]> git.saurik.com Git - wxWidgets.git/blame - src/png/png.c
Extend wxBannerWindow background bitmap if necessary.
[wxWidgets.git] / src / png / png.c
CommitLineData
0272a10d
VZ
1
2/* png.c - location for general purpose libpng functions
3 *
9c0d9ce3
DS
4 * Last changed in libpng 1.5.6 [November 3, 2011]
5 * Copyright (c) 1998-2011 Glenn Randers-Pehrson
0272a10d
VZ
6 * (Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
7 * (Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)
b61cc19c
PC
8 *
9 * This code is released under the libpng license.
10 * For conditions of distribution and use, see the disclaimer
11 * and license in png.h
0272a10d
VZ
12 */
13
b61cc19c 14#include "pngpriv.h"
0272a10d
VZ
15
16/* Generate a compiler error if there is an old png.h in the search path. */
9c0d9ce3 17typedef png_libpng_version_1_5_6 Your_png_h_is_not_version_1_5_6;
0272a10d
VZ
18
19/* Tells libpng that we have already handled the first "num_bytes" bytes
20 * of the PNG file signature. If the PNG data is embedded into another
21 * stream we can set num_bytes = 8 so that libpng will not attempt to read
22 * or write any of the magic bytes before it starts on the IHDR.
23 */
24
25#ifdef PNG_READ_SUPPORTED
26void PNGAPI
27png_set_sig_bytes(png_structp png_ptr, int num_bytes)
28{
970f6abe 29 png_debug(1, "in png_set_sig_bytes");
b61cc19c
PC
30
31 if (png_ptr == NULL)
32 return;
33
0272a10d 34 if (num_bytes > 8)
b61cc19c 35 png_error(png_ptr, "Too many bytes for PNG signature");
0272a10d
VZ
36
37 png_ptr->sig_bytes = (png_byte)(num_bytes < 0 ? 0 : num_bytes);
38}
39
40/* Checks whether the supplied bytes match the PNG signature. We allow
41 * checking less than the full 8-byte signature so that those apps that
42 * already read the first few bytes of a file to determine the file type
43 * can simply check the remaining bytes for extra assurance. Returns
44 * an integer less than, equal to, or greater than zero if sig is found,
45 * respectively, to be less than, to match, or be greater than the correct
9c0d9ce3 46 * PNG signature (this is the same behavior as strcmp, memcmp, etc).
0272a10d
VZ
47 */
48int PNGAPI
9c0d9ce3 49png_sig_cmp(png_const_bytep sig, png_size_t start, png_size_t num_to_check)
0272a10d
VZ
50{
51 png_byte png_signature[8] = {137, 80, 78, 71, 13, 10, 26, 10};
9c0d9ce3 52
0272a10d
VZ
53 if (num_to_check > 8)
54 num_to_check = 8;
9c0d9ce3 55
0272a10d
VZ
56 else if (num_to_check < 1)
57 return (-1);
58
59 if (start > 7)
60 return (-1);
61
62 if (start + num_to_check > 8)
63 num_to_check = 8 - start;
64
65 return ((int)(png_memcmp(&sig[start], &png_signature[start], num_to_check)));
66}
67
0272a10d
VZ
68#endif /* PNG_READ_SUPPORTED */
69
70#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
9c0d9ce3
DS
71/* Function to allocate memory for zlib */
72PNG_FUNCTION(voidpf /* PRIVATE */,
73png_zalloc,(voidpf png_ptr, uInt items, uInt size),PNG_ALLOCATED)
0272a10d
VZ
74{
75 png_voidp ptr;
76 png_structp p=(png_structp)png_ptr;
77 png_uint_32 save_flags=p->flags;
b61cc19c 78 png_alloc_size_t num_bytes;
0272a10d 79
b61cc19c
PC
80 if (png_ptr == NULL)
81 return (NULL);
9c0d9ce3 82
0272a10d
VZ
83 if (items > PNG_UINT_32_MAX/size)
84 {
85 png_warning (p, "Potential overflow in png_zalloc()");
86 return (NULL);
87 }
b61cc19c 88 num_bytes = (png_alloc_size_t)items * size;
0272a10d
VZ
89
90 p->flags|=PNG_FLAG_MALLOC_NULL_MEM_OK;
91 ptr = (png_voidp)png_malloc((png_structp)png_ptr, num_bytes);
92 p->flags=save_flags;
93
0272a10d
VZ
94 return ((voidpf)ptr);
95}
96
b61cc19c
PC
97/* Function to free memory for zlib */
98void /* PRIVATE */
0272a10d
VZ
99png_zfree(voidpf png_ptr, voidpf ptr)
100{
101 png_free((png_structp)png_ptr, (png_voidp)ptr);
102}
103
104/* Reset the CRC variable to 32 bits of 1's. Care must be taken
105 * in case CRC is > 32 bits to leave the top bits 0.
106 */
107void /* PRIVATE */
108png_reset_crc(png_structp png_ptr)
109{
9c0d9ce3
DS
110 /* The cast is safe because the crc is a 32 bit value. */
111 png_ptr->crc = (png_uint_32)crc32(0, Z_NULL, 0);
0272a10d
VZ
112}
113
114/* Calculate the CRC over a section of data. We can only pass as
115 * much data to this routine as the largest single buffer size. We
116 * also check that this data will actually be used before going to the
117 * trouble of calculating it.
118 */
119void /* PRIVATE */
9c0d9ce3 120png_calculate_crc(png_structp png_ptr, png_const_bytep ptr, png_size_t length)
0272a10d
VZ
121{
122 int need_crc = 1;
123
9c0d9ce3 124 if (PNG_CHUNK_ANCILLIARY(png_ptr->chunk_name))
0272a10d
VZ
125 {
126 if ((png_ptr->flags & PNG_FLAG_CRC_ANCILLARY_MASK) ==
127 (PNG_FLAG_CRC_ANCILLARY_USE | PNG_FLAG_CRC_ANCILLARY_NOWARN))
128 need_crc = 0;
129 }
9c0d9ce3
DS
130
131 else /* critical */
0272a10d
VZ
132 {
133 if (png_ptr->flags & PNG_FLAG_CRC_CRITICAL_IGNORE)
134 need_crc = 0;
135 }
136
9c0d9ce3
DS
137 /* 'uLong' is defined as unsigned long, this means that on some systems it is
138 * a 64 bit value. crc32, however, returns 32 bits so the following cast is
139 * safe. 'uInt' may be no more than 16 bits, so it is necessary to perform a
140 * loop here.
141 */
142 if (need_crc && length > 0)
143 {
144 uLong crc = png_ptr->crc; /* Should never issue a warning */
145
146 do
147 {
148 uInt safeLength = (uInt)length;
149 if (safeLength == 0)
150 safeLength = (uInt)-1; /* evil, but safe */
151
152 crc = crc32(crc, ptr, safeLength);
153
154 /* The following should never issue compiler warnings, if they do the
155 * target system has characteristics that will probably violate other
156 * assumptions within the libpng code.
157 */
158 ptr += safeLength;
159 length -= safeLength;
160 }
161 while (length > 0);
162
163 /* And the following is always safe because the crc is only 32 bits. */
164 png_ptr->crc = (png_uint_32)crc;
165 }
166}
167
168/* Check a user supplied version number, called from both read and write
169 * functions that create a png_struct
170 */
171int
172png_user_version_check(png_structp png_ptr, png_const_charp user_png_ver)
173{
174 if (user_png_ver)
175 {
176 int i = 0;
177
178 do
179 {
180 if (user_png_ver[i] != png_libpng_ver[i])
181 png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
182 } while (png_libpng_ver[i++]);
183 }
184
185 else
186 png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;
187
188 if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH)
189 {
190 /* Libpng 0.90 and later are binary incompatible with libpng 0.89, so
191 * we must recompile any applications that use any older library version.
192 * For versions after libpng 1.0, we will be compatible, so we need
193 * only check the first digit.
194 */
195 if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||
196 (user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) ||
197 (user_png_ver[0] == '0' && user_png_ver[2] < '9'))
198 {
199#ifdef PNG_WARNINGS_SUPPORTED
200 size_t pos = 0;
201 char m[128];
202
203 pos = png_safecat(m, sizeof m, pos, "Application built with libpng-");
204 pos = png_safecat(m, sizeof m, pos, user_png_ver);
205 pos = png_safecat(m, sizeof m, pos, " but running with ");
206 pos = png_safecat(m, sizeof m, pos, png_libpng_ver);
207
208 png_warning(png_ptr, m);
209#endif
210
211#ifdef PNG_ERROR_NUMBERS_SUPPORTED
212 png_ptr->flags = 0;
213#endif
214
215 return 0;
216 }
217 }
218
219 /* Success return. */
220 return 1;
0272a10d
VZ
221}
222
223/* Allocate the memory for an info_struct for the application. We don't
224 * really need the png_ptr, but it could potentially be useful in the
225 * future. This should be used in favour of malloc(png_sizeof(png_info))
226 * and png_info_init() so that applications that want to use a shared
227 * libpng don't have to be recompiled if png_info changes size.
228 */
9c0d9ce3
DS
229PNG_FUNCTION(png_infop,PNGAPI
230png_create_info_struct,(png_structp png_ptr),PNG_ALLOCATED)
0272a10d
VZ
231{
232 png_infop info_ptr;
233
970f6abe 234 png_debug(1, "in png_create_info_struct");
b61cc19c
PC
235
236 if (png_ptr == NULL)
237 return (NULL);
238
0272a10d
VZ
239#ifdef PNG_USER_MEM_SUPPORTED
240 info_ptr = (png_infop)png_create_struct_2(PNG_STRUCT_INFO,
241 png_ptr->malloc_fn, png_ptr->mem_ptr);
242#else
243 info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
244#endif
245 if (info_ptr != NULL)
246 png_info_init_3(&info_ptr, png_sizeof(png_info));
247
248 return (info_ptr);
249}
250
251/* This function frees the memory associated with a single info struct.
252 * Normally, one would use either png_destroy_read_struct() or
253 * png_destroy_write_struct() to free an info struct, but this may be
254 * useful for some applications.
255 */
256void PNGAPI
257png_destroy_info_struct(png_structp png_ptr, png_infopp info_ptr_ptr)
258{
259 png_infop info_ptr = NULL;
0272a10d 260
970f6abe 261 png_debug(1, "in png_destroy_info_struct");
b61cc19c
PC
262
263 if (png_ptr == NULL)
264 return;
265
0272a10d
VZ
266 if (info_ptr_ptr != NULL)
267 info_ptr = *info_ptr_ptr;
268
269 if (info_ptr != NULL)
270 {
271 png_info_destroy(png_ptr, info_ptr);
272
273#ifdef PNG_USER_MEM_SUPPORTED
274 png_destroy_struct_2((png_voidp)info_ptr, png_ptr->free_fn,
275 png_ptr->mem_ptr);
276#else
277 png_destroy_struct((png_voidp)info_ptr);
278#endif
279 *info_ptr_ptr = NULL;
280 }
281}
282
283/* Initialize the info structure. This is now an internal function (0.89)
284 * and applications using it are urged to use png_create_info_struct()
285 * instead.
286 */
0272a10d
VZ
287
288void PNGAPI
289png_info_init_3(png_infopp ptr_ptr, png_size_t png_info_struct_size)
290{
291 png_infop info_ptr = *ptr_ptr;
292
970f6abe 293 png_debug(1, "in png_info_init_3");
0272a10d 294
b61cc19c
PC
295 if (info_ptr == NULL)
296 return;
297
970f6abe 298 if (png_sizeof(png_info) > png_info_struct_size)
b61cc19c
PC
299 {
300 png_destroy_struct(info_ptr);
301 info_ptr = (png_infop)png_create_struct(PNG_STRUCT_INFO);
302 *ptr_ptr = info_ptr;
303 }
0272a10d 304
b61cc19c 305 /* Set everything to 0 */
970f6abe 306 png_memset(info_ptr, 0, png_sizeof(png_info));
0272a10d
VZ
307}
308
0272a10d
VZ
309void PNGAPI
310png_data_freer(png_structp png_ptr, png_infop info_ptr,
311 int freer, png_uint_32 mask)
312{
970f6abe 313 png_debug(1, "in png_data_freer");
b61cc19c 314
0272a10d
VZ
315 if (png_ptr == NULL || info_ptr == NULL)
316 return;
b61cc19c 317
970f6abe 318 if (freer == PNG_DESTROY_WILL_FREE_DATA)
0272a10d 319 info_ptr->free_me |= mask;
9c0d9ce3 320
970f6abe 321 else if (freer == PNG_USER_WILL_FREE_DATA)
0272a10d 322 info_ptr->free_me &= ~mask;
9c0d9ce3 323
0272a10d
VZ
324 else
325 png_warning(png_ptr,
b61cc19c 326 "Unknown freer parameter in png_data_freer");
0272a10d 327}
0272a10d
VZ
328
329void PNGAPI
330png_free_data(png_structp png_ptr, png_infop info_ptr, png_uint_32 mask,
331 int num)
332{
970f6abe 333 png_debug(1, "in png_free_data");
b61cc19c 334
0272a10d
VZ
335 if (png_ptr == NULL || info_ptr == NULL)
336 return;
337
b61cc19c
PC
338#ifdef PNG_TEXT_SUPPORTED
339 /* Free text item num or (if num == -1) all text items */
340 if ((mask & PNG_FREE_TEXT) & info_ptr->free_me)
0272a10d 341 {
b61cc19c
PC
342 if (num != -1)
343 {
344 if (info_ptr->text && info_ptr->text[num].key)
345 {
346 png_free(png_ptr, info_ptr->text[num].key);
347 info_ptr->text[num].key = NULL;
348 }
349 }
9c0d9ce3 350
b61cc19c
PC
351 else
352 {
353 int i;
354 for (i = 0; i < info_ptr->num_text; i++)
355 png_free_data(png_ptr, info_ptr, PNG_FREE_TEXT, i);
356 png_free(png_ptr, info_ptr->text);
357 info_ptr->text = NULL;
358 info_ptr->num_text=0;
359 }
0272a10d 360 }
0272a10d
VZ
361#endif
362
b61cc19c
PC
363#ifdef PNG_tRNS_SUPPORTED
364 /* Free any tRNS entry */
365 if ((mask & PNG_FREE_TRNS) & info_ptr->free_me)
366 {
367 png_free(png_ptr, info_ptr->trans_alpha);
368 info_ptr->trans_alpha = NULL;
369 info_ptr->valid &= ~PNG_INFO_tRNS;
370 }
0272a10d
VZ
371#endif
372
b61cc19c
PC
373#ifdef PNG_sCAL_SUPPORTED
374 /* Free any sCAL entry */
375 if ((mask & PNG_FREE_SCAL) & info_ptr->free_me)
376 {
b61cc19c
PC
377 png_free(png_ptr, info_ptr->scal_s_width);
378 png_free(png_ptr, info_ptr->scal_s_height);
379 info_ptr->scal_s_width = NULL;
380 info_ptr->scal_s_height = NULL;
b61cc19c
PC
381 info_ptr->valid &= ~PNG_INFO_sCAL;
382 }
0272a10d
VZ
383#endif
384
b61cc19c
PC
385#ifdef PNG_pCAL_SUPPORTED
386 /* Free any pCAL entry */
387 if ((mask & PNG_FREE_PCAL) & info_ptr->free_me)
388 {
389 png_free(png_ptr, info_ptr->pcal_purpose);
390 png_free(png_ptr, info_ptr->pcal_units);
391 info_ptr->pcal_purpose = NULL;
392 info_ptr->pcal_units = NULL;
393 if (info_ptr->pcal_params != NULL)
394 {
395 int i;
396 for (i = 0; i < (int)info_ptr->pcal_nparams; i++)
397 {
398 png_free(png_ptr, info_ptr->pcal_params[i]);
399 info_ptr->pcal_params[i] = NULL;
400 }
401 png_free(png_ptr, info_ptr->pcal_params);
402 info_ptr->pcal_params = NULL;
403 }
404 info_ptr->valid &= ~PNG_INFO_pCAL;
405 }
0272a10d
VZ
406#endif
407
b61cc19c
PC
408#ifdef PNG_iCCP_SUPPORTED
409 /* Free any iCCP entry */
410 if ((mask & PNG_FREE_ICCP) & info_ptr->free_me)
411 {
412 png_free(png_ptr, info_ptr->iccp_name);
413 png_free(png_ptr, info_ptr->iccp_profile);
414 info_ptr->iccp_name = NULL;
415 info_ptr->iccp_profile = NULL;
416 info_ptr->valid &= ~PNG_INFO_iCCP;
417 }
0272a10d
VZ
418#endif
419
b61cc19c
PC
420#ifdef PNG_sPLT_SUPPORTED
421 /* Free a given sPLT entry, or (if num == -1) all sPLT entries */
422 if ((mask & PNG_FREE_SPLT) & info_ptr->free_me)
0272a10d 423 {
b61cc19c 424 if (num != -1)
0272a10d 425 {
b61cc19c
PC
426 if (info_ptr->splt_palettes)
427 {
428 png_free(png_ptr, info_ptr->splt_palettes[num].name);
429 png_free(png_ptr, info_ptr->splt_palettes[num].entries);
430 info_ptr->splt_palettes[num].name = NULL;
431 info_ptr->splt_palettes[num].entries = NULL;
432 }
433 }
9c0d9ce3 434
b61cc19c
PC
435 else
436 {
437 if (info_ptr->splt_palettes_num)
438 {
439 int i;
440 for (i = 0; i < (int)info_ptr->splt_palettes_num; i++)
441 png_free_data(png_ptr, info_ptr, PNG_FREE_SPLT, i);
442
443 png_free(png_ptr, info_ptr->splt_palettes);
444 info_ptr->splt_palettes = NULL;
445 info_ptr->splt_palettes_num = 0;
446 }
447 info_ptr->valid &= ~PNG_INFO_sPLT;
0272a10d
VZ
448 }
449 }
0272a10d
VZ
450#endif
451
b61cc19c
PC
452#ifdef PNG_UNKNOWN_CHUNKS_SUPPORTED
453 if (png_ptr->unknown_chunk.data)
0272a10d 454 {
b61cc19c
PC
455 png_free(png_ptr, png_ptr->unknown_chunk.data);
456 png_ptr->unknown_chunk.data = NULL;
0272a10d 457 }
b61cc19c
PC
458
459 if ((mask & PNG_FREE_UNKN) & info_ptr->free_me)
0272a10d 460 {
b61cc19c
PC
461 if (num != -1)
462 {
463 if (info_ptr->unknown_chunks)
464 {
465 png_free(png_ptr, info_ptr->unknown_chunks[num].data);
466 info_ptr->unknown_chunks[num].data = NULL;
467 }
468 }
9c0d9ce3 469
b61cc19c
PC
470 else
471 {
472 int i;
0272a10d 473
b61cc19c
PC
474 if (info_ptr->unknown_chunks_num)
475 {
9c0d9ce3 476 for (i = 0; i < info_ptr->unknown_chunks_num; i++)
b61cc19c 477 png_free_data(png_ptr, info_ptr, PNG_FREE_UNKN, i);
0272a10d 478
b61cc19c
PC
479 png_free(png_ptr, info_ptr->unknown_chunks);
480 info_ptr->unknown_chunks = NULL;
481 info_ptr->unknown_chunks_num = 0;
482 }
483 }
0272a10d 484 }
0272a10d
VZ
485#endif
486
b61cc19c
PC
487#ifdef PNG_hIST_SUPPORTED
488 /* Free any hIST entry */
489 if ((mask & PNG_FREE_HIST) & info_ptr->free_me)
490 {
491 png_free(png_ptr, info_ptr->hist);
492 info_ptr->hist = NULL;
493 info_ptr->valid &= ~PNG_INFO_hIST;
494 }
0272a10d
VZ
495#endif
496
b61cc19c
PC
497 /* Free any PLTE entry that was internally allocated */
498 if ((mask & PNG_FREE_PLTE) & info_ptr->free_me)
499 {
500 png_zfree(png_ptr, info_ptr->palette);
501 info_ptr->palette = NULL;
502 info_ptr->valid &= ~PNG_INFO_PLTE;
503 info_ptr->num_palette = 0;
504 }
0272a10d 505
b61cc19c
PC
506#ifdef PNG_INFO_IMAGE_SUPPORTED
507 /* Free any image bits attached to the info structure */
508 if ((mask & PNG_FREE_ROWS) & info_ptr->free_me)
509 {
510 if (info_ptr->row_pointers)
511 {
512 int row;
513 for (row = 0; row < (int)info_ptr->height; row++)
514 {
515 png_free(png_ptr, info_ptr->row_pointers[row]);
516 info_ptr->row_pointers[row] = NULL;
517 }
518 png_free(png_ptr, info_ptr->row_pointers);
519 info_ptr->row_pointers = NULL;
520 }
521 info_ptr->valid &= ~PNG_INFO_IDAT;
522 }
0272a10d
VZ
523#endif
524
9c0d9ce3
DS
525 if (num != -1)
526 mask &= ~PNG_FREE_MUL;
527
528 info_ptr->free_me &= ~mask;
0272a10d
VZ
529}
530
531/* This is an internal routine to free any memory that the info struct is
532 * pointing to before re-using it or freeing the struct itself. Recall
533 * that png_free() checks for NULL pointers for us.
534 */
535void /* PRIVATE */
536png_info_destroy(png_structp png_ptr, png_infop info_ptr)
537{
970f6abe 538 png_debug(1, "in png_info_destroy");
0272a10d
VZ
539
540 png_free_data(png_ptr, info_ptr, PNG_FREE_ALL, -1);
541
b61cc19c 542#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
0272a10d
VZ
543 if (png_ptr->num_chunk_list)
544 {
b61cc19c
PC
545 png_free(png_ptr, png_ptr->chunk_list);
546 png_ptr->chunk_list = NULL;
547 png_ptr->num_chunk_list = 0;
0272a10d
VZ
548 }
549#endif
550
551 png_info_init_3(&info_ptr, png_sizeof(png_info));
552}
553#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
554
555/* This function returns a pointer to the io_ptr associated with the user
556 * functions. The application should free any memory associated with this
557 * pointer before png_write_destroy() or png_read_destroy() are called.
558 */
559png_voidp PNGAPI
560png_get_io_ptr(png_structp png_ptr)
561{
b61cc19c
PC
562 if (png_ptr == NULL)
563 return (NULL);
9c0d9ce3 564
0272a10d
VZ
565 return (png_ptr->io_ptr);
566}
567
568#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
9c0d9ce3 569# ifdef PNG_STDIO_SUPPORTED
0272a10d
VZ
570/* Initialize the default input/output functions for the PNG file. If you
571 * use your own read or write routines, you can call either png_set_read_fn()
572 * or png_set_write_fn() instead of png_init_io(). If you have defined
9c0d9ce3
DS
573 * PNG_NO_STDIO or otherwise disabled PNG_STDIO_SUPPORTED, you must use a
574 * function of your own because "FILE *" isn't necessarily available.
0272a10d
VZ
575 */
576void PNGAPI
577png_init_io(png_structp png_ptr, png_FILE_p fp)
578{
970f6abe 579 png_debug(1, "in png_init_io");
b61cc19c
PC
580
581 if (png_ptr == NULL)
582 return;
583
0272a10d
VZ
584 png_ptr->io_ptr = (png_voidp)fp;
585}
9c0d9ce3 586# endif
0272a10d 587
9c0d9ce3 588# ifdef PNG_TIME_RFC1123_SUPPORTED
0272a10d
VZ
589/* Convert the supplied time into an RFC 1123 string suitable for use in
590 * a "Creation Time" or other text-based time string.
591 */
9c0d9ce3
DS
592png_const_charp PNGAPI
593png_convert_to_rfc1123(png_structp png_ptr, png_const_timep ptime)
0272a10d
VZ
594{
595 static PNG_CONST char short_months[12][4] =
596 {"Jan", "Feb", "Mar", "Apr", "May", "Jun",
597 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"};
598
b61cc19c
PC
599 if (png_ptr == NULL)
600 return (NULL);
0272a10d 601
0272a10d 602 {
9c0d9ce3
DS
603 size_t pos = 0;
604 char number_buf[5]; /* enough for a four digit year */
605
606# define APPEND_STRING(string)\
607 pos = png_safecat(png_ptr->time_buffer, sizeof png_ptr->time_buffer,\
608 pos, (string))
609# define APPEND_NUMBER(format, value)\
610 APPEND_STRING(PNG_FORMAT_NUMBER(number_buf, format, (value)))
611# define APPEND(ch)\
612 if (pos < (sizeof png_ptr->time_buffer)-1)\
613 png_ptr->time_buffer[pos++] = (ch)
614
615 APPEND_NUMBER(PNG_NUMBER_FORMAT_u, (unsigned)ptime->day % 32);
616 APPEND(' ');
617 APPEND_STRING(short_months[(ptime->month - 1) % 12]);
618 APPEND(' ');
619 APPEND_NUMBER(PNG_NUMBER_FORMAT_u, ptime->year);
620 APPEND(' ');
621 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->hour % 24);
622 APPEND(':');
623 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->minute % 60);
624 APPEND(':');
625 APPEND_NUMBER(PNG_NUMBER_FORMAT_02u, (unsigned)ptime->second % 61);
626 APPEND_STRING(" +0000"); /* This reliably terminates the buffer */
627
628# undef APPEND
629# undef APPEND_NUMBER
630# undef APPEND_STRING
0272a10d 631 }
9c0d9ce3
DS
632
633 return png_ptr->time_buffer;
0272a10d 634}
9c0d9ce3 635# endif /* PNG_TIME_RFC1123_SUPPORTED */
0272a10d
VZ
636
637#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */
638
9c0d9ce3
DS
639png_const_charp PNGAPI
640png_get_copyright(png_const_structp png_ptr)
0272a10d 641{
9c0d9ce3 642 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
b61cc19c 643#ifdef PNG_STRING_COPYRIGHT
9c0d9ce3 644 return PNG_STRING_COPYRIGHT
b61cc19c 645#else
9c0d9ce3
DS
646# ifdef __STDC__
647 return PNG_STRING_NEWLINE \
648 "libpng version 1.5.6 - November 3, 2011" PNG_STRING_NEWLINE \
649 "Copyright (c) 1998-2011 Glenn Randers-Pehrson" PNG_STRING_NEWLINE \
b61cc19c
PC
650 "Copyright (c) 1996-1997 Andreas Dilger" PNG_STRING_NEWLINE \
651 "Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc." \
9c0d9ce3
DS
652 PNG_STRING_NEWLINE;
653# else
654 return "libpng version 1.5.6 - November 3, 2011\
655 Copyright (c) 1998-2011 Glenn Randers-Pehrson\
b61cc19c 656 Copyright (c) 1996-1997 Andreas Dilger\
9c0d9ce3
DS
657 Copyright (c) 1995-1996 Guy Eric Schalnat, Group 42, Inc.";
658# endif
b61cc19c 659#endif
0272a10d
VZ
660}
661
662/* The following return the library version as a short string in the
663 * format 1.0.0 through 99.99.99zz. To get the version of *.h files
664 * used with your application, print out PNG_LIBPNG_VER_STRING, which
665 * is defined in png.h.
666 * Note: now there is no difference between png_get_libpng_ver() and
667 * png_get_header_ver(). Due to the version_nn_nn_nn typedef guard,
668 * it is guaranteed that png.c uses the correct version of png.h.
669 */
9c0d9ce3
DS
670png_const_charp PNGAPI
671png_get_libpng_ver(png_const_structp png_ptr)
0272a10d
VZ
672{
673 /* Version of *.c files used when building libpng */
9c0d9ce3 674 return png_get_header_ver(png_ptr);
0272a10d
VZ
675}
676
9c0d9ce3
DS
677png_const_charp PNGAPI
678png_get_header_ver(png_const_structp png_ptr)
0272a10d
VZ
679{
680 /* Version of *.h files used when building libpng */
9c0d9ce3
DS
681 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
682 return PNG_LIBPNG_VER_STRING;
0272a10d
VZ
683}
684
9c0d9ce3
DS
685png_const_charp PNGAPI
686png_get_header_version(png_const_structp png_ptr)
0272a10d
VZ
687{
688 /* Returns longer string containing both version and date */
9c0d9ce3 689 PNG_UNUSED(png_ptr) /* Silence compiler warning about unused png_ptr */
b61cc19c 690#ifdef __STDC__
9c0d9ce3
DS
691 return PNG_HEADER_VERSION_STRING
692# ifndef PNG_READ_SUPPORTED
0272a10d 693 " (NO READ SUPPORT)"
9c0d9ce3
DS
694# endif
695 PNG_STRING_NEWLINE;
b61cc19c 696#else
9c0d9ce3 697 return PNG_HEADER_VERSION_STRING;
b61cc19c 698#endif
0272a10d
VZ
699}
700
0272a10d
VZ
701#ifdef PNG_HANDLE_AS_UNKNOWN_SUPPORTED
702int PNGAPI
9c0d9ce3 703png_handle_as_unknown(png_structp png_ptr, png_const_bytep chunk_name)
0272a10d 704{
b61cc19c 705 /* Check chunk_name and return "keep" value if it's on the list, else 0 */
9c0d9ce3
DS
706 png_const_bytep p, p_end;
707
708 if (png_ptr == NULL || chunk_name == NULL || png_ptr->num_chunk_list <= 0)
709 return PNG_HANDLE_CHUNK_AS_DEFAULT;
710
711 p_end = png_ptr->chunk_list;
712 p = p_end + png_ptr->num_chunk_list*5; /* beyond end */
713
714 /* The code is the fifth byte after each four byte string. Historically this
715 * code was always searched from the end of the list, so it should continue
716 * to do so in case there are duplicated entries.
717 */
718 do /* num_chunk_list > 0, so at least one */
719 {
720 p -= 5;
0272a10d 721 if (!png_memcmp(chunk_name, p, 4))
9c0d9ce3
DS
722 return p[4];
723 }
724 while (p > p_end);
725
726 return PNG_HANDLE_CHUNK_AS_DEFAULT;
727}
728
729int /* PRIVATE */
730png_chunk_unknown_handling(png_structp png_ptr, png_uint_32 chunk_name)
731{
732 png_byte chunk_string[5];
733
734 PNG_CSTRING_FROM_CHUNK(chunk_string, chunk_name);
735 return png_handle_as_unknown(png_ptr, chunk_string);
0272a10d
VZ
736}
737#endif
738
b61cc19c 739#ifdef PNG_READ_SUPPORTED
0272a10d
VZ
740/* This function, added to libpng-1.0.6g, is untested. */
741int PNGAPI
742png_reset_zstream(png_structp png_ptr)
743{
b61cc19c
PC
744 if (png_ptr == NULL)
745 return Z_STREAM_ERROR;
9c0d9ce3 746
0272a10d
VZ
747 return (inflateReset(&png_ptr->zstream));
748}
b61cc19c 749#endif /* PNG_READ_SUPPORTED */
0272a10d
VZ
750
751/* This function was added to libpng-1.0.7 */
752png_uint_32 PNGAPI
753png_access_version_number(void)
754{
755 /* Version of *.c files used when building libpng */
9c0d9ce3 756 return((png_uint_32)PNG_LIBPNG_VER);
0272a10d
VZ
757}
758
759
0272a10d
VZ
760
761#if defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED)
9c0d9ce3
DS
762/* png_convert_size: a PNGAPI but no longer in png.h, so deleted
763 * at libpng 1.5.5!
764 */
970f6abe
VZ
765
766/* Added at libpng version 1.2.34 and 1.4.0 (moved from pngset.c) */
9c0d9ce3 767# ifdef PNG_CHECK_cHRM_SUPPORTED
b61cc19c
PC
768
769int /* PRIVATE */
970f6abe
VZ
770png_check_cHRM_fixed(png_structp png_ptr,
771 png_fixed_point white_x, png_fixed_point white_y, png_fixed_point red_x,
772 png_fixed_point red_y, png_fixed_point green_x, png_fixed_point green_y,
773 png_fixed_point blue_x, png_fixed_point blue_y)
774{
775 int ret = 1;
776 unsigned long xy_hi,xy_lo,yx_hi,yx_lo;
777
778 png_debug(1, "in function png_check_cHRM_fixed");
b61cc19c 779
970f6abe
VZ
780 if (png_ptr == NULL)
781 return 0;
782
9c0d9ce3
DS
783 /* (x,y,z) values are first limited to 0..100000 (PNG_FP_1), the white
784 * y must also be greater than 0. To test for the upper limit calculate
785 * (PNG_FP_1-y) - x must be <= to this for z to be >= 0 (and the expression
786 * cannot overflow.) At this point we know x and y are >= 0 and (x+y) is
787 * <= PNG_FP_1. The previous test on PNG_MAX_UINT_31 is removed because it
788 * pointless (and it produces compiler warnings!)
789 */
970f6abe
VZ
790 if (white_x < 0 || white_y <= 0 ||
791 red_x < 0 || red_y < 0 ||
792 green_x < 0 || green_y < 0 ||
793 blue_x < 0 || blue_y < 0)
794 {
795 png_warning(png_ptr,
796 "Ignoring attempt to set negative chromaticity value");
797 ret = 0;
798 }
9c0d9ce3
DS
799 /* And (x+y) must be <= PNG_FP_1 (so z is >= 0) */
800 if (white_x > PNG_FP_1 - white_y)
970f6abe
VZ
801 {
802 png_warning(png_ptr, "Invalid cHRM white point");
803 ret = 0;
804 }
9c0d9ce3
DS
805
806 if (red_x > PNG_FP_1 - red_y)
970f6abe
VZ
807 {
808 png_warning(png_ptr, "Invalid cHRM red point");
809 ret = 0;
810 }
9c0d9ce3
DS
811
812 if (green_x > PNG_FP_1 - green_y)
970f6abe
VZ
813 {
814 png_warning(png_ptr, "Invalid cHRM green point");
815 ret = 0;
816 }
9c0d9ce3
DS
817
818 if (blue_x > PNG_FP_1 - blue_y)
970f6abe
VZ
819 {
820 png_warning(png_ptr, "Invalid cHRM blue point");
821 ret = 0;
822 }
823
824 png_64bit_product(green_x - red_x, blue_y - red_y, &xy_hi, &xy_lo);
825 png_64bit_product(green_y - red_y, blue_x - red_x, &yx_hi, &yx_lo);
826
827 if (xy_hi == yx_hi && xy_lo == yx_lo)
828 {
829 png_warning(png_ptr,
830 "Ignoring attempt to set cHRM RGB triangle with zero area");
831 ret = 0;
832 }
833
834 return ret;
835}
9c0d9ce3
DS
836# endif /* PNG_CHECK_cHRM_SUPPORTED */
837
838#ifdef PNG_cHRM_SUPPORTED
839/* Added at libpng-1.5.5 to support read and write of true CIEXYZ values for
840 * cHRM, as opposed to using chromaticities. These internal APIs return
841 * non-zero on a parameter error. The X, Y and Z values are required to be
842 * positive and less than 1.0.
843 */
844int png_xy_from_XYZ(png_xy *xy, png_XYZ XYZ)
845{
846 png_int_32 d, dwhite, whiteX, whiteY;
847
848 d = XYZ.redX + XYZ.redY + XYZ.redZ;
849 if (!png_muldiv(&xy->redx, XYZ.redX, PNG_FP_1, d)) return 1;
850 if (!png_muldiv(&xy->redy, XYZ.redY, PNG_FP_1, d)) return 1;
851 dwhite = d;
852 whiteX = XYZ.redX;
853 whiteY = XYZ.redY;
854
855 d = XYZ.greenX + XYZ.greenY + XYZ.greenZ;
856 if (!png_muldiv(&xy->greenx, XYZ.greenX, PNG_FP_1, d)) return 1;
857 if (!png_muldiv(&xy->greeny, XYZ.greenY, PNG_FP_1, d)) return 1;
858 dwhite += d;
859 whiteX += XYZ.greenX;
860 whiteY += XYZ.greenY;
861
862 d = XYZ.blueX + XYZ.blueY + XYZ.blueZ;
863 if (!png_muldiv(&xy->bluex, XYZ.blueX, PNG_FP_1, d)) return 1;
864 if (!png_muldiv(&xy->bluey, XYZ.blueY, PNG_FP_1, d)) return 1;
865 dwhite += d;
866 whiteX += XYZ.blueX;
867 whiteY += XYZ.blueY;
868
869 /* The reference white is simply the same of the end-point (X,Y,Z) vectors,
870 * thus:
871 */
872 if (!png_muldiv(&xy->whitex, whiteX, PNG_FP_1, dwhite)) return 1;
873 if (!png_muldiv(&xy->whitey, whiteY, PNG_FP_1, dwhite)) return 1;
874
875 return 0;
876}
877
878int png_XYZ_from_xy(png_XYZ *XYZ, png_xy xy)
879{
880 png_fixed_point red_inverse, green_inverse, blue_scale;
881 png_fixed_point left, right, denominator;
882
883 /* Check xy and, implicitly, z. Note that wide gamut color spaces typically
884 * have end points with 0 tristimulus values (these are impossible end
885 * points, but they are used to cover the possible colors.)
886 */
887 if (xy.redx < 0 || xy.redx > PNG_FP_1) return 1;
888 if (xy.redy < 0 || xy.redy > PNG_FP_1-xy.redx) return 1;
889 if (xy.greenx < 0 || xy.greenx > PNG_FP_1) return 1;
890 if (xy.greeny < 0 || xy.greeny > PNG_FP_1-xy.greenx) return 1;
891 if (xy.bluex < 0 || xy.bluex > PNG_FP_1) return 1;
892 if (xy.bluey < 0 || xy.bluey > PNG_FP_1-xy.bluex) return 1;
893 if (xy.whitex < 0 || xy.whitex > PNG_FP_1) return 1;
894 if (xy.whitey < 0 || xy.whitey > PNG_FP_1-xy.whitex) return 1;
895
896 /* The reverse calculation is more difficult because the original tristimulus
897 * value had 9 independent values (red,green,blue)x(X,Y,Z) however only 8
898 * derived values were recorded in the cHRM chunk;
899 * (red,green,blue,white)x(x,y). This loses one degree of freedom and
900 * therefore an arbitrary ninth value has to be introduced to undo the
901 * original transformations.
902 *
903 * Think of the original end-points as points in (X,Y,Z) space. The
904 * chromaticity values (c) have the property:
905 *
906 * C
907 * c = ---------
908 * X + Y + Z
909 *
910 * For each c (x,y,z) from the corresponding original C (X,Y,Z). Thus the
911 * three chromaticity values (x,y,z) for each end-point obey the
912 * relationship:
913 *
914 * x + y + z = 1
915 *
916 * This describes the plane in (X,Y,Z) space that intersects each axis at the
917 * value 1.0; call this the chromaticity plane. Thus the chromaticity
918 * calculation has scaled each end-point so that it is on the x+y+z=1 plane
919 * and chromaticity is the intersection of the vector from the origin to the
920 * (X,Y,Z) value with the chromaticity plane.
921 *
922 * To fully invert the chromaticity calculation we would need the three
923 * end-point scale factors, (red-scale, green-scale, blue-scale), but these
924 * were not recorded. Instead we calculated the reference white (X,Y,Z) and
925 * recorded the chromaticity of this. The reference white (X,Y,Z) would have
926 * given all three of the scale factors since:
927 *
928 * color-C = color-c * color-scale
929 * white-C = red-C + green-C + blue-C
930 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
931 *
932 * But cHRM records only white-x and white-y, so we have lost the white scale
933 * factor:
934 *
935 * white-C = white-c*white-scale
936 *
937 * To handle this the inverse transformation makes an arbitrary assumption
938 * about white-scale:
939 *
940 * Assume: white-Y = 1.0
941 * Hence: white-scale = 1/white-y
942 * Or: red-Y + green-Y + blue-Y = 1.0
943 *
944 * Notice the last statement of the assumption gives an equation in three of
945 * the nine values we want to calculate. 8 more equations come from the
946 * above routine as summarised at the top above (the chromaticity
947 * calculation):
948 *
949 * Given: color-x = color-X / (color-X + color-Y + color-Z)
950 * Hence: (color-x - 1)*color-X + color.x*color-Y + color.x*color-Z = 0
951 *
952 * This is 9 simultaneous equations in the 9 variables "color-C" and can be
953 * solved by Cramer's rule. Cramer's rule requires calculating 10 9x9 matrix
954 * determinants, however this is not as bad as it seems because only 28 of
955 * the total of 90 terms in the various matrices are non-zero. Nevertheless
956 * Cramer's rule is notoriously numerically unstable because the determinant
957 * calculation involves the difference of large, but similar, numbers. It is
958 * difficult to be sure that the calculation is stable for real world values
959 * and it is certain that it becomes unstable where the end points are close
960 * together.
961 *
962 * So this code uses the perhaps slighly less optimal but more understandable
963 * and totally obvious approach of calculating color-scale.
964 *
965 * This algorithm depends on the precision in white-scale and that is
966 * (1/white-y), so we can immediately see that as white-y approaches 0 the
967 * accuracy inherent in the cHRM chunk drops off substantially.
968 *
969 * libpng arithmetic: a simple invertion of the above equations
970 * ------------------------------------------------------------
971 *
972 * white_scale = 1/white-y
973 * white-X = white-x * white-scale
974 * white-Y = 1.0
975 * white-Z = (1 - white-x - white-y) * white_scale
976 *
977 * white-C = red-C + green-C + blue-C
978 * = red-c*red-scale + green-c*green-scale + blue-c*blue-scale
979 *
980 * This gives us three equations in (red-scale,green-scale,blue-scale) where
981 * all the coefficients are now known:
982 *
983 * red-x*red-scale + green-x*green-scale + blue-x*blue-scale
984 * = white-x/white-y
985 * red-y*red-scale + green-y*green-scale + blue-y*blue-scale = 1
986 * red-z*red-scale + green-z*green-scale + blue-z*blue-scale
987 * = (1 - white-x - white-y)/white-y
988 *
989 * In the last equation color-z is (1 - color-x - color-y) so we can add all
990 * three equations together to get an alternative third:
991 *
992 * red-scale + green-scale + blue-scale = 1/white-y = white-scale
993 *
994 * So now we have a Cramer's rule solution where the determinants are just
995 * 3x3 - far more tractible. Unfortunately 3x3 determinants still involve
996 * multiplication of three coefficients so we can't guarantee to avoid
997 * overflow in the libpng fixed point representation. Using Cramer's rule in
998 * floating point is probably a good choice here, but it's not an option for
999 * fixed point. Instead proceed to simplify the first two equations by
1000 * eliminating what is likely to be the largest value, blue-scale:
1001 *
1002 * blue-scale = white-scale - red-scale - green-scale
1003 *
1004 * Hence:
1005 *
1006 * (red-x - blue-x)*red-scale + (green-x - blue-x)*green-scale =
1007 * (white-x - blue-x)*white-scale
1008 *
1009 * (red-y - blue-y)*red-scale + (green-y - blue-y)*green-scale =
1010 * 1 - blue-y*white-scale
1011 *
1012 * And now we can trivially solve for (red-scale,green-scale):
1013 *
1014 * green-scale =
1015 * (white-x - blue-x)*white-scale - (red-x - blue-x)*red-scale
1016 * -----------------------------------------------------------
1017 * green-x - blue-x
1018 *
1019 * red-scale =
1020 * 1 - blue-y*white-scale - (green-y - blue-y) * green-scale
1021 * ---------------------------------------------------------
1022 * red-y - blue-y
1023 *
1024 * Hence:
1025 *
1026 * red-scale =
1027 * ( (green-x - blue-x) * (white-y - blue-y) -
1028 * (green-y - blue-y) * (white-x - blue-x) ) / white-y
1029 * -------------------------------------------------------------------------
1030 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1031 *
1032 * green-scale =
1033 * ( (red-y - blue-y) * (white-x - blue-x) -
1034 * (red-x - blue-x) * (white-y - blue-y) ) / white-y
1035 * -------------------------------------------------------------------------
1036 * (green-x - blue-x)*(red-y - blue-y)-(green-y - blue-y)*(red-x - blue-x)
1037 *
1038 * Accuracy:
1039 * The input values have 5 decimal digits of accuracy. The values are all in
1040 * the range 0 < value < 1, so simple products are in the same range but may
1041 * need up to 10 decimal digits to preserve the original precision and avoid
1042 * underflow. Because we are using a 32-bit signed representation we cannot
1043 * match this; the best is a little over 9 decimal digits, less than 10.
1044 *
1045 * The approach used here is to preserve the maximum precision within the
1046 * signed representation. Because the red-scale calculation above uses the
1047 * difference between two products of values that must be in the range -1..+1
1048 * it is sufficient to divide the product by 7; ceil(100,000/32767*2). The
1049 * factor is irrelevant in the calculation because it is applied to both
1050 * numerator and denominator.
1051 *
1052 * Note that the values of the differences of the products of the
1053 * chromaticities in the above equations tend to be small, for example for
1054 * the sRGB chromaticities they are:
1055 *
1056 * red numerator: -0.04751
1057 * green numerator: -0.08788
1058 * denominator: -0.2241 (without white-y multiplication)
1059 *
1060 * The resultant Y coefficients from the chromaticities of some widely used
1061 * color space definitions are (to 15 decimal places):
1062 *
1063 * sRGB
1064 * 0.212639005871510 0.715168678767756 0.072192315360734
1065 * Kodak ProPhoto
1066 * 0.288071128229293 0.711843217810102 0.000085653960605
1067 * Adobe RGB
1068 * 0.297344975250536 0.627363566255466 0.075291458493998
1069 * Adobe Wide Gamut RGB
1070 * 0.258728243040113 0.724682314948566 0.016589442011321
1071 */
1072 /* By the argument, above overflow should be impossible here. The return
1073 * value of 2 indicates an internal error to the caller.
1074 */
1075 if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.redy - xy.bluey, 7)) return 2;
1076 if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.redx - xy.bluex, 7)) return 2;
1077 denominator = left - right;
1078
1079 /* Now find the red numerator. */
1080 if (!png_muldiv(&left, xy.greenx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
1081 if (!png_muldiv(&right, xy.greeny-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;
1082
1083 /* Overflow is possible here and it indicates an extreme set of PNG cHRM
1084 * chunk values. This calculation actually returns the reciprocal of the
1085 * scale value because this allows us to delay the multiplication of white-y
1086 * into the denominator, which tends to produce a small number.
1087 */
1088 if (!png_muldiv(&red_inverse, xy.whitey, denominator, left-right) ||
1089 red_inverse <= xy.whitey /* r+g+b scales = white scale */)
1090 return 1;
1091
1092 /* Similarly for green_inverse: */
1093 if (!png_muldiv(&left, xy.redy-xy.bluey, xy.whitex-xy.bluex, 7)) return 2;
1094 if (!png_muldiv(&right, xy.redx-xy.bluex, xy.whitey-xy.bluey, 7)) return 2;
1095 if (!png_muldiv(&green_inverse, xy.whitey, denominator, left-right) ||
1096 green_inverse <= xy.whitey)
1097 return 1;
1098
1099 /* And the blue scale, the checks above guarantee this can't overflow but it
1100 * can still produce 0 for extreme cHRM values.
1101 */
1102 blue_scale = png_reciprocal(xy.whitey) - png_reciprocal(red_inverse) -
1103 png_reciprocal(green_inverse);
1104 if (blue_scale <= 0) return 1;
1105
1106
1107 /* And fill in the png_XYZ: */
1108 if (!png_muldiv(&XYZ->redX, xy.redx, PNG_FP_1, red_inverse)) return 1;
1109 if (!png_muldiv(&XYZ->redY, xy.redy, PNG_FP_1, red_inverse)) return 1;
1110 if (!png_muldiv(&XYZ->redZ, PNG_FP_1 - xy.redx - xy.redy, PNG_FP_1,
1111 red_inverse))
1112 return 1;
1113
1114 if (!png_muldiv(&XYZ->greenX, xy.greenx, PNG_FP_1, green_inverse)) return 1;
1115 if (!png_muldiv(&XYZ->greenY, xy.greeny, PNG_FP_1, green_inverse)) return 1;
1116 if (!png_muldiv(&XYZ->greenZ, PNG_FP_1 - xy.greenx - xy.greeny, PNG_FP_1,
1117 green_inverse))
1118 return 1;
1119
1120 if (!png_muldiv(&XYZ->blueX, xy.bluex, blue_scale, PNG_FP_1)) return 1;
1121 if (!png_muldiv(&XYZ->blueY, xy.bluey, blue_scale, PNG_FP_1)) return 1;
1122 if (!png_muldiv(&XYZ->blueZ, PNG_FP_1 - xy.bluex - xy.bluey, blue_scale,
1123 PNG_FP_1))
1124 return 1;
1125
1126 return 0; /*success*/
1127}
1128
1129int png_XYZ_from_xy_checked(png_structp png_ptr, png_XYZ *XYZ, png_xy xy)
1130{
1131 switch (png_XYZ_from_xy(XYZ, xy))
1132 {
1133 case 0: /* success */
1134 return 1;
1135
1136 case 1:
1137 /* The chunk may be technically valid, but we got png_fixed_point
1138 * overflow while trying to get XYZ values out of it. This is
1139 * entirely benign - the cHRM chunk is pretty extreme.
1140 */
1141 png_warning(png_ptr,
1142 "extreme cHRM chunk cannot be converted to tristimulus values");
1143 break;
1144
1145 default:
1146 /* libpng is broken; this should be a warning but if it happens we
1147 * want error reports so for the moment it is an error.
1148 */
1149 png_error(png_ptr, "internal error in png_XYZ_from_xy");
1150 break;
1151 }
1152
1153 /* ERROR RETURN */
1154 return 0;
1155}
1156#endif
b61cc19c
PC
1157
1158void /* PRIVATE */
1159png_check_IHDR(png_structp png_ptr,
1160 png_uint_32 width, png_uint_32 height, int bit_depth,
1161 int color_type, int interlace_type, int compression_type,
1162 int filter_type)
1163{
1164 int error = 0;
1165
1166 /* Check for width and height valid values */
1167 if (width == 0)
1168 {
1169 png_warning(png_ptr, "Image width is zero in IHDR");
1170 error = 1;
1171 }
1172
1173 if (height == 0)
1174 {
1175 png_warning(png_ptr, "Image height is zero in IHDR");
1176 error = 1;
1177 }
1178
9c0d9ce3
DS
1179# ifdef PNG_SET_USER_LIMITS_SUPPORTED
1180 if (width > png_ptr->user_width_max)
1181
1182# else
b61cc19c 1183 if (width > PNG_USER_WIDTH_MAX)
9c0d9ce3 1184# endif
b61cc19c
PC
1185 {
1186 png_warning(png_ptr, "Image width exceeds user limit in IHDR");
1187 error = 1;
1188 }
1189
9c0d9ce3
DS
1190# ifdef PNG_SET_USER_LIMITS_SUPPORTED
1191 if (height > png_ptr->user_height_max)
1192# else
b61cc19c 1193 if (height > PNG_USER_HEIGHT_MAX)
9c0d9ce3 1194# endif
b61cc19c
PC
1195 {
1196 png_warning(png_ptr, "Image height exceeds user limit in IHDR");
1197 error = 1;
1198 }
1199
1200 if (width > PNG_UINT_31_MAX)
1201 {
1202 png_warning(png_ptr, "Invalid image width in IHDR");
1203 error = 1;
1204 }
1205
9c0d9ce3 1206 if (height > PNG_UINT_31_MAX)
b61cc19c
PC
1207 {
1208 png_warning(png_ptr, "Invalid image height in IHDR");
1209 error = 1;
1210 }
1211
9c0d9ce3 1212 if (width > (PNG_UINT_32_MAX
b61cc19c 1213 >> 3) /* 8-byte RGBA pixels */
9c0d9ce3 1214 - 48 /* bigrowbuf hack */
b61cc19c
PC
1215 - 1 /* filter byte */
1216 - 7*8 /* rounding of width to multiple of 8 pixels */
1217 - 8) /* extra max_pixel_depth pad */
1218 png_warning(png_ptr, "Width is too large for libpng to process pixels");
1219
1220 /* Check other values */
1221 if (bit_depth != 1 && bit_depth != 2 && bit_depth != 4 &&
1222 bit_depth != 8 && bit_depth != 16)
1223 {
1224 png_warning(png_ptr, "Invalid bit depth in IHDR");
1225 error = 1;
1226 }
1227
1228 if (color_type < 0 || color_type == 1 ||
1229 color_type == 5 || color_type > 6)
1230 {
1231 png_warning(png_ptr, "Invalid color type in IHDR");
1232 error = 1;
1233 }
1234
1235 if (((color_type == PNG_COLOR_TYPE_PALETTE) && bit_depth > 8) ||
1236 ((color_type == PNG_COLOR_TYPE_RGB ||
1237 color_type == PNG_COLOR_TYPE_GRAY_ALPHA ||
1238 color_type == PNG_COLOR_TYPE_RGB_ALPHA) && bit_depth < 8))
1239 {
1240 png_warning(png_ptr, "Invalid color type/bit depth combination in IHDR");
1241 error = 1;
1242 }
1243
1244 if (interlace_type >= PNG_INTERLACE_LAST)
1245 {
1246 png_warning(png_ptr, "Unknown interlace method in IHDR");
1247 error = 1;
1248 }
1249
1250 if (compression_type != PNG_COMPRESSION_TYPE_BASE)
1251 {
1252 png_warning(png_ptr, "Unknown compression method in IHDR");
1253 error = 1;
1254 }
1255
9c0d9ce3 1256# ifdef PNG_MNG_FEATURES_SUPPORTED
b61cc19c
PC
1257 /* Accept filter_method 64 (intrapixel differencing) only if
1258 * 1. Libpng was compiled with PNG_MNG_FEATURES_SUPPORTED and
1259 * 2. Libpng did not read a PNG signature (this filter_method is only
1260 * used in PNG datastreams that are embedded in MNG datastreams) and
1261 * 3. The application called png_permit_mng_features with a mask that
1262 * included PNG_FLAG_MNG_FILTER_64 and
1263 * 4. The filter_method is 64 and
1264 * 5. The color_type is RGB or RGBA
1265 */
1266 if ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) &&
1267 png_ptr->mng_features_permitted)
1268 png_warning(png_ptr, "MNG features are not allowed in a PNG datastream");
1269
1270 if (filter_type != PNG_FILTER_TYPE_BASE)
1271 {
1272 if (!((png_ptr->mng_features_permitted & PNG_FLAG_MNG_FILTER_64) &&
9c0d9ce3
DS
1273 (filter_type == PNG_INTRAPIXEL_DIFFERENCING) &&
1274 ((png_ptr->mode & PNG_HAVE_PNG_SIGNATURE) == 0) &&
1275 (color_type == PNG_COLOR_TYPE_RGB ||
1276 color_type == PNG_COLOR_TYPE_RGB_ALPHA)))
b61cc19c
PC
1277 {
1278 png_warning(png_ptr, "Unknown filter method in IHDR");
1279 error = 1;
1280 }
1281
1282 if (png_ptr->mode & PNG_HAVE_PNG_SIGNATURE)
1283 {
1284 png_warning(png_ptr, "Invalid filter method in IHDR");
1285 error = 1;
1286 }
1287 }
1288
9c0d9ce3 1289# else
b61cc19c
PC
1290 if (filter_type != PNG_FILTER_TYPE_BASE)
1291 {
1292 png_warning(png_ptr, "Unknown filter method in IHDR");
1293 error = 1;
1294 }
9c0d9ce3 1295# endif
b61cc19c
PC
1296
1297 if (error == 1)
1298 png_error(png_ptr, "Invalid IHDR data");
1299}
9c0d9ce3
DS
1300
1301#if defined(PNG_sCAL_SUPPORTED) || defined(PNG_pCAL_SUPPORTED)
1302/* ASCII to fp functions */
1303/* Check an ASCII formated floating point value, see the more detailed
1304 * comments in pngpriv.h
1305 */
1306/* The following is used internally to preserve the sticky flags */
1307#define png_fp_add(state, flags) ((state) |= (flags))
1308#define png_fp_set(state, value) ((state) = (value) | ((state) & PNG_FP_STICKY))
1309
1310int /* PRIVATE */
1311png_check_fp_number(png_const_charp string, png_size_t size, int *statep,
1312 png_size_tp whereami)
1313{
1314 int state = *statep;
1315 png_size_t i = *whereami;
1316
1317 while (i < size)
1318 {
1319 int type;
1320 /* First find the type of the next character */
1321 switch (string[i])
1322 {
1323 case 43: type = PNG_FP_SAW_SIGN; break;
1324 case 45: type = PNG_FP_SAW_SIGN + PNG_FP_NEGATIVE; break;
1325 case 46: type = PNG_FP_SAW_DOT; break;
1326 case 48: type = PNG_FP_SAW_DIGIT; break;
1327 case 49: case 50: case 51: case 52:
1328 case 53: case 54: case 55: case 56:
1329 case 57: type = PNG_FP_SAW_DIGIT + PNG_FP_NONZERO; break;
1330 case 69:
1331 case 101: type = PNG_FP_SAW_E; break;
1332 default: goto PNG_FP_End;
1333 }
1334
1335 /* Now deal with this type according to the current
1336 * state, the type is arranged to not overlap the
1337 * bits of the PNG_FP_STATE.
1338 */
1339 switch ((state & PNG_FP_STATE) + (type & PNG_FP_SAW_ANY))
1340 {
1341 case PNG_FP_INTEGER + PNG_FP_SAW_SIGN:
1342 if (state & PNG_FP_SAW_ANY)
1343 goto PNG_FP_End; /* not a part of the number */
1344
1345 png_fp_add(state, type);
1346 break;
1347
1348 case PNG_FP_INTEGER + PNG_FP_SAW_DOT:
1349 /* Ok as trailer, ok as lead of fraction. */
1350 if (state & PNG_FP_SAW_DOT) /* two dots */
1351 goto PNG_FP_End;
1352
1353 else if (state & PNG_FP_SAW_DIGIT) /* trailing dot? */
1354 png_fp_add(state, type);
1355
1356 else
1357 png_fp_set(state, PNG_FP_FRACTION | type);
1358
1359 break;
1360
1361 case PNG_FP_INTEGER + PNG_FP_SAW_DIGIT:
1362 if (state & PNG_FP_SAW_DOT) /* delayed fraction */
1363 png_fp_set(state, PNG_FP_FRACTION | PNG_FP_SAW_DOT);
1364
1365 png_fp_add(state, type | PNG_FP_WAS_VALID);
1366
1367 break;
1368
1369 case PNG_FP_INTEGER + PNG_FP_SAW_E:
1370 if ((state & PNG_FP_SAW_DIGIT) == 0)
1371 goto PNG_FP_End;
1372
1373 png_fp_set(state, PNG_FP_EXPONENT);
1374
1375 break;
1376
1377 /* case PNG_FP_FRACTION + PNG_FP_SAW_SIGN:
1378 goto PNG_FP_End; ** no sign in fraction */
1379
1380 /* case PNG_FP_FRACTION + PNG_FP_SAW_DOT:
1381 goto PNG_FP_End; ** Because SAW_DOT is always set */
1382
1383 case PNG_FP_FRACTION + PNG_FP_SAW_DIGIT:
1384 png_fp_add(state, type | PNG_FP_WAS_VALID);
1385 break;
1386
1387 case PNG_FP_FRACTION + PNG_FP_SAW_E:
1388 /* This is correct because the trailing '.' on an
1389 * integer is handled above - so we can only get here
1390 * with the sequence ".E" (with no preceding digits).
1391 */
1392 if ((state & PNG_FP_SAW_DIGIT) == 0)
1393 goto PNG_FP_End;
1394
1395 png_fp_set(state, PNG_FP_EXPONENT);
1396
1397 break;
1398
1399 case PNG_FP_EXPONENT + PNG_FP_SAW_SIGN:
1400 if (state & PNG_FP_SAW_ANY)
1401 goto PNG_FP_End; /* not a part of the number */
1402
1403 png_fp_add(state, PNG_FP_SAW_SIGN);
1404
1405 break;
1406
1407 /* case PNG_FP_EXPONENT + PNG_FP_SAW_DOT:
1408 goto PNG_FP_End; */
1409
1410 case PNG_FP_EXPONENT + PNG_FP_SAW_DIGIT:
1411 png_fp_add(state, PNG_FP_SAW_DIGIT | PNG_FP_WAS_VALID);
1412
1413 break;
1414
1415 /* case PNG_FP_EXPONEXT + PNG_FP_SAW_E:
1416 goto PNG_FP_End; */
1417
1418 default: goto PNG_FP_End; /* I.e. break 2 */
1419 }
1420
1421 /* The character seems ok, continue. */
1422 ++i;
1423 }
1424
1425PNG_FP_End:
1426 /* Here at the end, update the state and return the correct
1427 * return code.
1428 */
1429 *statep = state;
1430 *whereami = i;
1431
1432 return (state & PNG_FP_SAW_DIGIT) != 0;
1433}
1434
1435
1436/* The same but for a complete string. */
1437int
1438png_check_fp_string(png_const_charp string, png_size_t size)
1439{
1440 int state=0;
1441 png_size_t char_index=0;
1442
1443 if (png_check_fp_number(string, size, &state, &char_index) &&
1444 (char_index == size || string[char_index] == 0))
1445 return state /* must be non-zero - see above */;
1446
1447 return 0; /* i.e. fail */
1448}
1449#endif /* pCAL or sCAL */
1450
1451#ifdef PNG_READ_sCAL_SUPPORTED
1452# ifdef PNG_FLOATING_POINT_SUPPORTED
1453/* Utility used below - a simple accurate power of ten from an integral
1454 * exponent.
1455 */
1456static double
1457png_pow10(int power)
1458{
1459 int recip = 0;
1460 double d = 1;
1461
1462 /* Handle negative exponent with a reciprocal at the end because
1463 * 10 is exact whereas .1 is inexact in base 2
1464 */
1465 if (power < 0)
1466 {
1467 if (power < DBL_MIN_10_EXP) return 0;
1468 recip = 1, power = -power;
1469 }
1470
1471 if (power > 0)
1472 {
1473 /* Decompose power bitwise. */
1474 double mult = 10;
1475 do
1476 {
1477 if (power & 1) d *= mult;
1478 mult *= mult;
1479 power >>= 1;
1480 }
1481 while (power > 0);
1482
1483 if (recip) d = 1/d;
1484 }
1485 /* else power is 0 and d is 1 */
1486
1487 return d;
1488}
1489
1490/* Function to format a floating point value in ASCII with a given
1491 * precision.
1492 */
1493void /* PRIVATE */
1494png_ascii_from_fp(png_structp png_ptr, png_charp ascii, png_size_t size,
1495 double fp, unsigned int precision)
1496{
1497 /* We use standard functions from math.h, but not printf because
1498 * that would require stdio. The caller must supply a buffer of
1499 * sufficient size or we will png_error. The tests on size and
1500 * the space in ascii[] consumed are indicated below.
1501 */
1502 if (precision < 1)
1503 precision = DBL_DIG;
1504
1505 /* Enforce the limit of the implementation precision too. */
1506 if (precision > DBL_DIG+1)
1507 precision = DBL_DIG+1;
1508
1509 /* Basic sanity checks */
1510 if (size >= precision+5) /* See the requirements below. */
1511 {
1512 if (fp < 0)
1513 {
1514 fp = -fp;
1515 *ascii++ = 45; /* '-' PLUS 1 TOTAL 1 */
1516 --size;
1517 }
1518
1519 if (fp >= DBL_MIN && fp <= DBL_MAX)
1520 {
1521 int exp_b10; /* A base 10 exponent */
1522 double base; /* 10^exp_b10 */
1523
1524 /* First extract a base 10 exponent of the number,
1525 * the calculation below rounds down when converting
1526 * from base 2 to base 10 (multiply by log10(2) -
1527 * 0.3010, but 77/256 is 0.3008, so exp_b10 needs to
1528 * be increased. Note that the arithmetic shift
1529 * performs a floor() unlike C arithmetic - using a
1530 * C multiply would break the following for negative
1531 * exponents.
1532 */
1533 (void)frexp(fp, &exp_b10); /* exponent to base 2 */
1534
1535 exp_b10 = (exp_b10 * 77) >> 8; /* <= exponent to base 10 */
1536
1537 /* Avoid underflow here. */
1538 base = png_pow10(exp_b10); /* May underflow */
1539
1540 while (base < DBL_MIN || base < fp)
1541 {
1542 /* And this may overflow. */
1543 double test = png_pow10(exp_b10+1);
1544
1545 if (test <= DBL_MAX)
1546 ++exp_b10, base = test;
1547
1548 else
1549 break;
1550 }
1551
1552 /* Normalize fp and correct exp_b10, after this fp is in the
1553 * range [.1,1) and exp_b10 is both the exponent and the digit
1554 * *before* which the decimal point should be inserted
1555 * (starting with 0 for the first digit). Note that this
1556 * works even if 10^exp_b10 is out of range because of the
1557 * test on DBL_MAX above.
1558 */
1559 fp /= base;
1560 while (fp >= 1) fp /= 10, ++exp_b10;
1561
1562 /* Because of the code above fp may, at this point, be
1563 * less than .1, this is ok because the code below can
1564 * handle the leading zeros this generates, so no attempt
1565 * is made to correct that here.
1566 */
1567
1568 {
1569 int czero, clead, cdigits;
1570 char exponent[10];
1571
1572 /* Allow up to two leading zeros - this will not lengthen
1573 * the number compared to using E-n.
1574 */
1575 if (exp_b10 < 0 && exp_b10 > -3) /* PLUS 3 TOTAL 4 */
1576 {
1577 czero = -exp_b10; /* PLUS 2 digits: TOTAL 3 */
1578 exp_b10 = 0; /* Dot added below before first output. */
1579 }
1580 else
1581 czero = 0; /* No zeros to add */
1582
1583 /* Generate the digit list, stripping trailing zeros and
1584 * inserting a '.' before a digit if the exponent is 0.
1585 */
1586 clead = czero; /* Count of leading zeros */
1587 cdigits = 0; /* Count of digits in list. */
1588
1589 do
1590 {
1591 double d;
1592
1593 fp *= 10;
1594 /* Use modf here, not floor and subtract, so that
1595 * the separation is done in one step. At the end
1596 * of the loop don't break the number into parts so
1597 * that the final digit is rounded.
1598 */
1599 if (cdigits+czero-clead+1 < (int)precision)
1600 fp = modf(fp, &d);
1601
1602 else
1603 {
1604 d = floor(fp + .5);
1605
1606 if (d > 9)
1607 {
1608 /* Rounding up to 10, handle that here. */
1609 if (czero > 0)
1610 {
1611 --czero, d = 1;
1612 if (cdigits == 0) --clead;
1613 }
1614 else
1615 {
1616 while (cdigits > 0 && d > 9)
1617 {
1618 int ch = *--ascii;
1619
1620 if (exp_b10 != (-1))
1621 ++exp_b10;
1622
1623 else if (ch == 46)
1624 {
1625 ch = *--ascii, ++size;
1626 /* Advance exp_b10 to '1', so that the
1627 * decimal point happens after the
1628 * previous digit.
1629 */
1630 exp_b10 = 1;
1631 }
1632
1633 --cdigits;
1634 d = ch - 47; /* I.e. 1+(ch-48) */
1635 }
1636
1637 /* Did we reach the beginning? If so adjust the
1638 * exponent but take into account the leading
1639 * decimal point.
1640 */
1641 if (d > 9) /* cdigits == 0 */
1642 {
1643 if (exp_b10 == (-1))
1644 {
1645 /* Leading decimal point (plus zeros?), if
1646 * we lose the decimal point here it must
1647 * be reentered below.
1648 */
1649 int ch = *--ascii;
1650
1651 if (ch == 46)
1652 ++size, exp_b10 = 1;
1653
1654 /* Else lost a leading zero, so 'exp_b10' is
1655 * still ok at (-1)
1656 */
1657 }
1658 else
1659 ++exp_b10;
1660
1661 /* In all cases we output a '1' */
1662 d = 1;
1663 }
1664 }
1665 }
1666 fp = 0; /* Guarantees termination below. */
1667 }
1668
1669 if (d == 0)
1670 {
1671 ++czero;
1672 if (cdigits == 0) ++clead;
1673 }
1674 else
1675 {
1676 /* Included embedded zeros in the digit count. */
1677 cdigits += czero - clead;
1678 clead = 0;
1679
1680 while (czero > 0)
1681 {
1682 /* exp_b10 == (-1) means we just output the decimal
1683 * place - after the DP don't adjust 'exp_b10' any
1684 * more!
1685 */
1686 if (exp_b10 != (-1))
1687 {
1688 if (exp_b10 == 0) *ascii++ = 46, --size;
1689 /* PLUS 1: TOTAL 4 */
1690 --exp_b10;
1691 }
1692 *ascii++ = 48, --czero;
1693 }
1694
1695 if (exp_b10 != (-1))
1696 {
1697 if (exp_b10 == 0) *ascii++ = 46, --size; /* counted
1698 above */
1699 --exp_b10;
1700 }
1701 *ascii++ = (char)(48 + (int)d), ++cdigits;
1702 }
1703 }
1704 while (cdigits+czero-clead < (int)precision && fp > DBL_MIN);
1705
1706 /* The total output count (max) is now 4+precision */
1707
1708 /* Check for an exponent, if we don't need one we are
1709 * done and just need to terminate the string. At
1710 * this point exp_b10==(-1) is effectively if flag - it got
1711 * to '-1' because of the decrement after outputing
1712 * the decimal point above (the exponent required is
1713 * *not* -1!)
1714 */
1715 if (exp_b10 >= (-1) && exp_b10 <= 2)
1716 {
1717 /* The following only happens if we didn't output the
1718 * leading zeros above for negative exponent, so this
1719 * doest add to the digit requirement. Note that the
1720 * two zeros here can only be output if the two leading
1721 * zeros were *not* output, so this doesn't increase
1722 * the output count.
1723 */
1724 while (--exp_b10 >= 0) *ascii++ = 48;
1725
1726 *ascii = 0;
1727
1728 /* Total buffer requirement (including the '\0') is
1729 * 5+precision - see check at the start.
1730 */
1731 return;
1732 }
1733
1734 /* Here if an exponent is required, adjust size for
1735 * the digits we output but did not count. The total
1736 * digit output here so far is at most 1+precision - no
1737 * decimal point and no leading or trailing zeros have
1738 * been output.
1739 */
1740 size -= cdigits;
1741
1742 *ascii++ = 69, --size; /* 'E': PLUS 1 TOTAL 2+precision */
1743
1744 /* The following use of an unsigned temporary avoids ambiguities in
1745 * the signed arithmetic on exp_b10 and permits GCC at least to do
1746 * better optimization.
1747 */
1748 {
1749 unsigned int uexp_b10;
1750
1751 if (exp_b10 < 0)
1752 {
1753 *ascii++ = 45, --size; /* '-': PLUS 1 TOTAL 3+precision */
1754 uexp_b10 = -exp_b10;
1755 }
1756
1757 else
1758 uexp_b10 = exp_b10;
1759
1760 cdigits = 0;
1761
1762 while (uexp_b10 > 0)
1763 {
1764 exponent[cdigits++] = (char)(48 + uexp_b10 % 10);
1765 uexp_b10 /= 10;
1766 }
1767 }
1768
1769 /* Need another size check here for the exponent digits, so
1770 * this need not be considered above.
1771 */
1772 if ((int)size > cdigits)
1773 {
1774 while (cdigits > 0) *ascii++ = exponent[--cdigits];
1775
1776 *ascii = 0;
1777
1778 return;
1779 }
1780 }
1781 }
1782 else if (!(fp >= DBL_MIN))
1783 {
1784 *ascii++ = 48; /* '0' */
1785 *ascii = 0;
1786 return;
1787 }
1788 else
1789 {
1790 *ascii++ = 105; /* 'i' */
1791 *ascii++ = 110; /* 'n' */
1792 *ascii++ = 102; /* 'f' */
1793 *ascii = 0;
1794 return;
1795 }
1796 }
1797
1798 /* Here on buffer too small. */
1799 png_error(png_ptr, "ASCII conversion buffer too small");
1800}
1801
1802# endif /* FLOATING_POINT */
1803
1804# ifdef PNG_FIXED_POINT_SUPPORTED
1805/* Function to format a fixed point value in ASCII.
1806 */
1807void /* PRIVATE */
1808png_ascii_from_fixed(png_structp png_ptr, png_charp ascii, png_size_t size,
1809 png_fixed_point fp)
1810{
1811 /* Require space for 10 decimal digits, a decimal point, a minus sign and a
1812 * trailing \0, 13 characters:
1813 */
1814 if (size > 12)
1815 {
1816 png_uint_32 num;
1817
1818 /* Avoid overflow here on the minimum integer. */
1819 if (fp < 0)
1820 *ascii++ = 45, --size, num = -fp;
1821 else
1822 num = fp;
1823
1824 if (num <= 0x80000000) /* else overflowed */
1825 {
1826 unsigned int ndigits = 0, first = 16 /* flag value */;
1827 char digits[10];
1828
1829 while (num)
1830 {
1831 /* Split the low digit off num: */
1832 unsigned int tmp = num/10;
1833 num -= tmp*10;
1834 digits[ndigits++] = (char)(48 + num);
1835 /* Record the first non-zero digit, note that this is a number
1836 * starting at 1, it's not actually the array index.
1837 */
1838 if (first == 16 && num > 0)
1839 first = ndigits;
1840 num = tmp;
1841 }
1842
1843 if (ndigits > 0)
1844 {
1845 while (ndigits > 5) *ascii++ = digits[--ndigits];
1846 /* The remaining digits are fractional digits, ndigits is '5' or
1847 * smaller at this point. It is certainly not zero. Check for a
1848 * non-zero fractional digit:
1849 */
1850 if (first <= 5)
1851 {
1852 unsigned int i;
1853 *ascii++ = 46; /* decimal point */
1854 /* ndigits may be <5 for small numbers, output leading zeros
1855 * then ndigits digits to first:
1856 */
1857 i = 5;
1858 while (ndigits < i) *ascii++ = 48, --i;
1859 while (ndigits >= first) *ascii++ = digits[--ndigits];
1860 /* Don't output the trailing zeros! */
1861 }
1862 }
1863 else
1864 *ascii++ = 48;
1865
1866 /* And null terminate the string: */
1867 *ascii = 0;
1868 return;
1869 }
1870 }
1871
1872 /* Here on buffer too small. */
1873 png_error(png_ptr, "ASCII conversion buffer too small");
1874}
1875# endif /* FIXED_POINT */
1876#endif /* READ_SCAL */
1877
1878#if defined(PNG_FLOATING_POINT_SUPPORTED) && \
1879 !defined(PNG_FIXED_POINT_MACRO_SUPPORTED)
1880png_fixed_point
1881png_fixed(png_structp png_ptr, double fp, png_const_charp text)
1882{
1883 double r = floor(100000 * fp + .5);
1884
1885 if (r > 2147483647. || r < -2147483648.)
1886 png_fixed_error(png_ptr, text);
1887
1888 return (png_fixed_point)r;
1889}
1890#endif
1891
1892#if defined(PNG_READ_GAMMA_SUPPORTED) || \
1893 defined(PNG_INCH_CONVERSIONS_SUPPORTED) || defined(PNG__READ_pHYs_SUPPORTED)
1894/* muldiv functions */
1895/* This API takes signed arguments and rounds the result to the nearest
1896 * integer (or, for a fixed point number - the standard argument - to
1897 * the nearest .00001). Overflow and divide by zero are signalled in
1898 * the result, a boolean - true on success, false on overflow.
1899 */
1900int
1901png_muldiv(png_fixed_point_p res, png_fixed_point a, png_int_32 times,
1902 png_int_32 divisor)
1903{
1904 /* Return a * times / divisor, rounded. */
1905 if (divisor != 0)
1906 {
1907 if (a == 0 || times == 0)
1908 {
1909 *res = 0;
1910 return 1;
1911 }
1912 else
1913 {
1914#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
1915 double r = a;
1916 r *= times;
1917 r /= divisor;
1918 r = floor(r+.5);
1919
1920 /* A png_fixed_point is a 32-bit integer. */
1921 if (r <= 2147483647. && r >= -2147483648.)
1922 {
1923 *res = (png_fixed_point)r;
1924 return 1;
1925 }
1926#else
1927 int negative = 0;
1928 png_uint_32 A, T, D;
1929 png_uint_32 s16, s32, s00;
1930
1931 if (a < 0)
1932 negative = 1, A = -a;
1933 else
1934 A = a;
1935
1936 if (times < 0)
1937 negative = !negative, T = -times;
1938 else
1939 T = times;
1940
1941 if (divisor < 0)
1942 negative = !negative, D = -divisor;
1943 else
1944 D = divisor;
1945
1946 /* Following can't overflow because the arguments only
1947 * have 31 bits each, however the result may be 32 bits.
1948 */
1949 s16 = (A >> 16) * (T & 0xffff) +
1950 (A & 0xffff) * (T >> 16);
1951 /* Can't overflow because the a*times bit is only 30
1952 * bits at most.
1953 */
1954 s32 = (A >> 16) * (T >> 16) + (s16 >> 16);
1955 s00 = (A & 0xffff) * (T & 0xffff);
1956
1957 s16 = (s16 & 0xffff) << 16;
1958 s00 += s16;
1959
1960 if (s00 < s16)
1961 ++s32; /* carry */
1962
1963 if (s32 < D) /* else overflow */
1964 {
1965 /* s32.s00 is now the 64-bit product, do a standard
1966 * division, we know that s32 < D, so the maximum
1967 * required shift is 31.
1968 */
1969 int bitshift = 32;
1970 png_fixed_point result = 0; /* NOTE: signed */
1971
1972 while (--bitshift >= 0)
1973 {
1974 png_uint_32 d32, d00;
1975
1976 if (bitshift > 0)
1977 d32 = D >> (32-bitshift), d00 = D << bitshift;
1978
1979 else
1980 d32 = 0, d00 = D;
1981
1982 if (s32 > d32)
1983 {
1984 if (s00 < d00) --s32; /* carry */
1985 s32 -= d32, s00 -= d00, result += 1<<bitshift;
1986 }
1987
1988 else
1989 if (s32 == d32 && s00 >= d00)
1990 s32 = 0, s00 -= d00, result += 1<<bitshift;
1991 }
1992
1993 /* Handle the rounding. */
1994 if (s00 >= (D >> 1))
1995 ++result;
1996
1997 if (negative)
1998 result = -result;
1999
2000 /* Check for overflow. */
2001 if ((negative && result <= 0) || (!negative && result >= 0))
2002 {
2003 *res = result;
2004 return 1;
2005 }
2006 }
2007#endif
2008 }
2009 }
2010
2011 return 0;
2012}
2013#endif /* READ_GAMMA || INCH_CONVERSIONS */
2014
2015#if defined(PNG_READ_GAMMA_SUPPORTED) || defined(PNG_INCH_CONVERSIONS_SUPPORTED)
2016/* The following is for when the caller doesn't much care about the
2017 * result.
2018 */
2019png_fixed_point
2020png_muldiv_warn(png_structp png_ptr, png_fixed_point a, png_int_32 times,
2021 png_int_32 divisor)
2022{
2023 png_fixed_point result;
2024
2025 if (png_muldiv(&result, a, times, divisor))
2026 return result;
2027
2028 png_warning(png_ptr, "fixed point overflow ignored");
2029 return 0;
2030}
2031#endif
2032
2033#ifdef PNG_READ_GAMMA_SUPPORTED /* more fixed point functions for gammma */
2034/* Calculate a reciprocal, return 0 on div-by-zero or overflow. */
2035png_fixed_point
2036png_reciprocal(png_fixed_point a)
2037{
2038#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2039 double r = floor(1E10/a+.5);
2040
2041 if (r <= 2147483647. && r >= -2147483648.)
2042 return (png_fixed_point)r;
2043#else
2044 png_fixed_point res;
2045
2046 if (png_muldiv(&res, 100000, 100000, a))
2047 return res;
2048#endif
2049
2050 return 0; /* error/overflow */
2051}
2052
2053/* A local convenience routine. */
2054static png_fixed_point
2055png_product2(png_fixed_point a, png_fixed_point b)
2056{
2057 /* The required result is 1/a * 1/b; the following preserves accuracy. */
2058#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2059 double r = a * 1E-5;
2060 r *= b;
2061 r = floor(r+.5);
2062
2063 if (r <= 2147483647. && r >= -2147483648.)
2064 return (png_fixed_point)r;
2065#else
2066 png_fixed_point res;
2067
2068 if (png_muldiv(&res, a, b, 100000))
2069 return res;
2070#endif
2071
2072 return 0; /* overflow */
2073}
2074
2075/* The inverse of the above. */
2076png_fixed_point
2077png_reciprocal2(png_fixed_point a, png_fixed_point b)
2078{
2079 /* The required result is 1/a * 1/b; the following preserves accuracy. */
2080#ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2081 double r = 1E15/a;
2082 r /= b;
2083 r = floor(r+.5);
2084
2085 if (r <= 2147483647. && r >= -2147483648.)
2086 return (png_fixed_point)r;
2087#else
2088 /* This may overflow because the range of png_fixed_point isn't symmetric,
2089 * but this API is only used for the product of file and screen gamma so it
2090 * doesn't matter that the smallest number it can produce is 1/21474, not
2091 * 1/100000
2092 */
2093 png_fixed_point res = png_product2(a, b);
2094
2095 if (res != 0)
2096 return png_reciprocal(res);
2097#endif
2098
2099 return 0; /* overflow */
2100}
2101#endif /* READ_GAMMA */
2102
2103#ifdef PNG_CHECK_cHRM_SUPPORTED
2104/* Added at libpng version 1.2.34 (Dec 8, 2008) and 1.4.0 (Jan 2,
2105 * 2010: moved from pngset.c) */
2106/*
2107 * Multiply two 32-bit numbers, V1 and V2, using 32-bit
2108 * arithmetic, to produce a 64-bit result in the HI/LO words.
2109 *
2110 * A B
2111 * x C D
2112 * ------
2113 * AD || BD
2114 * AC || CB || 0
2115 *
2116 * where A and B are the high and low 16-bit words of V1,
2117 * C and D are the 16-bit words of V2, AD is the product of
2118 * A and D, and X || Y is (X << 16) + Y.
2119*/
2120
2121void /* PRIVATE */
2122png_64bit_product (long v1, long v2, unsigned long *hi_product,
2123 unsigned long *lo_product)
2124{
2125 int a, b, c, d;
2126 long lo, hi, x, y;
2127
2128 a = (v1 >> 16) & 0xffff;
2129 b = v1 & 0xffff;
2130 c = (v2 >> 16) & 0xffff;
2131 d = v2 & 0xffff;
2132
2133 lo = b * d; /* BD */
2134 x = a * d + c * b; /* AD + CB */
2135 y = ((lo >> 16) & 0xffff) + x;
2136
2137 lo = (lo & 0xffff) | ((y & 0xffff) << 16);
2138 hi = (y >> 16) & 0xffff;
2139
2140 hi += a * c; /* AC */
2141
2142 *hi_product = (unsigned long)hi;
2143 *lo_product = (unsigned long)lo;
2144}
2145#endif /* CHECK_cHRM */
2146
2147#ifdef PNG_READ_GAMMA_SUPPORTED /* gamma table code */
2148#ifndef PNG_FLOATING_ARITHMETIC_SUPPORTED
2149/* Fixed point gamma.
2150 *
2151 * To calculate gamma this code implements fast log() and exp() calls using only
2152 * fixed point arithmetic. This code has sufficient precision for either 8-bit
2153 * or 16-bit sample values.
2154 *
2155 * The tables used here were calculated using simple 'bc' programs, but C double
2156 * precision floating point arithmetic would work fine. The programs are given
2157 * at the head of each table.
2158 *
2159 * 8-bit log table
2160 * This is a table of -log(value/255)/log(2) for 'value' in the range 128 to
2161 * 255, so it's the base 2 logarithm of a normalized 8-bit floating point
2162 * mantissa. The numbers are 32-bit fractions.
2163 */
2164static png_uint_32
2165png_8bit_l2[128] =
2166{
2167# if PNG_DO_BC
2168 for (i=128;i<256;++i) { .5 - l(i/255)/l(2)*65536*65536; }
2169# endif
2170 4270715492U, 4222494797U, 4174646467U, 4127164793U, 4080044201U, 4033279239U,
2171 3986864580U, 3940795015U, 3895065449U, 3849670902U, 3804606499U, 3759867474U,
2172 3715449162U, 3671346997U, 3627556511U, 3584073329U, 3540893168U, 3498011834U,
2173 3455425220U, 3413129301U, 3371120137U, 3329393864U, 3287946700U, 3246774933U,
2174 3205874930U, 3165243125U, 3124876025U, 3084770202U, 3044922296U, 3005329011U,
2175 2965987113U, 2926893432U, 2888044853U, 2849438323U, 2811070844U, 2772939474U,
2176 2735041326U, 2697373562U, 2659933400U, 2622718104U, 2585724991U, 2548951424U,
2177 2512394810U, 2476052606U, 2439922311U, 2404001468U, 2368287663U, 2332778523U,
2178 2297471715U, 2262364947U, 2227455964U, 2192742551U, 2158222529U, 2123893754U,
2179 2089754119U, 2055801552U, 2022034013U, 1988449497U, 1955046031U, 1921821672U,
2180 1888774511U, 1855902668U, 1823204291U, 1790677560U, 1758320682U, 1726131893U,
2181 1694109454U, 1662251657U, 1630556815U, 1599023271U, 1567649391U, 1536433567U,
2182 1505374214U, 1474469770U, 1443718700U, 1413119487U, 1382670639U, 1352370686U,
2183 1322218179U, 1292211689U, 1262349810U, 1232631153U, 1203054352U, 1173618059U,
2184 1144320946U, 1115161701U, 1086139034U, 1057251672U, 1028498358U, 999877854U,
2185 971388940U, 943030410U, 914801076U, 886699767U, 858725327U, 830876614U,
2186 803152505U, 775551890U, 748073672U, 720716771U, 693480120U, 666362667U,
2187 639363374U, 612481215U, 585715177U, 559064263U, 532527486U, 506103872U,
2188 479792461U, 453592303U, 427502463U, 401522014U, 375650043U, 349885648U,
2189 324227938U, 298676034U, 273229066U, 247886176U, 222646516U, 197509248U,
2190 172473545U, 147538590U, 122703574U, 97967701U, 73330182U, 48790236U,
2191 24347096U, 0U
2192#if 0
2193 /* The following are the values for 16-bit tables - these work fine for the
2194 * 8-bit conversions but produce very slightly larger errors in the 16-bit
2195 * log (about 1.2 as opposed to 0.7 absolute error in the final value). To
2196 * use these all the shifts below must be adjusted appropriately.
2197 */
2198 65166, 64430, 63700, 62976, 62257, 61543, 60835, 60132, 59434, 58741, 58054,
2199 57371, 56693, 56020, 55352, 54689, 54030, 53375, 52726, 52080, 51439, 50803,
2200 50170, 49542, 48918, 48298, 47682, 47070, 46462, 45858, 45257, 44661, 44068,
2201 43479, 42894, 42312, 41733, 41159, 40587, 40020, 39455, 38894, 38336, 37782,
2202 37230, 36682, 36137, 35595, 35057, 34521, 33988, 33459, 32932, 32408, 31887,
2203 31369, 30854, 30341, 29832, 29325, 28820, 28319, 27820, 27324, 26830, 26339,
2204 25850, 25364, 24880, 24399, 23920, 23444, 22970, 22499, 22029, 21562, 21098,
2205 20636, 20175, 19718, 19262, 18808, 18357, 17908, 17461, 17016, 16573, 16132,
2206 15694, 15257, 14822, 14390, 13959, 13530, 13103, 12678, 12255, 11834, 11415,
2207 10997, 10582, 10168, 9756, 9346, 8937, 8531, 8126, 7723, 7321, 6921, 6523,
2208 6127, 5732, 5339, 4947, 4557, 4169, 3782, 3397, 3014, 2632, 2251, 1872, 1495,
2209 1119, 744, 372
2210#endif
2211};
2212
2213PNG_STATIC png_int_32
2214png_log8bit(unsigned int x)
2215{
2216 unsigned int lg2 = 0;
2217 /* Each time 'x' is multiplied by 2, 1 must be subtracted off the final log,
2218 * because the log is actually negate that means adding 1. The final
2219 * returned value thus has the range 0 (for 255 input) to 7.994 (for 1
2220 * input), return 7.99998 for the overflow (log 0) case - so the result is
2221 * always at most 19 bits.
2222 */
2223 if ((x &= 0xff) == 0)
2224 return 0xffffffff;
2225
2226 if ((x & 0xf0) == 0)
2227 lg2 = 4, x <<= 4;
2228
2229 if ((x & 0xc0) == 0)
2230 lg2 += 2, x <<= 2;
2231
2232 if ((x & 0x80) == 0)
2233 lg2 += 1, x <<= 1;
2234
2235 /* result is at most 19 bits, so this cast is safe: */
2236 return (png_int_32)((lg2 << 16) + ((png_8bit_l2[x-128]+32768)>>16));
2237}
2238
2239/* The above gives exact (to 16 binary places) log2 values for 8-bit images,
2240 * for 16-bit images we use the most significant 8 bits of the 16-bit value to
2241 * get an approximation then multiply the approximation by a correction factor
2242 * determined by the remaining up to 8 bits. This requires an additional step
2243 * in the 16-bit case.
2244 *
2245 * We want log2(value/65535), we have log2(v'/255), where:
2246 *
2247 * value = v' * 256 + v''
2248 * = v' * f
2249 *
2250 * So f is value/v', which is equal to (256+v''/v') since v' is in the range 128
2251 * to 255 and v'' is in the range 0 to 255 f will be in the range 256 to less
2252 * than 258. The final factor also needs to correct for the fact that our 8-bit
2253 * value is scaled by 255, whereas the 16-bit values must be scaled by 65535.
2254 *
2255 * This gives a final formula using a calculated value 'x' which is value/v' and
2256 * scaling by 65536 to match the above table:
2257 *
2258 * log2(x/257) * 65536
2259 *
2260 * Since these numbers are so close to '1' we can use simple linear
2261 * interpolation between the two end values 256/257 (result -368.61) and 258/257
2262 * (result 367.179). The values used below are scaled by a further 64 to give
2263 * 16-bit precision in the interpolation:
2264 *
2265 * Start (256): -23591
2266 * Zero (257): 0
2267 * End (258): 23499
2268 */
2269PNG_STATIC png_int_32
2270png_log16bit(png_uint_32 x)
2271{
2272 unsigned int lg2 = 0;
2273
2274 /* As above, but now the input has 16 bits. */
2275 if ((x &= 0xffff) == 0)
2276 return 0xffffffff;
2277
2278 if ((x & 0xff00) == 0)
2279 lg2 = 8, x <<= 8;
2280
2281 if ((x & 0xf000) == 0)
2282 lg2 += 4, x <<= 4;
2283
2284 if ((x & 0xc000) == 0)
2285 lg2 += 2, x <<= 2;
2286
2287 if ((x & 0x8000) == 0)
2288 lg2 += 1, x <<= 1;
2289
2290 /* Calculate the base logarithm from the top 8 bits as a 28-bit fractional
2291 * value.
2292 */
2293 lg2 <<= 28;
2294 lg2 += (png_8bit_l2[(x>>8)-128]+8) >> 4;
2295
2296 /* Now we need to interpolate the factor, this requires a division by the top
2297 * 8 bits. Do this with maximum precision.
2298 */
2299 x = ((x << 16) + (x >> 9)) / (x >> 8);
2300
2301 /* Since we divided by the top 8 bits of 'x' there will be a '1' at 1<<24,
2302 * the value at 1<<16 (ignoring this) will be 0 or 1; this gives us exactly
2303 * 16 bits to interpolate to get the low bits of the result. Round the
2304 * answer. Note that the end point values are scaled by 64 to retain overall
2305 * precision and that 'lg2' is current scaled by an extra 12 bits, so adjust
2306 * the overall scaling by 6-12. Round at every step.
2307 */
2308 x -= 1U << 24;
2309
2310 if (x <= 65536U) /* <= '257' */
2311 lg2 += ((23591U * (65536U-x)) + (1U << (16+6-12-1))) >> (16+6-12);
2312
2313 else
2314 lg2 -= ((23499U * (x-65536U)) + (1U << (16+6-12-1))) >> (16+6-12);
2315
2316 /* Safe, because the result can't have more than 20 bits: */
2317 return (png_int_32)((lg2 + 2048) >> 12);
2318}
2319
2320/* The 'exp()' case must invert the above, taking a 20-bit fixed point
2321 * logarithmic value and returning a 16 or 8-bit number as appropriate. In
2322 * each case only the low 16 bits are relevant - the fraction - since the
2323 * integer bits (the top 4) simply determine a shift.
2324 *
2325 * The worst case is the 16-bit distinction between 65535 and 65534, this
2326 * requires perhaps spurious accuracty in the decoding of the logarithm to
2327 * distinguish log2(65535/65534.5) - 10^-5 or 17 bits. There is little chance
2328 * of getting this accuracy in practice.
2329 *
2330 * To deal with this the following exp() function works out the exponent of the
2331 * frational part of the logarithm by using an accurate 32-bit value from the
2332 * top four fractional bits then multiplying in the remaining bits.
2333 */
2334static png_uint_32
2335png_32bit_exp[16] =
2336{
2337# if PNG_DO_BC
2338 for (i=0;i<16;++i) { .5 + e(-i/16*l(2))*2^32; }
2339# endif
2340 /* NOTE: the first entry is deliberately set to the maximum 32-bit value. */
2341 4294967295U, 4112874773U, 3938502376U, 3771522796U, 3611622603U, 3458501653U,
2342 3311872529U, 3171459999U, 3037000500U, 2908241642U, 2784941738U, 2666869345U,
2343 2553802834U, 2445529972U, 2341847524U, 2242560872U
2344};
2345
2346/* Adjustment table; provided to explain the numbers in the code below. */
2347#if PNG_DO_BC
2348for (i=11;i>=0;--i){ print i, " ", (1 - e(-(2^i)/65536*l(2))) * 2^(32-i), "\n"}
2349 11 44937.64284865548751208448
2350 10 45180.98734845585101160448
2351 9 45303.31936980687359311872
2352 8 45364.65110595323018870784
2353 7 45395.35850361789624614912
2354 6 45410.72259715102037508096
2355 5 45418.40724413220722311168
2356 4 45422.25021786898173001728
2357 3 45424.17186732298419044352
2358 2 45425.13273269940811464704
2359 1 45425.61317555035558641664
2360 0 45425.85339951654943850496
2361#endif
2362
2363PNG_STATIC png_uint_32
2364png_exp(png_fixed_point x)
2365{
2366 if (x > 0 && x <= 0xfffff) /* Else overflow or zero (underflow) */
2367 {
2368 /* Obtain a 4-bit approximation */
2369 png_uint_32 e = png_32bit_exp[(x >> 12) & 0xf];
2370
2371 /* Incorporate the low 12 bits - these decrease the returned value by
2372 * multiplying by a number less than 1 if the bit is set. The multiplier
2373 * is determined by the above table and the shift. Notice that the values
2374 * converge on 45426 and this is used to allow linear interpolation of the
2375 * low bits.
2376 */
2377 if (x & 0x800)
2378 e -= (((e >> 16) * 44938U) + 16U) >> 5;
2379
2380 if (x & 0x400)
2381 e -= (((e >> 16) * 45181U) + 32U) >> 6;
2382
2383 if (x & 0x200)
2384 e -= (((e >> 16) * 45303U) + 64U) >> 7;
2385
2386 if (x & 0x100)
2387 e -= (((e >> 16) * 45365U) + 128U) >> 8;
2388
2389 if (x & 0x080)
2390 e -= (((e >> 16) * 45395U) + 256U) >> 9;
2391
2392 if (x & 0x040)
2393 e -= (((e >> 16) * 45410U) + 512U) >> 10;
2394
2395 /* And handle the low 6 bits in a single block. */
2396 e -= (((e >> 16) * 355U * (x & 0x3fU)) + 256U) >> 9;
2397
2398 /* Handle the upper bits of x. */
2399 e >>= x >> 16;
2400 return e;
2401 }
2402
2403 /* Check for overflow */
2404 if (x <= 0)
2405 return png_32bit_exp[0];
2406
2407 /* Else underflow */
2408 return 0;
2409}
2410
2411PNG_STATIC png_byte
2412png_exp8bit(png_fixed_point lg2)
2413{
2414 /* Get a 32-bit value: */
2415 png_uint_32 x = png_exp(lg2);
2416
2417 /* Convert the 32-bit value to 0..255 by multiplying by 256-1, note that the
2418 * second, rounding, step can't overflow because of the first, subtraction,
2419 * step.
2420 */
2421 x -= x >> 8;
2422 return (png_byte)((x + 0x7fffffU) >> 24);
2423}
2424
2425PNG_STATIC png_uint_16
2426png_exp16bit(png_fixed_point lg2)
2427{
2428 /* Get a 32-bit value: */
2429 png_uint_32 x = png_exp(lg2);
2430
2431 /* Convert the 32-bit value to 0..65535 by multiplying by 65536-1: */
2432 x -= x >> 16;
2433 return (png_uint_16)((x + 32767U) >> 16);
2434}
2435#endif /* FLOATING_ARITHMETIC */
2436
2437png_byte
2438png_gamma_8bit_correct(unsigned int value, png_fixed_point gamma_val)
2439{
2440 if (value > 0 && value < 255)
2441 {
2442# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2443 double r = floor(255*pow(value/255.,gamma_val*.00001)+.5);
2444 return (png_byte)r;
2445# else
2446 png_int_32 lg2 = png_log8bit(value);
2447 png_fixed_point res;
2448
2449 if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
2450 return png_exp8bit(res);
2451
2452 /* Overflow. */
2453 value = 0;
2454# endif
2455 }
2456
2457 return (png_byte)value;
2458}
2459
2460png_uint_16
2461png_gamma_16bit_correct(unsigned int value, png_fixed_point gamma_val)
2462{
2463 if (value > 0 && value < 65535)
2464 {
2465# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2466 double r = floor(65535*pow(value/65535.,gamma_val*.00001)+.5);
2467 return (png_uint_16)r;
2468# else
2469 png_int_32 lg2 = png_log16bit(value);
2470 png_fixed_point res;
2471
2472 if (png_muldiv(&res, gamma_val, lg2, PNG_FP_1))
2473 return png_exp16bit(res);
2474
2475 /* Overflow. */
2476 value = 0;
2477# endif
2478 }
2479
2480 return (png_uint_16)value;
2481}
2482
2483/* This does the right thing based on the bit_depth field of the
2484 * png_struct, interpreting values as 8-bit or 16-bit. While the result
2485 * is nominally a 16-bit value if bit depth is 8 then the result is
2486 * 8-bit (as are the arguments.)
2487 */
2488png_uint_16 /* PRIVATE */
2489png_gamma_correct(png_structp png_ptr, unsigned int value,
2490 png_fixed_point gamma_val)
2491{
2492 if (png_ptr->bit_depth == 8)
2493 return png_gamma_8bit_correct(value, gamma_val);
2494
2495 else
2496 return png_gamma_16bit_correct(value, gamma_val);
2497}
2498
2499/* This is the shared test on whether a gamma value is 'significant' - whether
2500 * it is worth doing gamma correction.
2501 */
2502int /* PRIVATE */
2503png_gamma_significant(png_fixed_point gamma_val)
2504{
2505 return gamma_val < PNG_FP_1 - PNG_GAMMA_THRESHOLD_FIXED ||
2506 gamma_val > PNG_FP_1 + PNG_GAMMA_THRESHOLD_FIXED;
2507}
2508
2509/* Internal function to build a single 16-bit table - the table consists of
2510 * 'num' 256 entry subtables, where 'num' is determined by 'shift' - the amount
2511 * to shift the input values right (or 16-number_of_signifiant_bits).
2512 *
2513 * The caller is responsible for ensuring that the table gets cleaned up on
2514 * png_error (i.e. if one of the mallocs below fails) - i.e. the *table argument
2515 * should be somewhere that will be cleaned.
2516 */
2517static void
2518png_build_16bit_table(png_structp png_ptr, png_uint_16pp *ptable,
2519 PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
2520{
2521 /* Various values derived from 'shift': */
2522 PNG_CONST unsigned int num = 1U << (8U - shift);
2523 PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
2524 PNG_CONST unsigned int max_by_2 = 1U << (15U-shift);
2525 unsigned int i;
2526
2527 png_uint_16pp table = *ptable =
2528 (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
2529
2530 for (i = 0; i < num; i++)
2531 {
2532 png_uint_16p sub_table = table[i] =
2533 (png_uint_16p)png_malloc(png_ptr, 256 * png_sizeof(png_uint_16));
2534
2535 /* The 'threshold' test is repeated here because it can arise for one of
2536 * the 16-bit tables even if the others don't hit it.
2537 */
2538 if (png_gamma_significant(gamma_val))
2539 {
2540 /* The old code would overflow at the end and this would cause the
2541 * 'pow' function to return a result >1, resulting in an
2542 * arithmetic error. This code follows the spec exactly; ig is
2543 * the recovered input sample, it always has 8-16 bits.
2544 *
2545 * We want input * 65535/max, rounded, the arithmetic fits in 32
2546 * bits (unsigned) so long as max <= 32767.
2547 */
2548 unsigned int j;
2549 for (j = 0; j < 256; j++)
2550 {
2551 png_uint_32 ig = (j << (8-shift)) + i;
2552# ifdef PNG_FLOATING_ARITHMETIC_SUPPORTED
2553 /* Inline the 'max' scaling operation: */
2554 double d = floor(65535*pow(ig/(double)max, gamma_val*.00001)+.5);
2555 sub_table[j] = (png_uint_16)d;
2556# else
2557 if (shift)
2558 ig = (ig * 65535U + max_by_2)/max;
2559
2560 sub_table[j] = png_gamma_16bit_correct(ig, gamma_val);
2561# endif
2562 }
2563 }
2564 else
2565 {
2566 /* We must still build a table, but do it the fast way. */
2567 unsigned int j;
2568
2569 for (j = 0; j < 256; j++)
2570 {
2571 png_uint_32 ig = (j << (8-shift)) + i;
2572
2573 if (shift)
2574 ig = (ig * 65535U + max_by_2)/max;
2575
2576 sub_table[j] = (png_uint_16)ig;
2577 }
2578 }
2579 }
2580}
2581
2582/* NOTE: this function expects the *inverse* of the overall gamma transformation
2583 * required.
2584 */
2585static void
2586png_build_16to8_table(png_structp png_ptr, png_uint_16pp *ptable,
2587 PNG_CONST unsigned int shift, PNG_CONST png_fixed_point gamma_val)
2588{
2589 PNG_CONST unsigned int num = 1U << (8U - shift);
2590 PNG_CONST unsigned int max = (1U << (16U - shift))-1U;
2591 unsigned int i;
2592 png_uint_32 last;
2593
2594 png_uint_16pp table = *ptable =
2595 (png_uint_16pp)png_calloc(png_ptr, num * png_sizeof(png_uint_16p));
2596
2597 /* 'num' is the number of tables and also the number of low bits of low
2598 * bits of the input 16-bit value used to select a table. Each table is
2599 * itself index by the high 8 bits of the value.
2600 */
2601 for (i = 0; i < num; i++)
2602 table[i] = (png_uint_16p)png_malloc(png_ptr,
2603 256 * png_sizeof(png_uint_16));
2604
2605 /* 'gamma_val' is set to the reciprocal of the value calculated above, so
2606 * pow(out,g) is an *input* value. 'last' is the last input value set.
2607 *
2608 * In the loop 'i' is used to find output values. Since the output is
2609 * 8-bit there are only 256 possible values. The tables are set up to
2610 * select the closest possible output value for each input by finding
2611 * the input value at the boundary between each pair of output values
2612 * and filling the table up to that boundary with the lower output
2613 * value.
2614 *
2615 * The boundary values are 0.5,1.5..253.5,254.5. Since these are 9-bit
2616 * values the code below uses a 16-bit value in i; the values start at
2617 * 128.5 (for 0.5) and step by 257, for a total of 254 values (the last
2618 * entries are filled with 255). Start i at 128 and fill all 'last'
2619 * table entries <= 'max'
2620 */
2621 last = 0;
2622 for (i = 0; i < 255; ++i) /* 8-bit output value */
2623 {
2624 /* Find the corresponding maximum input value */
2625 png_uint_16 out = (png_uint_16)(i * 257U); /* 16-bit output value */
2626
2627 /* Find the boundary value in 16 bits: */
2628 png_uint_32 bound = png_gamma_16bit_correct(out+128U, gamma_val);
2629
2630 /* Adjust (round) to (16-shift) bits: */
2631 bound = (bound * max + 32768U)/65535U + 1U;
2632
2633 while (last < bound)
2634 {
2635 table[last & (0xffU >> shift)][last >> (8U - shift)] = out;
2636 last++;
2637 }
2638 }
2639
2640 /* And fill in the final entries. */
2641 while (last < (num << 8))
2642 {
2643 table[last & (0xff >> shift)][last >> (8U - shift)] = 65535U;
2644 last++;
2645 }
2646}
2647
2648/* Build a single 8-bit table: same as the 16-bit case but much simpler (and
2649 * typically much faster). Note that libpng currently does no sBIT processing
2650 * (apparently contrary to the spec) so a 256 entry table is always generated.
2651 */
2652static void
2653png_build_8bit_table(png_structp png_ptr, png_bytepp ptable,
2654 PNG_CONST png_fixed_point gamma_val)
2655{
2656 unsigned int i;
2657 png_bytep table = *ptable = (png_bytep)png_malloc(png_ptr, 256);
2658
2659 if (png_gamma_significant(gamma_val)) for (i=0; i<256; i++)
2660 table[i] = png_gamma_8bit_correct(i, gamma_val);
2661
2662 else for (i=0; i<256; ++i)
2663 table[i] = (png_byte)i;
2664}
2665
2666/* Used from png_read_destroy and below to release the memory used by the gamma
2667 * tables.
2668 */
2669void /* PRIVATE */
2670png_destroy_gamma_table(png_structp png_ptr)
2671{
2672 png_free(png_ptr, png_ptr->gamma_table);
2673 png_ptr->gamma_table = NULL;
2674
2675 if (png_ptr->gamma_16_table != NULL)
2676 {
2677 int i;
2678 int istop = (1 << (8 - png_ptr->gamma_shift));
2679 for (i = 0; i < istop; i++)
2680 {
2681 png_free(png_ptr, png_ptr->gamma_16_table[i]);
2682 }
2683 png_free(png_ptr, png_ptr->gamma_16_table);
2684 png_ptr->gamma_16_table = NULL;
2685 }
2686
2687#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2688 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
2689 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
2690 png_free(png_ptr, png_ptr->gamma_from_1);
2691 png_ptr->gamma_from_1 = NULL;
2692 png_free(png_ptr, png_ptr->gamma_to_1);
2693 png_ptr->gamma_to_1 = NULL;
2694
2695 if (png_ptr->gamma_16_from_1 != NULL)
2696 {
2697 int i;
2698 int istop = (1 << (8 - png_ptr->gamma_shift));
2699 for (i = 0; i < istop; i++)
2700 {
2701 png_free(png_ptr, png_ptr->gamma_16_from_1[i]);
2702 }
2703 png_free(png_ptr, png_ptr->gamma_16_from_1);
2704 png_ptr->gamma_16_from_1 = NULL;
2705 }
2706 if (png_ptr->gamma_16_to_1 != NULL)
2707 {
2708 int i;
2709 int istop = (1 << (8 - png_ptr->gamma_shift));
2710 for (i = 0; i < istop; i++)
2711 {
2712 png_free(png_ptr, png_ptr->gamma_16_to_1[i]);
2713 }
2714 png_free(png_ptr, png_ptr->gamma_16_to_1);
2715 png_ptr->gamma_16_to_1 = NULL;
2716 }
2717#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
2718}
2719
2720/* We build the 8- or 16-bit gamma tables here. Note that for 16-bit
2721 * tables, we don't make a full table if we are reducing to 8-bit in
2722 * the future. Note also how the gamma_16 tables are segmented so that
2723 * we don't need to allocate > 64K chunks for a full 16-bit table.
2724 */
2725void /* PRIVATE */
2726png_build_gamma_table(png_structp png_ptr, int bit_depth)
2727{
2728 png_debug(1, "in png_build_gamma_table");
2729
2730 /* Remove any existing table; this copes with multiple calls to
2731 * png_read_update_info. The warning is because building the gamma tables
2732 * multiple times is a performance hit - it's harmless but the ability to call
2733 * png_read_update_info() multiple times is new in 1.5.6 so it seems sensible
2734 * to warn if the app introduces such a hit.
2735 */
2736 if (png_ptr->gamma_table != NULL || png_ptr->gamma_16_table != NULL)
2737 {
2738 png_warning(png_ptr, "gamma table being rebuilt");
2739 png_destroy_gamma_table(png_ptr);
2740 }
2741
2742 if (bit_depth <= 8)
2743 {
2744 png_build_8bit_table(png_ptr, &png_ptr->gamma_table,
2745 png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma,
2746 png_ptr->screen_gamma) : PNG_FP_1);
2747
2748#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2749 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
2750 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
2751 if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
2752 {
2753 png_build_8bit_table(png_ptr, &png_ptr->gamma_to_1,
2754 png_reciprocal(png_ptr->gamma));
2755
2756 png_build_8bit_table(png_ptr, &png_ptr->gamma_from_1,
2757 png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
2758 png_ptr->gamma/* Probably doing rgb_to_gray */);
2759 }
2760#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
2761 }
2762 else
2763 {
2764 png_byte shift, sig_bit;
2765
2766 if (png_ptr->color_type & PNG_COLOR_MASK_COLOR)
2767 {
2768 sig_bit = png_ptr->sig_bit.red;
2769
2770 if (png_ptr->sig_bit.green > sig_bit)
2771 sig_bit = png_ptr->sig_bit.green;
2772
2773 if (png_ptr->sig_bit.blue > sig_bit)
2774 sig_bit = png_ptr->sig_bit.blue;
2775 }
2776 else
2777 sig_bit = png_ptr->sig_bit.gray;
2778
2779 /* 16-bit gamma code uses this equation:
2780 *
2781 * ov = table[(iv & 0xff) >> gamma_shift][iv >> 8]
2782 *
2783 * Where 'iv' is the input color value and 'ov' is the output value -
2784 * pow(iv, gamma).
2785 *
2786 * Thus the gamma table consists of up to 256 256 entry tables. The table
2787 * is selected by the (8-gamma_shift) most significant of the low 8 bits of
2788 * the color value then indexed by the upper 8 bits:
2789 *
2790 * table[low bits][high 8 bits]
2791 *
2792 * So the table 'n' corresponds to all those 'iv' of:
2793 *
2794 * <all high 8-bit values><n << gamma_shift>..<(n+1 << gamma_shift)-1>
2795 *
2796 */
2797 if (sig_bit > 0 && sig_bit < 16U)
2798 shift = (png_byte)(16U - sig_bit); /* shift == insignificant bits */
2799
2800 else
2801 shift = 0; /* keep all 16 bits */
2802
2803 if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
2804 {
2805 /* PNG_MAX_GAMMA_8 is the number of bits to keep - effectively
2806 * the significant bits in the *input* when the output will
2807 * eventually be 8 bits. By default it is 11.
2808 */
2809 if (shift < (16U - PNG_MAX_GAMMA_8))
2810 shift = (16U - PNG_MAX_GAMMA_8);
2811 }
2812
2813 if (shift > 8U)
2814 shift = 8U; /* Guarantees at least one table! */
2815
2816 png_ptr->gamma_shift = shift;
2817
2818#ifdef PNG_16BIT_SUPPORTED
2819 /* NOTE: prior to 1.5.4 this test used to include PNG_BACKGROUND (now
2820 * PNG_COMPOSE). This effectively smashed the background calculation for
2821 * 16-bit output because the 8-bit table assumes the result will be reduced
2822 * to 8 bits.
2823 */
2824 if (png_ptr->transformations & (PNG_16_TO_8 | PNG_SCALE_16_TO_8))
2825#endif
2826 png_build_16to8_table(png_ptr, &png_ptr->gamma_16_table, shift,
2827 png_ptr->screen_gamma > 0 ? png_product2(png_ptr->gamma,
2828 png_ptr->screen_gamma) : PNG_FP_1);
2829
2830#ifdef PNG_16BIT_SUPPORTED
2831 else
2832 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_table, shift,
2833 png_ptr->screen_gamma > 0 ? png_reciprocal2(png_ptr->gamma,
2834 png_ptr->screen_gamma) : PNG_FP_1);
2835#endif
2836
2837#if defined(PNG_READ_BACKGROUND_SUPPORTED) || \
2838 defined(PNG_READ_ALPHA_MODE_SUPPORTED) || \
2839 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)
2840 if (png_ptr->transformations & (PNG_COMPOSE | PNG_RGB_TO_GRAY))
2841 {
2842 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_to_1, shift,
2843 png_reciprocal(png_ptr->gamma));
2844
2845 /* Notice that the '16 from 1' table should be full precision, however
2846 * the lookup on this table still uses gamma_shift, so it can't be.
2847 * TODO: fix this.
2848 */
2849 png_build_16bit_table(png_ptr, &png_ptr->gamma_16_from_1, shift,
2850 png_ptr->screen_gamma > 0 ? png_reciprocal(png_ptr->screen_gamma) :
2851 png_ptr->gamma/* Probably doing rgb_to_gray */);
2852 }
2853#endif /* READ_BACKGROUND || READ_ALPHA_MODE || RGB_TO_GRAY */
2854 }
2855}
2856#endif /* READ_GAMMA */
0272a10d 2857#endif /* defined(PNG_READ_SUPPORTED) || defined(PNG_WRITE_SUPPORTED) */