * For the post-IDCT step, we want to convert the data from signed to unsigned | |
230 | * representation by adding CENTERJSAMPLE at the same time that we limit it. | |
231 | * So the post-IDCT limiting table ends up looking like this: | |
232 | * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE, | |
233 | * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), | |
234 | * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times), | |
235 | * 0,1,...,CENTERJSAMPLE-1 | |
236 | * Negative inputs select values from the upper half of the table after | |
237 | * masking. | |
238 | * | |
239 | * We can save some space by overlapping the start of the post-IDCT table | |
240 | * with the simpler range limiting table. The post-IDCT table begins at | |
241 | * sample_range_limit + CENTERJSAMPLE. | |
242 | * | |
243 | * Note that the table is allocated in near data space on PCs; it's small | |
244 | * enough and used often enough to justify this. | |
245 | */ | |
246 | ||
247 | LOCAL(void) | |
248 | prepare_range_limit_table (j_decompress_ptr cinfo) | |
249 | /* Allocate and fill in the sample_range_limit table */ | |
250 | { | |
251 | JSAMPLE * table; | |
252 | int i; | |
253 | ||
254 | table = (JSAMPLE *) | |
255 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
256 | (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE)); | |
257 | table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */ | |
258 | cinfo->sample_range_limit = table; | |
259 | /* First segment of "simple" table: limit[x] = 0 for x < 0 */ | |
260 | MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE)); | |
261 | /* Main part of "simple" table: limit[x] = x */ | |
262 | for (i = 0; i <= MAXJSAMPLE; i++) | |
263 | table[i] = (JSAMPLE) i; | |
264 | table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ | |
265 | /* End of simple table, rest of first half of post-IDCT table */ | |
266 | for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) | |
267 | table[i] = MAXJSAMPLE; | |
268 | /* Second half of post-IDCT table */ | |
269 | MEMZERO(table + (2 * (MAXJSAMPLE+1)), | |
270 | (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE)); | |
271 | MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), | |
272 | cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE)); | |
273 | } | |
274 | ||
275 | ||
276 | /* | |
277 | * Master selection of decompression modules. | |
278 | * This is done once at jpeg_start_decompress time. We determine | |
279 | * which modules will be used and give them appropriate initialization calls. | |
280 | * We also initialize the decompressor input side to begin consuming data. | |
281 | * | |
282 | * Since jpeg_read_header has finished, we know what is in the SOF | |
283 | * and (first) SOS markers. We also have all the application parameter | |
284 | * settings. | |
285 | */ | |
286 | ||
287 | LOCAL(void) | |
288 | master_selection (j_decompress_ptr cinfo) | |
289 | { | |
290 | my_master_ptr master = (my_master_ptr) cinfo->master; | |
291 | boolean use_c_buffer; | |
292 | long samplesperrow; | |
293 | JDIMENSION jd_samplesperrow; | |
294 | ||
295 | /* Initialize dimensions and other stuff */ | |
296 | jpeg_calc_output_dimensions(cinfo); | |
297 | prepare_range_limit_table(cinfo); | |
298 | ||
299 | /* Width of an output scanline must be representable as JDIMENSION. */ | |
300 | samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components; | |
301 | jd_samplesperrow = (JDIMENSION) samplesperrow; | |
302 | if ((long) jd_samplesperrow != samplesperrow) | |
303 | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | |
304 | ||
305 | /* Initialize my private state */ | |
306 | master->pass_number = 0; | |
307 | master->using_merged_upsample = use_merged_upsample(cinfo); | |
308 | ||
309 | /* Color quantizer selection */ | |
310 | master->quantizer_1pass = NULL; | |
311 | master->quantizer_2pass = NULL; | |
312 | /* No mode changes if not using buffered-image mode. */ | |
313 | if (! cinfo->quantize_colors || ! cinfo->buffered_image) { | |
314 | cinfo->enable_1pass_quant = FALSE; | |
315 | cinfo->enable_external_quant = FALSE; | |
316 | cinfo->enable_2pass_quant = FALSE; | |
317 | } | |
318 | if (cinfo->quantize_colors) { | |
319 | if (cinfo->raw_data_out) | |
320 | ERREXIT(cinfo, JERR_NOTIMPL); | |
321 | /* 2-pass quantizer only works in 3-component color space. */ | |
322 | if (cinfo->out_color_components != 3) { | |
323 | cinfo->enable_1pass_quant = TRUE; | |
324 | cinfo->enable_external_quant = FALSE; | |
325 | cinfo->enable_2pass_quant = FALSE; | |
326 | cinfo->colormap = NULL; | |
327 | } else if (cinfo->colormap != NULL) { | |
328 | cinfo->enable_external_quant = TRUE; | |
329 | } else if (cinfo->two_pass_quantize) { | |
330 | cinfo->enable_2pass_quant = TRUE; | |
331 | } else { | |
332 | cinfo->enable_1pass_quant = TRUE; | |
333 | } | |
334 | ||
335 | if (cinfo->enable_1pass_quant) { | |
336 | #ifdef QUANT_1PASS_SUPPORTED | |
337 | jinit_1pass_quantizer(cinfo); | |
338 | master->quantizer_1pass = cinfo->cquantize; | |
339 | #else | |
340 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
341 | #endif | |
342 | } | |
343 | ||
344 | /* We use the 2-pass code to map to external colormaps. */ | |
345 | if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) { | |
346 | #ifdef QUANT_2PASS_SUPPORTED | |
347 | jinit_2pass_quantizer(cinfo); | |
348 | master->quantizer_2pass = cinfo->cquantize; | |
349 | #else | |
350 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
351 | #endif | |
352 | } | |
353 | /* If both quantizers are initialized, the 2-pass one is left active; | |
354 | * this is necessary for starting with quantization to an external map. | |
355 | */ | |
356 | } | |
357 | ||
358 | /* Post-processing: in particular, color conversion first */ | |
359 | if (! cinfo->raw_data_out) { | |
360 | if (master->using_merged_upsample) { | |
361 | #ifdef UPSAMPLE_MERGING_SUPPORTED | |
362 | jinit_merged_upsampler(cinfo); /* does color conversion too */ | |
363 | #else | |
364 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
365 | #endif | |
366 | } else { | |
367 | jinit_color_deconverter(cinfo); | |
368 | jinit_upsampler(cinfo); | |
369 | } | |
370 | jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant); | |
371 | } | |
372 | /* Inverse DCT */ | |
373 | jinit_inverse_dct(cinfo); | |
374 | /* Entropy decoding: either Huffman or arithmetic coding. */ | |
375 | if (cinfo->arith_code) { | |
376 | ERREXIT(cinfo, JERR_ARITH_NOTIMPL); | |
377 | } else { | |
378 | if (cinfo->progressive_mode) { | |
379 | #ifdef D_PROGRESSIVE_SUPPORTED | |
380 | jinit_phuff_decoder(cinfo); | |
381 | #else | |
382 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
383 | #endif | |
384 | } else | |
385 | jinit_huff_decoder(cinfo); | |
386 | } | |
387 | ||
388 | /* Initialize principal buffer controllers. */ | |
389 | use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image; | |
390 | jinit_d_coef_controller(cinfo, use_c_buffer); | |
391 | ||
392 | if (! cinfo->raw_data_out) | |
393 | jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */); | |
394 | ||
395 | /* We can now tell the memory manager to allocate virtual arrays. */ | |
396 | (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo); | |
397 | ||
398 | /* Initialize input side of decompressor to consume first scan. */ | |
399 | (*cinfo->inputctl->start_input_pass) (cinfo); | |
400 | ||
401 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
402 | /* If jpeg_start_decompress will read the whole file, initialize | |
403 | * progress monitoring appropriately. The input step is counted | |
404 | * as one pass. | |
405 | */ | |
406 | if (cinfo->progress != NULL && ! cinfo->buffered_image && | |
407 | cinfo->inputctl->has_multiple_scans) { | |
408 | int nscans; | |
409 | /* Estimate number of scans to set pass_limit. */ | |
410 | if (cinfo->progressive_mode) { | |
411 | /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */ | |
412 | nscans = 2 + 3 * cinfo->num_components; | |
413 | } else { | |
414 | /* For a nonprogressive multiscan file, estimate 1 scan per component. */ | |
415 | nscans = cinfo->num_components; | |
416 | } | |
417 | cinfo->progress->pass_counter = 0L; | |
418 | cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans; | |
419 | cinfo->progress->completed_passes = 0; | |
420 | cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2); | |
421 | /* Count the input pass as done */ | |
422 | master->pass_number++; | |
423 | } | |
424 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ | |
425 | } | |
426 | ||
427 | ||
428 | /* | |
429 | * Per-pass setup. | |
430 | * This is called at the beginning of each output pass. We determine which | |
431 | * modules will be active during this pass and give them appropriate | |
432 | * start_pass calls. We also set is_dummy_pass to indicate whether this | |
433 | * is a "real" output pass or a dummy pass for color quantization. | |
434 | * (In the latter case, jdapistd.c will crank the pass to completion.) | |
435 | */ | |
436 | ||
437 | METHODDEF(void) | |
438 | prepare_for_output_pass (j_decompress_ptr cinfo) | |
439 | { | |
440 | my_master_ptr master = (my_master_ptr) cinfo->master; | |
441 | ||
442 | if (master->pub.is_dummy_pass) { | |
443 | #ifdef QUANT_2PASS_SUPPORTED | |
444 | /* Final pass of 2-pass quantization */ | |
445 | master->pub.is_dummy_pass = FALSE; | |
446 | (*cinfo->cquantize->start_pass) (cinfo, FALSE); | |
447 | (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST); | |
448 | (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST); | |
449 | #else | |
450 | ERREXIT(cinfo, JERR_NOT_COMPILED); | |
451 | #endif /* QUANT_2PASS_SUPPORTED */ | |
452 | } else { | |
453 | if (cinfo->quantize_colors && cinfo->colormap == NULL) { | |
454 | /* Select new quantization method */ | |
455 | if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) { | |
456 | cinfo->cquantize = master->quantizer_2pass; | |
457 | master->pub.is_dummy_pass = TRUE; | |
458 | } else if (cinfo->enable_1pass_quant) { | |
459 | cinfo->cquantize = master->quantizer_1pass; | |
460 | } else { | |
461 | ERREXIT(cinfo, JERR_MODE_CHANGE); | |
462 | } | |
463 | } | |
464 | (*cinfo->idct->start_pass) (cinfo); | |
465 | (*cinfo->coef->start_output_pass) (cinfo); | |
466 | if (! cinfo->raw_data_out) { | |
467 | if (! master->using_merged_upsample) | |
468 | (*cinfo->cconvert->start_pass) (cinfo); | |
469 | (*cinfo->upsample->start_pass) (cinfo); | |
470 | if (cinfo->quantize_colors) | |
471 | (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass); | |
472 | (*cinfo->post->start_pass) (cinfo, | |
473 | (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU)); | |
474 | (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU); | |
475 | } | |
476 | } | |
477 | ||
478 | /* Set up progress monitor's pass info if present */ | |
479 | if (cinfo->progress != NULL) { | |
480 | cinfo->progress->completed_passes = master->pass_number; | |
481 | cinfo->progress->total_passes = master->pass_number + | |
482 | (master->pub.is_dummy_pass ? 2 : 1); | |
483 | /* In buffered-image mode, we assume one more output pass if EOI not | |
484 | * yet reached, but no more passes if EOI has been reached. | |
485 | */ | |
486 | if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) { | |
487 | cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1); | |
488 | } | |
489 | } | |
490 | } | |
491 | ||
492 | ||
493 | /* | |
494 | * Finish up at end of an output pass. | |
495 | */ | |
496 | ||
497 | METHODDEF(void) | |
498 | finish_output_pass (j_decompress_ptr cinfo) | |
499 | { | |
500 | my_master_ptr master = (my_master_ptr) cinfo->master; | |
501 | ||
502 | if (cinfo->quantize_colors) | |
503 | (*cinfo->cquantize->finish_pass) (cinfo); | |
504 | master->pass_number++; | |
505 | } | |
506 | ||
507 | ||
508 | #ifdef D_MULTISCAN_FILES_SUPPORTED | |
509 | ||
510 | /* | |
511 | * Switch to a new external colormap between output passes. | |
512 | */ | |
513 | ||
514 | GLOBAL(void) | |
515 | jpeg_new_colormap (j_decompress_ptr cinfo) | |
516 | { | |
517 | my_master_ptr master = (my_master_ptr) cinfo->master; | |
518 | ||
519 | /* Prevent application from calling me at wrong times */ | |
520 | if (cinfo->global_state != DSTATE_BUFIMAGE) | |
521 | ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state); | |
522 | ||
523 | if (cinfo->quantize_colors && cinfo->enable_external_quant && | |
524 | cinfo->colormap != NULL) { | |
525 | /* Select 2-pass quantizer for external colormap use */ | |
526 | cinfo->cquantize = master->quantizer_2pass; | |
527 | /* Notify quantizer of colormap change */ | |
528 | (*cinfo->cquantize->new_color_map) (cinfo); | |
529 | master->pub.is_dummy_pass = FALSE; /* just in case */ | |
530 | } else | |
531 | ERREXIT(cinfo, JERR_MODE_CHANGE); | |
532 | } | |
533 | ||
534 | #endif /* D_MULTISCAN_FILES_SUPPORTED */ | |
535 | ||
536 | ||
537 | /* | |
538 | * Initialize master decompression control and select active modules. | |
539 | * This is performed at the start of jpeg_start_decompress. | |
540 | */ | |
541 | ||
542 | GLOBAL(void) | |
543 | jinit_master_decompress (j_decompress_ptr cinfo) | |
544 | { | |
545 | my_master_ptr master; | |
546 | ||
547 | master = (my_master_ptr) | |
548 | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | |
549 | SIZEOF(my_decomp_master)); | |
550 | cinfo->master = (struct jpeg_decomp_master *) master; | |
551 | master->pub.prepare_for_output_pass = prepare_for_output_pass; | |
552 | master->pub.finish_output_pass = finish_output_pass; | |
553 | ||
554 | master->pub.is_dummy_pass = FALSE; | |
555 | ||
556 | master_selection(cinfo); | |
557 | } |