]> git.saurik.com Git - wxWidgets.git/blame - utils/wxMMedia2/lib/g723_24.cpp
Removed wxMMedia
[wxWidgets.git] / utils / wxMMedia2 / lib / g723_24.cpp
CommitLineData
4d6306eb
GL
1/*
2 * This source code is a product of Sun Microsystems, Inc. and is provided
3 * for unrestricted use. Users may copy or modify this source code without
4 * charge.
5 *
6 * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
7 * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
8 * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
9 *
10 * Sun source code is provided with no support and without any obligation on
11 * the part of Sun Microsystems, Inc. to assist in its use, correction,
12 * modification or enhancement.
13 *
14 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
15 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
16 * OR ANY PART THEREOF.
17 *
18 * In no event will Sun Microsystems, Inc. be liable for any lost revenue
19 * or profits or other special, indirect and consequential damages, even if
20 * Sun has been advised of the possibility of such damages.
21 *
22 * Sun Microsystems, Inc.
23 * 2550 Garcia Avenue
24 * Mountain View, California 94043
25 */
26
27/*
28 * g723_24.c
29 *
30 * Description:
31 *
32 * g723_24_encoder(), g723_24_decoder()
33 *
34 * These routines comprise an implementation of the CCITT G.723 24 Kbps
35 * ADPCM coding algorithm. Essentially, this implementation is identical to
36 * the bit level description except for a few deviations which take advantage
37 * of workstation attributes, such as hardware 2's complement arithmetic.
38 *
39 */
40#include "g72x.h"
41
42/*
43 * Maps G.723_24 code word to reconstructed scale factor normalized log
44 * magnitude values.
45 */
46static short _dqlntab[8] = {-2048, 135, 273, 373, 373, 273, 135, -2048};
47
48/* Maps G.723_24 code word to log of scale factor multiplier. */
49static short _witab[8] = {-128, 960, 4384, 18624, 18624, 4384, 960, -128};
50
51/*
52 * Maps G.723_24 code words to a set of values whose long and short
53 * term averages are computed and then compared to give an indication
54 * how stationary (steady state) the signal is.
55 */
56static short _fitab[8] = {0, 0x200, 0x400, 0xE00, 0xE00, 0x400, 0x200, 0};
57
58static short qtab_723_24[3] = {8, 218, 331};
59
60/*
61 * g723_24_encoder()
62 *
63 * Encodes a linear PCM, A-law or u-law input sample and returns its 3-bit code.
64 * Returns -1 if invalid input coding value.
65 */
66int
67g723_24_encoder(
68 int sl,
69 int in_coding,
70 struct g72x_state *state_ptr)
71{
72 short sei, sezi, se, sez; /* ACCUM */
73 short d; /* SUBTA */
74 short y; /* MIX */
75 short sr; /* ADDB */
76 short dqsez; /* ADDC */
77 short dq, i;
78
79 switch (in_coding) { /* linearize input sample to 14-bit PCM */
80 case AUDIO_ENCODING_ALAW:
81 sl = alaw2linear(sl) >> 2;
82 break;
83 case AUDIO_ENCODING_ULAW:
84 sl = ulaw2linear(sl) >> 2;
85 break;
86 case AUDIO_ENCODING_LINEAR:
87 sl = ((short)sl) >> 2; /* sl of 14-bit dynamic range */
88 break;
89 default:
90 return (-1);
91 }
92
93 sezi = predictor_zero(state_ptr);
94 sez = sezi >> 1;
95 sei = sezi + predictor_pole(state_ptr);
96 se = sei >> 1; /* se = estimated signal */
97
98 d = sl - se; /* d = estimation diff. */
99
100 /* quantize prediction difference d */
101 y = step_size(state_ptr); /* quantizer step size */
102 i = quantize(d, y, qtab_723_24, 3); /* i = ADPCM code */
103 dq = reconstruct(i & 4, _dqlntab[i], y); /* quantized diff. */
104
105 sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq; /* reconstructed signal */
106
107 dqsez = sr + sez - se; /* pole prediction diff. */
108
109 update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
110
111 return (i);
112}
113
114/*
115 * g723_24_decoder()
116 *
117 * Decodes a 3-bit CCITT G.723_24 ADPCM code and returns
118 * the resulting 16-bit linear PCM, A-law or u-law sample value.
119 * -1 is returned if the output coding is unknown.
120 */
121int
122g723_24_decoder(
123 int i,
124 int out_coding,
125 struct g72x_state *state_ptr)
126{
127 short sezi, sei, sez, se; /* ACCUM */
128 short y; /* MIX */
129 short sr; /* ADDB */
130 short dq;
131 short dqsez;
132
133 i &= 0x07; /* mask to get proper bits */
134 sezi = predictor_zero(state_ptr);
135 sez = sezi >> 1;
136 sei = sezi + predictor_pole(state_ptr);
137 se = sei >> 1; /* se = estimated signal */
138
139 y = step_size(state_ptr); /* adaptive quantizer step size */
140 dq = reconstruct(i & 0x04, _dqlntab[i], y); /* unquantize pred diff */
141
142 sr = (dq < 0) ? (se - (dq & 0x3FFF)) : (se + dq); /* reconst. signal */
143
144 dqsez = sr - se + sez; /* pole prediction diff. */
145
146 update(3, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
147
148 switch (out_coding) {
149 case AUDIO_ENCODING_ALAW:
150 return (tandem_adjust_alaw(sr, se, y, i, 4, qtab_723_24));
151 case AUDIO_ENCODING_ULAW:
152 return (tandem_adjust_ulaw(sr, se, y, i, 4, qtab_723_24));
153 case AUDIO_ENCODING_LINEAR:
154 return (sr << 2); /* sr was of 14-bit dynamic range */
155 default:
156 return (-1);
157 }
158}