]>
Commit | Line | Data |
---|---|---|
8414a40c VZ |
1 | /* $Id$ */ |
2 | ||
3 | /* | |
4 | * Copyright (c) 1991-1997 Sam Leffler | |
5 | * Copyright (c) 1991-1997 Silicon Graphics, Inc. | |
6 | * | |
7 | * Permission to use, copy, modify, distribute, and sell this software and | |
8 | * its documentation for any purpose is hereby granted without fee, provided | |
9 | * that (i) the above copyright notices and this permission notice appear in | |
10 | * all copies of the software and related documentation, and (ii) the names of | |
11 | * Sam Leffler and Silicon Graphics may not be used in any advertising or | |
12 | * publicity relating to the software without the specific, prior written | |
13 | * permission of Sam Leffler and Silicon Graphics. | |
14 | * | |
15 | * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, | |
16 | * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY | |
17 | * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. | |
18 | * | |
19 | * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR | |
20 | * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, | |
21 | * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, | |
22 | * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF | |
23 | * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE | |
24 | * OF THIS SOFTWARE. | |
25 | */ | |
26 | ||
27 | /* | |
28 | * TIFF Library | |
29 | * | |
30 | * Read and return a packed RGBA image. | |
31 | */ | |
32 | #include "tiffiop.h" | |
33 | #include <stdio.h> | |
34 | ||
35 | static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32); | |
36 | static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | |
37 | static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32); | |
38 | static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32); | |
39 | static int pickTileContigCase(TIFFRGBAImage*); | |
40 | static int pickTileSeparateCase(TIFFRGBAImage*); | |
41 | ||
42 | static const char photoTag[] = "PhotometricInterpretation"; | |
43 | ||
44 | /* | |
45 | * Helper constants used in Orientation tag handling | |
46 | */ | |
47 | #define FLIP_VERTICALLY 0x01 | |
48 | #define FLIP_HORIZONTALLY 0x02 | |
49 | ||
50 | /* | |
51 | * Color conversion constants. We will define display types here. | |
52 | */ | |
53 | ||
54 | TIFFDisplay display_sRGB = { | |
55 | { /* XYZ -> luminance matrix */ | |
56 | { 3.2410F, -1.5374F, -0.4986F }, | |
57 | { -0.9692F, 1.8760F, 0.0416F }, | |
58 | { 0.0556F, -0.2040F, 1.0570F } | |
59 | }, | |
60 | 100.0F, 100.0F, 100.0F, /* Light o/p for reference white */ | |
61 | 255, 255, 255, /* Pixel values for ref. white */ | |
62 | 1.0F, 1.0F, 1.0F, /* Residual light o/p for black pixel */ | |
63 | 2.4F, 2.4F, 2.4F, /* Gamma values for the three guns */ | |
64 | }; | |
65 | ||
66 | /* | |
67 | * Check the image to see if TIFFReadRGBAImage can deal with it. | |
68 | * 1/0 is returned according to whether or not the image can | |
69 | * be handled. If 0 is returned, emsg contains the reason | |
70 | * why it is being rejected. | |
71 | */ | |
72 | int | |
73 | TIFFRGBAImageOK(TIFF* tif, char emsg[1024]) | |
74 | { | |
75 | TIFFDirectory* td = &tif->tif_dir; | |
76 | uint16 photometric; | |
77 | int colorchannels; | |
78 | ||
79 | if (!tif->tif_decodestatus) { | |
80 | sprintf(emsg, "Sorry, requested compression method is not configured"); | |
81 | return (0); | |
82 | } | |
83 | switch (td->td_bitspersample) { | |
84 | case 1: case 2: case 4: | |
85 | case 8: case 16: | |
86 | break; | |
87 | default: | |
88 | sprintf(emsg, "Sorry, can not handle images with %d-bit samples", | |
89 | td->td_bitspersample); | |
90 | return (0); | |
91 | } | |
92 | colorchannels = td->td_samplesperpixel - td->td_extrasamples; | |
93 | if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) { | |
94 | switch (colorchannels) { | |
95 | case 1: | |
96 | photometric = PHOTOMETRIC_MINISBLACK; | |
97 | break; | |
98 | case 3: | |
99 | photometric = PHOTOMETRIC_RGB; | |
100 | break; | |
101 | default: | |
102 | sprintf(emsg, "Missing needed %s tag", photoTag); | |
103 | return (0); | |
104 | } | |
105 | } | |
106 | switch (photometric) { | |
107 | case PHOTOMETRIC_MINISWHITE: | |
108 | case PHOTOMETRIC_MINISBLACK: | |
109 | case PHOTOMETRIC_PALETTE: | |
110 | if (td->td_planarconfig == PLANARCONFIG_CONTIG | |
111 | && td->td_samplesperpixel != 1 | |
112 | && td->td_bitspersample < 8 ) { | |
113 | sprintf(emsg, | |
114 | "Sorry, can not handle contiguous data with %s=%d, " | |
115 | "and %s=%d and Bits/Sample=%d", | |
116 | photoTag, photometric, | |
117 | "Samples/pixel", td->td_samplesperpixel, | |
118 | td->td_bitspersample); | |
119 | return (0); | |
120 | } | |
121 | /* | |
122 | ** We should likely validate that any extra samples are either | |
123 | ** to be ignored, or are alpha, and if alpha we should try to use | |
124 | ** them. But for now we won't bother with this. | |
125 | */ | |
126 | break; | |
127 | case PHOTOMETRIC_YCBCR: | |
128 | if (td->td_planarconfig != PLANARCONFIG_CONTIG) { | |
129 | sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d", | |
130 | "Planarconfiguration", td->td_planarconfig); | |
131 | return (0); | |
132 | } | |
133 | break; | |
134 | case PHOTOMETRIC_RGB: | |
135 | if (colorchannels < 3) { | |
136 | sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", | |
137 | "Color channels", colorchannels); | |
138 | return (0); | |
139 | } | |
140 | break; | |
141 | case PHOTOMETRIC_SEPARATED: | |
142 | { | |
143 | uint16 inkset; | |
144 | TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); | |
145 | if (inkset != INKSET_CMYK) { | |
146 | sprintf(emsg, | |
147 | "Sorry, can not handle separated image with %s=%d", | |
148 | "InkSet", inkset); | |
149 | return 0; | |
150 | } | |
151 | if (td->td_samplesperpixel < 4) { | |
152 | sprintf(emsg, | |
153 | "Sorry, can not handle separated image with %s=%d", | |
154 | "Samples/pixel", td->td_samplesperpixel); | |
155 | return 0; | |
156 | } | |
157 | break; | |
158 | } | |
159 | case PHOTOMETRIC_LOGL: | |
160 | if (td->td_compression != COMPRESSION_SGILOG) { | |
161 | sprintf(emsg, "Sorry, LogL data must have %s=%d", | |
162 | "Compression", COMPRESSION_SGILOG); | |
163 | return (0); | |
164 | } | |
165 | break; | |
166 | case PHOTOMETRIC_LOGLUV: | |
167 | if (td->td_compression != COMPRESSION_SGILOG && | |
168 | td->td_compression != COMPRESSION_SGILOG24) { | |
169 | sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", | |
170 | "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); | |
171 | return (0); | |
172 | } | |
173 | if (td->td_planarconfig != PLANARCONFIG_CONTIG) { | |
174 | sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", | |
175 | "Planarconfiguration", td->td_planarconfig); | |
176 | return (0); | |
177 | } | |
178 | break; | |
179 | case PHOTOMETRIC_CIELAB: | |
180 | break; | |
181 | default: | |
182 | sprintf(emsg, "Sorry, can not handle image with %s=%d", | |
183 | photoTag, photometric); | |
184 | return (0); | |
185 | } | |
186 | return (1); | |
187 | } | |
188 | ||
189 | void | |
190 | TIFFRGBAImageEnd(TIFFRGBAImage* img) | |
191 | { | |
192 | if (img->Map) | |
193 | _TIFFfree(img->Map), img->Map = NULL; | |
194 | if (img->BWmap) | |
195 | _TIFFfree(img->BWmap), img->BWmap = NULL; | |
196 | if (img->PALmap) | |
197 | _TIFFfree(img->PALmap), img->PALmap = NULL; | |
198 | if (img->ycbcr) | |
199 | _TIFFfree(img->ycbcr), img->ycbcr = NULL; | |
200 | if (img->cielab) | |
201 | _TIFFfree(img->cielab), img->cielab = NULL; | |
202 | ||
203 | if( img->redcmap ) { | |
204 | _TIFFfree( img->redcmap ); | |
205 | _TIFFfree( img->greencmap ); | |
206 | _TIFFfree( img->bluecmap ); | |
207 | } | |
208 | } | |
209 | ||
210 | static int | |
211 | isCCITTCompression(TIFF* tif) | |
212 | { | |
213 | uint16 compress; | |
214 | TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress); | |
215 | return (compress == COMPRESSION_CCITTFAX3 || | |
216 | compress == COMPRESSION_CCITTFAX4 || | |
217 | compress == COMPRESSION_CCITTRLE || | |
218 | compress == COMPRESSION_CCITTRLEW); | |
219 | } | |
220 | ||
221 | int | |
222 | TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024]) | |
223 | { | |
224 | uint16* sampleinfo; | |
225 | uint16 extrasamples; | |
226 | uint16 planarconfig; | |
227 | uint16 compress; | |
228 | int colorchannels; | |
229 | uint16 *red_orig, *green_orig, *blue_orig; | |
230 | int n_color; | |
231 | ||
232 | /* Initialize to normal values */ | |
233 | img->row_offset = 0; | |
234 | img->col_offset = 0; | |
235 | img->redcmap = NULL; | |
236 | img->greencmap = NULL; | |
237 | img->bluecmap = NULL; | |
238 | img->req_orientation = ORIENTATION_BOTLEFT; /* It is the default */ | |
239 | ||
240 | img->tif = tif; | |
241 | img->stoponerr = stop; | |
242 | TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample); | |
243 | switch (img->bitspersample) { | |
244 | case 1: case 2: case 4: | |
245 | case 8: case 16: | |
246 | break; | |
247 | default: | |
248 | sprintf(emsg, "Sorry, can not handle images with %d-bit samples", | |
249 | img->bitspersample); | |
250 | return (0); | |
251 | } | |
252 | img->alpha = 0; | |
253 | TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel); | |
254 | TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES, | |
255 | &extrasamples, &sampleinfo); | |
256 | if (extrasamples >= 1) | |
257 | { | |
258 | switch (sampleinfo[0]) { | |
259 | case EXTRASAMPLE_UNSPECIFIED: /* Workaround for some images without */ | |
260 | if (img->samplesperpixel > 3) /* correct info about alpha channel */ | |
261 | img->alpha = EXTRASAMPLE_ASSOCALPHA; | |
262 | break; | |
263 | case EXTRASAMPLE_ASSOCALPHA: /* data is pre-multiplied */ | |
264 | case EXTRASAMPLE_UNASSALPHA: /* data is not pre-multiplied */ | |
265 | img->alpha = sampleinfo[0]; | |
266 | break; | |
267 | } | |
268 | } | |
269 | ||
270 | #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA | |
271 | if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) | |
272 | img->photometric = PHOTOMETRIC_MINISWHITE; | |
273 | ||
274 | if( extrasamples == 0 | |
275 | && img->samplesperpixel == 4 | |
276 | && img->photometric == PHOTOMETRIC_RGB ) | |
277 | { | |
278 | img->alpha = EXTRASAMPLE_ASSOCALPHA; | |
279 | extrasamples = 1; | |
280 | } | |
281 | #endif | |
282 | ||
283 | colorchannels = img->samplesperpixel - extrasamples; | |
284 | TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress); | |
285 | TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig); | |
286 | if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) { | |
287 | switch (colorchannels) { | |
288 | case 1: | |
289 | if (isCCITTCompression(tif)) | |
290 | img->photometric = PHOTOMETRIC_MINISWHITE; | |
291 | else | |
292 | img->photometric = PHOTOMETRIC_MINISBLACK; | |
293 | break; | |
294 | case 3: | |
295 | img->photometric = PHOTOMETRIC_RGB; | |
296 | break; | |
297 | default: | |
298 | sprintf(emsg, "Missing needed %s tag", photoTag); | |
299 | return (0); | |
300 | } | |
301 | } | |
302 | switch (img->photometric) { | |
303 | case PHOTOMETRIC_PALETTE: | |
304 | if (!TIFFGetField(tif, TIFFTAG_COLORMAP, | |
305 | &red_orig, &green_orig, &blue_orig)) { | |
306 | sprintf(emsg, "Missing required \"Colormap\" tag"); | |
307 | return (0); | |
308 | } | |
309 | ||
310 | /* copy the colormaps so we can modify them */ | |
311 | n_color = (1L << img->bitspersample); | |
312 | img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | |
313 | img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | |
314 | img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color); | |
315 | if( !img->redcmap || !img->greencmap || !img->bluecmap ) { | |
316 | sprintf(emsg, "Out of memory for colormap copy"); | |
317 | return (0); | |
318 | } | |
319 | ||
320 | _TIFFmemcpy( img->redcmap, red_orig, n_color * 2 ); | |
321 | _TIFFmemcpy( img->greencmap, green_orig, n_color * 2 ); | |
322 | _TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 ); | |
323 | ||
324 | /* fall thru... */ | |
325 | case PHOTOMETRIC_MINISWHITE: | |
326 | case PHOTOMETRIC_MINISBLACK: | |
327 | if (planarconfig == PLANARCONFIG_CONTIG | |
328 | && img->samplesperpixel != 1 | |
329 | && img->bitspersample < 8 ) { | |
330 | sprintf(emsg, | |
331 | "Sorry, can not handle contiguous data with %s=%d, " | |
332 | "and %s=%d and Bits/Sample=%d", | |
333 | photoTag, img->photometric, | |
334 | "Samples/pixel", img->samplesperpixel, | |
335 | img->bitspersample); | |
336 | return (0); | |
337 | } | |
338 | break; | |
339 | case PHOTOMETRIC_YCBCR: | |
340 | if (planarconfig != PLANARCONFIG_CONTIG) { | |
341 | sprintf(emsg, "Sorry, can not handle YCbCr images with %s=%d", | |
342 | "Planarconfiguration", planarconfig); | |
343 | return (0); | |
344 | } | |
345 | /* It would probably be nice to have a reality check here. */ | |
346 | if (planarconfig == PLANARCONFIG_CONTIG) | |
347 | /* can rely on libjpeg to convert to RGB */ | |
348 | /* XXX should restore current state on exit */ | |
349 | switch (compress) { | |
350 | case COMPRESSION_OJPEG: | |
351 | case COMPRESSION_JPEG: | |
352 | TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB); | |
353 | img->photometric = PHOTOMETRIC_RGB; | |
354 | break; | |
355 | ||
356 | default: | |
357 | /* do nothing */; | |
358 | break; | |
359 | } | |
360 | break; | |
361 | case PHOTOMETRIC_RGB: | |
362 | if (colorchannels < 3) { | |
363 | sprintf(emsg, "Sorry, can not handle RGB image with %s=%d", | |
364 | "Color channels", colorchannels); | |
365 | return (0); | |
366 | } | |
367 | break; | |
368 | case PHOTOMETRIC_SEPARATED: { | |
369 | uint16 inkset; | |
370 | TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset); | |
371 | if (inkset != INKSET_CMYK) { | |
372 | sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | |
373 | "InkSet", inkset); | |
374 | return (0); | |
375 | } | |
376 | if (img->samplesperpixel < 4) { | |
377 | sprintf(emsg, "Sorry, can not handle separated image with %s=%d", | |
378 | "Samples/pixel", img->samplesperpixel); | |
379 | return (0); | |
380 | } | |
381 | break; | |
382 | } | |
383 | case PHOTOMETRIC_LOGL: | |
384 | if (compress != COMPRESSION_SGILOG) { | |
385 | sprintf(emsg, "Sorry, LogL data must have %s=%d", | |
386 | "Compression", COMPRESSION_SGILOG); | |
387 | return (0); | |
388 | } | |
389 | TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); | |
390 | img->photometric = PHOTOMETRIC_MINISBLACK; /* little white lie */ | |
391 | img->bitspersample = 8; | |
392 | break; | |
393 | case PHOTOMETRIC_LOGLUV: | |
394 | if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) { | |
395 | sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d", | |
396 | "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24); | |
397 | return (0); | |
398 | } | |
399 | if (planarconfig != PLANARCONFIG_CONTIG) { | |
400 | sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d", | |
401 | "Planarconfiguration", planarconfig); | |
402 | return (0); | |
403 | } | |
404 | TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT); | |
405 | img->photometric = PHOTOMETRIC_RGB; /* little white lie */ | |
406 | img->bitspersample = 8; | |
407 | break; | |
408 | case PHOTOMETRIC_CIELAB: | |
409 | break; | |
410 | default: | |
411 | sprintf(emsg, "Sorry, can not handle image with %s=%d", | |
412 | photoTag, img->photometric); | |
413 | return (0); | |
414 | } | |
415 | img->Map = NULL; | |
416 | img->BWmap = NULL; | |
417 | img->PALmap = NULL; | |
418 | img->ycbcr = NULL; | |
419 | img->cielab = NULL; | |
420 | TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width); | |
421 | TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height); | |
422 | TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation); | |
423 | img->isContig = | |
424 | !(planarconfig == PLANARCONFIG_SEPARATE && colorchannels > 1); | |
425 | if (img->isContig) { | |
426 | img->get = TIFFIsTiled(tif) ? gtTileContig : gtStripContig; | |
427 | if (!pickTileContigCase(img)) { | |
428 | sprintf(emsg, "Sorry, can not handle image"); | |
429 | return 0; | |
430 | } | |
431 | } else { | |
432 | img->get = TIFFIsTiled(tif) ? gtTileSeparate : gtStripSeparate; | |
433 | if (!pickTileSeparateCase(img)) { | |
434 | sprintf(emsg, "Sorry, can not handle image"); | |
435 | return 0; | |
436 | } | |
437 | } | |
438 | return 1; | |
439 | } | |
440 | ||
441 | int | |
442 | TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
443 | { | |
444 | if (img->get == NULL) { | |
445 | TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup"); | |
446 | return (0); | |
447 | } | |
448 | if (img->put.any == NULL) { | |
449 | TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), | |
450 | "No \"put\" routine setupl; probably can not handle image format"); | |
451 | return (0); | |
452 | } | |
453 | return (*img->get)(img, raster, w, h); | |
454 | } | |
455 | ||
456 | /* | |
457 | * Read the specified image into an ABGR-format rastertaking in account | |
458 | * specified orientation. | |
459 | */ | |
460 | int | |
461 | TIFFReadRGBAImageOriented(TIFF* tif, | |
462 | uint32 rwidth, uint32 rheight, uint32* raster, | |
463 | int orientation, int stop) | |
464 | { | |
465 | char emsg[1024] = ""; | |
466 | TIFFRGBAImage img; | |
467 | int ok; | |
468 | ||
469 | if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) { | |
470 | img.req_orientation = orientation; | |
471 | /* XXX verify rwidth and rheight against width and height */ | |
472 | ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth, | |
473 | rwidth, img.height); | |
474 | TIFFRGBAImageEnd(&img); | |
475 | } else { | |
476 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), emsg); | |
477 | ok = 0; | |
478 | } | |
479 | return (ok); | |
480 | } | |
481 | ||
482 | /* | |
483 | * Read the specified image into an ABGR-format raster. Use bottom left | |
484 | * origin for raster by default. | |
485 | */ | |
486 | int | |
487 | TIFFReadRGBAImage(TIFF* tif, | |
488 | uint32 rwidth, uint32 rheight, uint32* raster, int stop) | |
489 | { | |
490 | return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster, | |
491 | ORIENTATION_BOTLEFT, stop); | |
492 | } | |
493 | ||
494 | static int | |
495 | setorientation(TIFFRGBAImage* img) | |
496 | { | |
497 | switch (img->orientation) { | |
498 | case ORIENTATION_TOPLEFT: | |
499 | case ORIENTATION_LEFTTOP: | |
500 | if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
501 | img->req_orientation == ORIENTATION_RIGHTTOP) | |
502 | return FLIP_HORIZONTALLY; | |
503 | else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
504 | img->req_orientation == ORIENTATION_RIGHTBOT) | |
505 | return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
506 | else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
507 | img->req_orientation == ORIENTATION_LEFTBOT) | |
508 | return FLIP_VERTICALLY; | |
509 | else | |
510 | return 0; | |
511 | case ORIENTATION_TOPRIGHT: | |
512 | case ORIENTATION_RIGHTTOP: | |
513 | if (img->req_orientation == ORIENTATION_TOPLEFT || | |
514 | img->req_orientation == ORIENTATION_LEFTTOP) | |
515 | return FLIP_HORIZONTALLY; | |
516 | else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
517 | img->req_orientation == ORIENTATION_RIGHTBOT) | |
518 | return FLIP_VERTICALLY; | |
519 | else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
520 | img->req_orientation == ORIENTATION_LEFTBOT) | |
521 | return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
522 | else | |
523 | return 0; | |
524 | case ORIENTATION_BOTRIGHT: | |
525 | case ORIENTATION_RIGHTBOT: | |
526 | if (img->req_orientation == ORIENTATION_TOPLEFT || | |
527 | img->req_orientation == ORIENTATION_LEFTTOP) | |
528 | return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
529 | else if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
530 | img->req_orientation == ORIENTATION_RIGHTTOP) | |
531 | return FLIP_VERTICALLY; | |
532 | else if (img->req_orientation == ORIENTATION_BOTLEFT || | |
533 | img->req_orientation == ORIENTATION_LEFTBOT) | |
534 | return FLIP_HORIZONTALLY; | |
535 | else | |
536 | return 0; | |
537 | case ORIENTATION_BOTLEFT: | |
538 | case ORIENTATION_LEFTBOT: | |
539 | if (img->req_orientation == ORIENTATION_TOPLEFT || | |
540 | img->req_orientation == ORIENTATION_LEFTTOP) | |
541 | return FLIP_VERTICALLY; | |
542 | else if (img->req_orientation == ORIENTATION_TOPRIGHT || | |
543 | img->req_orientation == ORIENTATION_RIGHTTOP) | |
544 | return FLIP_HORIZONTALLY | FLIP_VERTICALLY; | |
545 | else if (img->req_orientation == ORIENTATION_BOTRIGHT || | |
546 | img->req_orientation == ORIENTATION_RIGHTBOT) | |
547 | return FLIP_HORIZONTALLY; | |
548 | else | |
549 | return 0; | |
550 | default: /* NOTREACHED */ | |
551 | return 0; | |
552 | } | |
553 | } | |
554 | ||
555 | /* | |
556 | * Get an tile-organized image that has | |
557 | * PlanarConfiguration contiguous if SamplesPerPixel > 1 | |
558 | * or | |
559 | * SamplesPerPixel == 1 | |
560 | */ | |
561 | static int | |
562 | gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
563 | { | |
564 | TIFF* tif = img->tif; | |
565 | tileContigRoutine put = img->put.contig; | |
566 | uint32 col, row, y, rowstoread; | |
567 | uint32 pos; | |
568 | uint32 tw, th; | |
569 | unsigned char* buf; | |
570 | int32 fromskew, toskew; | |
571 | uint32 nrow; | |
572 | int ret = 1, flip; | |
573 | ||
574 | buf = (unsigned char*) _TIFFmalloc(TIFFTileSize(tif)); | |
575 | if (buf == 0) { | |
576 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for tile buffer"); | |
577 | return (0); | |
578 | } | |
579 | _TIFFmemset(buf, 0, TIFFTileSize(tif)); | |
580 | TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | |
581 | TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | |
582 | ||
583 | flip = setorientation(img); | |
584 | if (flip & FLIP_VERTICALLY) { | |
585 | y = h - 1; | |
586 | toskew = -(int32)(tw + w); | |
587 | } | |
588 | else { | |
589 | y = 0; | |
590 | toskew = -(int32)(tw - w); | |
591 | } | |
592 | ||
593 | for (row = 0; row < h; row += nrow) | |
594 | { | |
595 | rowstoread = th - (row + img->row_offset) % th; | |
596 | nrow = (row + rowstoread > h ? h - row : rowstoread); | |
597 | for (col = 0; col < w; col += tw) | |
598 | { | |
599 | if (TIFFReadTile(tif, buf, col+img->col_offset, | |
600 | row+img->row_offset, 0, 0) < 0 && img->stoponerr) | |
601 | { | |
602 | ret = 0; | |
603 | break; | |
604 | } | |
605 | ||
606 | pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif); | |
607 | ||
608 | if (col + tw > w) | |
609 | { | |
610 | /* | |
611 | * Tile is clipped horizontally. Calculate | |
612 | * visible portion and skewing factors. | |
613 | */ | |
614 | uint32 npix = w - col; | |
615 | fromskew = tw - npix; | |
616 | (*put)(img, raster+y*w+col, col, y, | |
617 | npix, nrow, fromskew, toskew + fromskew, buf + pos); | |
618 | } | |
619 | else | |
620 | { | |
621 | (*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf + pos); | |
622 | } | |
623 | } | |
624 | ||
625 | y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
626 | } | |
627 | _TIFFfree(buf); | |
628 | ||
629 | if (flip & FLIP_HORIZONTALLY) { | |
630 | uint32 line; | |
631 | ||
632 | for (line = 0; line < h; line++) { | |
633 | uint32 *left = raster + (line * w); | |
634 | uint32 *right = left + w - 1; | |
635 | ||
636 | while ( left < right ) { | |
637 | uint32 temp = *left; | |
638 | *left = *right; | |
639 | *right = temp; | |
640 | left++, right--; | |
641 | } | |
642 | } | |
643 | } | |
644 | ||
645 | return (ret); | |
646 | } | |
647 | ||
648 | /* | |
649 | * Get an tile-organized image that has | |
650 | * SamplesPerPixel > 1 | |
651 | * PlanarConfiguration separated | |
652 | * We assume that all such images are RGB. | |
653 | */ | |
654 | static int | |
655 | gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
656 | { | |
657 | TIFF* tif = img->tif; | |
658 | tileSeparateRoutine put = img->put.separate; | |
659 | uint32 col, row, y, rowstoread; | |
660 | uint32 pos; | |
661 | uint32 tw, th; | |
662 | unsigned char* buf; | |
663 | unsigned char* r; | |
664 | unsigned char* g; | |
665 | unsigned char* b; | |
666 | unsigned char* a; | |
667 | tsize_t tilesize; | |
668 | int32 fromskew, toskew; | |
669 | int alpha = img->alpha; | |
670 | uint32 nrow; | |
671 | int ret = 1, flip; | |
672 | ||
673 | tilesize = TIFFTileSize(tif); | |
674 | buf = (unsigned char*) _TIFFmalloc(4*tilesize); | |
675 | if (buf == 0) { | |
676 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for tile buffer"); | |
677 | return (0); | |
678 | } | |
679 | _TIFFmemset(buf, 0, 4*tilesize); | |
680 | r = buf; | |
681 | g = r + tilesize; | |
682 | b = g + tilesize; | |
683 | a = b + tilesize; | |
684 | if (!alpha) | |
685 | _TIFFmemset(a, 0xff, tilesize); | |
686 | TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw); | |
687 | TIFFGetField(tif, TIFFTAG_TILELENGTH, &th); | |
688 | ||
689 | flip = setorientation(img); | |
690 | if (flip & FLIP_VERTICALLY) { | |
691 | y = h - 1; | |
692 | toskew = -(int32)(tw + w); | |
693 | } | |
694 | else { | |
695 | y = 0; | |
696 | toskew = -(int32)(tw - w); | |
697 | } | |
698 | ||
699 | for (row = 0; row < h; row += nrow) | |
700 | { | |
701 | rowstoread = th - (row + img->row_offset) % th; | |
702 | nrow = (row + rowstoread > h ? h - row : rowstoread); | |
703 | for (col = 0; col < w; col += tw) | |
704 | { | |
705 | if (TIFFReadTile(tif, r, col+img->col_offset, | |
706 | row+img->row_offset,0,0) < 0 && img->stoponerr) | |
707 | { | |
708 | ret = 0; | |
709 | break; | |
710 | } | |
711 | if (TIFFReadTile(tif, g, col+img->col_offset, | |
712 | row+img->row_offset,0,1) < 0 && img->stoponerr) | |
713 | { | |
714 | ret = 0; | |
715 | break; | |
716 | } | |
717 | if (TIFFReadTile(tif, b, col+img->col_offset, | |
718 | row+img->row_offset,0,2) < 0 && img->stoponerr) | |
719 | { | |
720 | ret = 0; | |
721 | break; | |
722 | } | |
723 | if (alpha && TIFFReadTile(tif,a,col+img->col_offset, | |
724 | row+img->row_offset,0,3) < 0 && img->stoponerr) | |
725 | { | |
726 | ret = 0; | |
727 | break; | |
728 | } | |
729 | ||
730 | pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif); | |
731 | ||
732 | if (col + tw > w) | |
733 | { | |
734 | /* | |
735 | * Tile is clipped horizontally. Calculate | |
736 | * visible portion and skewing factors. | |
737 | */ | |
738 | uint32 npix = w - col; | |
739 | fromskew = tw - npix; | |
740 | (*put)(img, raster+y*w+col, col, y, | |
741 | npix, nrow, fromskew, toskew + fromskew, | |
742 | r + pos, g + pos, b + pos, a + pos); | |
743 | } else { | |
744 | (*put)(img, raster+y*w+col, col, y, | |
745 | tw, nrow, 0, toskew, r + pos, g + pos, b + pos, a + pos); | |
746 | } | |
747 | } | |
748 | ||
749 | y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow); | |
750 | } | |
751 | ||
752 | if (flip & FLIP_HORIZONTALLY) { | |
753 | uint32 line; | |
754 | ||
755 | for (line = 0; line < h; line++) { | |
756 | uint32 *left = raster + (line * w); | |
757 | uint32 *right = left + w - 1; | |
758 | ||
759 | while ( left < right ) { | |
760 | uint32 temp = *left; | |
761 | *left = *right; | |
762 | *right = temp; | |
763 | left++, right--; | |
764 | } | |
765 | } | |
766 | } | |
767 | ||
768 | _TIFFfree(buf); | |
769 | return (ret); | |
770 | } | |
771 | ||
772 | /* | |
773 | * Get a strip-organized image that has | |
774 | * PlanarConfiguration contiguous if SamplesPerPixel > 1 | |
775 | * or | |
776 | * SamplesPerPixel == 1 | |
777 | */ | |
778 | static int | |
779 | gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
780 | { | |
781 | TIFF* tif = img->tif; | |
782 | tileContigRoutine put = img->put.contig; | |
783 | uint32 row, y, nrow, rowstoread; | |
784 | uint32 pos; | |
785 | unsigned char* buf; | |
786 | uint32 rowsperstrip; | |
787 | uint32 imagewidth = img->width; | |
788 | tsize_t scanline; | |
789 | int32 fromskew, toskew; | |
790 | int ret = 1, flip; | |
791 | ||
792 | buf = (unsigned char*) _TIFFmalloc(TIFFStripSize(tif)); | |
793 | if (buf == 0) { | |
794 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for strip buffer"); | |
795 | return (0); | |
796 | } | |
797 | _TIFFmemset(buf, 0, TIFFStripSize(tif)); | |
798 | ||
799 | flip = setorientation(img); | |
800 | if (flip & FLIP_VERTICALLY) { | |
801 | y = h - 1; | |
802 | toskew = -(int32)(w + w); | |
803 | } else { | |
804 | y = 0; | |
805 | toskew = -(int32)(w - w); | |
806 | } | |
807 | ||
808 | TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
809 | scanline = TIFFScanlineSize(tif); | |
810 | fromskew = (w < imagewidth ? imagewidth - w : 0); | |
811 | for (row = 0; row < h; row += nrow) | |
812 | { | |
813 | rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; | |
814 | nrow = (row + rowstoread > h ? h - row : rowstoread); | |
815 | if (TIFFReadEncodedStrip(tif, | |
816 | TIFFComputeStrip(tif,row+img->row_offset, 0), | |
817 | buf, | |
818 | ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 | |
819 | && img->stoponerr) | |
820 | { | |
821 | ret = 0; | |
822 | break; | |
823 | } | |
824 | ||
825 | pos = ((row + img->row_offset) % rowsperstrip) * scanline; | |
826 | (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos); | |
827 | y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
828 | } | |
829 | ||
830 | if (flip & FLIP_HORIZONTALLY) { | |
831 | uint32 line; | |
832 | ||
833 | for (line = 0; line < h; line++) { | |
834 | uint32 *left = raster + (line * w); | |
835 | uint32 *right = left + w - 1; | |
836 | ||
837 | while ( left < right ) { | |
838 | uint32 temp = *left; | |
839 | *left = *right; | |
840 | *right = temp; | |
841 | left++, right--; | |
842 | } | |
843 | } | |
844 | } | |
845 | ||
846 | _TIFFfree(buf); | |
847 | return (ret); | |
848 | } | |
849 | ||
850 | /* | |
851 | * Get a strip-organized image with | |
852 | * SamplesPerPixel > 1 | |
853 | * PlanarConfiguration separated | |
854 | * We assume that all such images are RGB. | |
855 | */ | |
856 | static int | |
857 | gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h) | |
858 | { | |
859 | TIFF* tif = img->tif; | |
860 | tileSeparateRoutine put = img->put.separate; | |
861 | unsigned char *buf; | |
862 | unsigned char *r, *g, *b, *a; | |
863 | uint32 row, y, nrow, rowstoread; | |
864 | uint32 pos; | |
865 | tsize_t scanline; | |
866 | uint32 rowsperstrip, offset_row; | |
867 | uint32 imagewidth = img->width; | |
868 | tsize_t stripsize; | |
869 | int32 fromskew, toskew; | |
870 | int alpha = img->alpha; | |
871 | int ret = 1, flip; | |
872 | ||
873 | stripsize = TIFFStripSize(tif); | |
874 | r = buf = (unsigned char *)_TIFFmalloc(4*stripsize); | |
875 | if (buf == 0) { | |
876 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for tile buffer"); | |
877 | return (0); | |
878 | } | |
879 | _TIFFmemset(buf, 0, 4*stripsize); | |
880 | g = r + stripsize; | |
881 | b = g + stripsize; | |
882 | a = b + stripsize; | |
883 | if (!alpha) | |
884 | _TIFFmemset(a, 0xff, stripsize); | |
885 | ||
886 | flip = setorientation(img); | |
887 | if (flip & FLIP_VERTICALLY) { | |
888 | y = h - 1; | |
889 | toskew = -(int32)(w + w); | |
890 | } | |
891 | else { | |
892 | y = 0; | |
893 | toskew = -(int32)(w - w); | |
894 | } | |
895 | ||
896 | TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
897 | scanline = TIFFScanlineSize(tif); | |
898 | fromskew = (w < imagewidth ? imagewidth - w : 0); | |
899 | for (row = 0; row < h; row += nrow) | |
900 | { | |
901 | rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip; | |
902 | nrow = (row + rowstoread > h ? h - row : rowstoread); | |
903 | offset_row = row + img->row_offset; | |
904 | if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0), | |
905 | r, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 | |
906 | && img->stoponerr) | |
907 | { | |
908 | ret = 0; | |
909 | break; | |
910 | } | |
911 | if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1), | |
912 | g, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 | |
913 | && img->stoponerr) | |
914 | { | |
915 | ret = 0; | |
916 | break; | |
917 | } | |
918 | if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2), | |
919 | b, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 | |
920 | && img->stoponerr) | |
921 | { | |
922 | ret = 0; | |
923 | break; | |
924 | } | |
925 | if (alpha && | |
926 | (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 3), | |
927 | a, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) < 0 | |
928 | && img->stoponerr)) | |
929 | { | |
930 | ret = 0; | |
931 | break; | |
932 | } | |
933 | ||
934 | pos = ((row + img->row_offset) % rowsperstrip) * scanline; | |
935 | (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, r + pos, g + pos, | |
936 | b + pos, a + pos); | |
937 | y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow); | |
938 | } | |
939 | ||
940 | if (flip & FLIP_HORIZONTALLY) { | |
941 | uint32 line; | |
942 | ||
943 | for (line = 0; line < h; line++) { | |
944 | uint32 *left = raster + (line * w); | |
945 | uint32 *right = left + w - 1; | |
946 | ||
947 | while ( left < right ) { | |
948 | uint32 temp = *left; | |
949 | *left = *right; | |
950 | *right = temp; | |
951 | left++, right--; | |
952 | } | |
953 | } | |
954 | } | |
955 | ||
956 | _TIFFfree(buf); | |
957 | return (ret); | |
958 | } | |
959 | ||
960 | /* | |
961 | * The following routines move decoded data returned | |
962 | * from the TIFF library into rasters filled with packed | |
963 | * ABGR pixels (i.e. suitable for passing to lrecwrite.) | |
964 | * | |
965 | * The routines have been created according to the most | |
966 | * important cases and optimized. pickTileContigCase and | |
967 | * pickTileSeparateCase analyze the parameters and select | |
968 | * the appropriate "put" routine to use. | |
969 | */ | |
970 | #define REPEAT8(op) REPEAT4(op); REPEAT4(op) | |
971 | #define REPEAT4(op) REPEAT2(op); REPEAT2(op) | |
972 | #define REPEAT2(op) op; op | |
973 | #define CASE8(x,op) \ | |
974 | switch (x) { \ | |
975 | case 7: op; case 6: op; case 5: op; \ | |
976 | case 4: op; case 3: op; case 2: op; \ | |
977 | case 1: op; \ | |
978 | } | |
979 | #define CASE4(x,op) switch (x) { case 3: op; case 2: op; case 1: op; } | |
980 | #define NOP | |
981 | ||
982 | #define UNROLL8(w, op1, op2) { \ | |
983 | uint32 _x; \ | |
984 | for (_x = w; _x >= 8; _x -= 8) { \ | |
985 | op1; \ | |
986 | REPEAT8(op2); \ | |
987 | } \ | |
988 | if (_x > 0) { \ | |
989 | op1; \ | |
990 | CASE8(_x,op2); \ | |
991 | } \ | |
992 | } | |
993 | #define UNROLL4(w, op1, op2) { \ | |
994 | uint32 _x; \ | |
995 | for (_x = w; _x >= 4; _x -= 4) { \ | |
996 | op1; \ | |
997 | REPEAT4(op2); \ | |
998 | } \ | |
999 | if (_x > 0) { \ | |
1000 | op1; \ | |
1001 | CASE4(_x,op2); \ | |
1002 | } \ | |
1003 | } | |
1004 | #define UNROLL2(w, op1, op2) { \ | |
1005 | uint32 _x; \ | |
1006 | for (_x = w; _x >= 2; _x -= 2) { \ | |
1007 | op1; \ | |
1008 | REPEAT2(op2); \ | |
1009 | } \ | |
1010 | if (_x) { \ | |
1011 | op1; \ | |
1012 | op2; \ | |
1013 | } \ | |
1014 | } | |
1015 | ||
1016 | #define SKEW(r,g,b,skew) { r += skew; g += skew; b += skew; } | |
1017 | #define SKEW4(r,g,b,a,skew) { r += skew; g += skew; b += skew; a+= skew; } | |
1018 | ||
1019 | #define A1 (((uint32)0xffL)<<24) | |
1020 | #define PACK(r,g,b) \ | |
1021 | ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1) | |
1022 | #define PACK4(r,g,b,a) \ | |
1023 | ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24)) | |
1024 | #define W2B(v) (((v)>>8)&0xff) | |
1025 | #define PACKW(r,g,b) \ | |
1026 | ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1) | |
1027 | #define PACKW4(r,g,b,a) \ | |
1028 | ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24)) | |
1029 | ||
1030 | #define DECLAREContigPutFunc(name) \ | |
1031 | static void name(\ | |
1032 | TIFFRGBAImage* img, \ | |
1033 | uint32* cp, \ | |
1034 | uint32 x, uint32 y, \ | |
1035 | uint32 w, uint32 h, \ | |
1036 | int32 fromskew, int32 toskew, \ | |
1037 | unsigned char* pp \ | |
1038 | ) | |
1039 | ||
1040 | /* | |
1041 | * 8-bit palette => colormap/RGB | |
1042 | */ | |
1043 | DECLAREContigPutFunc(put8bitcmaptile) | |
1044 | { | |
1045 | uint32** PALmap = img->PALmap; | |
1046 | int samplesperpixel = img->samplesperpixel; | |
1047 | ||
1048 | (void) y; | |
1049 | while (h-- > 0) { | |
1050 | for (x = w; x-- > 0;) | |
1051 | { | |
1052 | *cp++ = PALmap[*pp][0]; | |
1053 | pp += samplesperpixel; | |
1054 | } | |
1055 | cp += toskew; | |
1056 | pp += fromskew; | |
1057 | } | |
1058 | } | |
1059 | ||
1060 | /* | |
1061 | * 4-bit palette => colormap/RGB | |
1062 | */ | |
1063 | DECLAREContigPutFunc(put4bitcmaptile) | |
1064 | { | |
1065 | uint32** PALmap = img->PALmap; | |
1066 | ||
1067 | (void) x; (void) y; | |
1068 | fromskew /= 2; | |
1069 | while (h-- > 0) { | |
1070 | uint32* bw; | |
1071 | UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
1072 | cp += toskew; | |
1073 | pp += fromskew; | |
1074 | } | |
1075 | } | |
1076 | ||
1077 | /* | |
1078 | * 2-bit palette => colormap/RGB | |
1079 | */ | |
1080 | DECLAREContigPutFunc(put2bitcmaptile) | |
1081 | { | |
1082 | uint32** PALmap = img->PALmap; | |
1083 | ||
1084 | (void) x; (void) y; | |
1085 | fromskew /= 4; | |
1086 | while (h-- > 0) { | |
1087 | uint32* bw; | |
1088 | UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
1089 | cp += toskew; | |
1090 | pp += fromskew; | |
1091 | } | |
1092 | } | |
1093 | ||
1094 | /* | |
1095 | * 1-bit palette => colormap/RGB | |
1096 | */ | |
1097 | DECLAREContigPutFunc(put1bitcmaptile) | |
1098 | { | |
1099 | uint32** PALmap = img->PALmap; | |
1100 | ||
1101 | (void) x; (void) y; | |
1102 | fromskew /= 8; | |
1103 | while (h-- > 0) { | |
1104 | uint32* bw; | |
1105 | UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++); | |
1106 | cp += toskew; | |
1107 | pp += fromskew; | |
1108 | } | |
1109 | } | |
1110 | ||
1111 | /* | |
1112 | * 8-bit greyscale => colormap/RGB | |
1113 | */ | |
1114 | DECLAREContigPutFunc(putgreytile) | |
1115 | { | |
1116 | int samplesperpixel = img->samplesperpixel; | |
1117 | uint32** BWmap = img->BWmap; | |
1118 | ||
1119 | (void) y; | |
1120 | while (h-- > 0) { | |
1121 | for (x = w; x-- > 0;) | |
1122 | { | |
1123 | *cp++ = BWmap[*pp][0]; | |
1124 | pp += samplesperpixel; | |
1125 | } | |
1126 | cp += toskew; | |
1127 | pp += fromskew; | |
1128 | } | |
1129 | } | |
1130 | ||
1131 | /* | |
1132 | * 16-bit greyscale => colormap/RGB | |
1133 | */ | |
1134 | DECLAREContigPutFunc(put16bitbwtile) | |
1135 | { | |
1136 | int samplesperpixel = img->samplesperpixel; | |
1137 | uint32** BWmap = img->BWmap; | |
1138 | ||
1139 | (void) y; | |
1140 | while (h-- > 0) { | |
1141 | uint16 *wp = (uint16 *) pp; | |
1142 | ||
1143 | for (x = w; x-- > 0;) | |
1144 | { | |
1145 | /* use high order byte of 16bit value */ | |
1146 | ||
1147 | *cp++ = BWmap[*wp >> 8][0]; | |
1148 | pp += 2 * samplesperpixel; | |
1149 | wp += samplesperpixel; | |
1150 | } | |
1151 | cp += toskew; | |
1152 | pp += fromskew; | |
1153 | } | |
1154 | } | |
1155 | ||
1156 | /* | |
1157 | * 1-bit bilevel => colormap/RGB | |
1158 | */ | |
1159 | DECLAREContigPutFunc(put1bitbwtile) | |
1160 | { | |
1161 | uint32** BWmap = img->BWmap; | |
1162 | ||
1163 | (void) x; (void) y; | |
1164 | fromskew /= 8; | |
1165 | while (h-- > 0) { | |
1166 | uint32* bw; | |
1167 | UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
1168 | cp += toskew; | |
1169 | pp += fromskew; | |
1170 | } | |
1171 | } | |
1172 | ||
1173 | /* | |
1174 | * 2-bit greyscale => colormap/RGB | |
1175 | */ | |
1176 | DECLAREContigPutFunc(put2bitbwtile) | |
1177 | { | |
1178 | uint32** BWmap = img->BWmap; | |
1179 | ||
1180 | (void) x; (void) y; | |
1181 | fromskew /= 4; | |
1182 | while (h-- > 0) { | |
1183 | uint32* bw; | |
1184 | UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
1185 | cp += toskew; | |
1186 | pp += fromskew; | |
1187 | } | |
1188 | } | |
1189 | ||
1190 | /* | |
1191 | * 4-bit greyscale => colormap/RGB | |
1192 | */ | |
1193 | DECLAREContigPutFunc(put4bitbwtile) | |
1194 | { | |
1195 | uint32** BWmap = img->BWmap; | |
1196 | ||
1197 | (void) x; (void) y; | |
1198 | fromskew /= 2; | |
1199 | while (h-- > 0) { | |
1200 | uint32* bw; | |
1201 | UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++); | |
1202 | cp += toskew; | |
1203 | pp += fromskew; | |
1204 | } | |
1205 | } | |
1206 | ||
1207 | /* | |
1208 | * 8-bit packed samples, no Map => RGB | |
1209 | */ | |
1210 | DECLAREContigPutFunc(putRGBcontig8bittile) | |
1211 | { | |
1212 | int samplesperpixel = img->samplesperpixel; | |
1213 | ||
1214 | (void) x; (void) y; | |
1215 | fromskew *= samplesperpixel; | |
1216 | while (h-- > 0) { | |
1217 | UNROLL8(w, NOP, | |
1218 | *cp++ = PACK(pp[0], pp[1], pp[2]); | |
1219 | pp += samplesperpixel); | |
1220 | cp += toskew; | |
1221 | pp += fromskew; | |
1222 | } | |
1223 | } | |
1224 | ||
1225 | /* | |
1226 | * 8-bit packed samples, w/ Map => RGB | |
1227 | */ | |
1228 | DECLAREContigPutFunc(putRGBcontig8bitMaptile) | |
1229 | { | |
1230 | TIFFRGBValue* Map = img->Map; | |
1231 | int samplesperpixel = img->samplesperpixel; | |
1232 | ||
1233 | (void) y; | |
1234 | fromskew *= samplesperpixel; | |
1235 | while (h-- > 0) { | |
1236 | for (x = w; x-- > 0;) { | |
1237 | *cp++ = PACK(Map[pp[0]], Map[pp[1]], Map[pp[2]]); | |
1238 | pp += samplesperpixel; | |
1239 | } | |
1240 | pp += fromskew; | |
1241 | cp += toskew; | |
1242 | } | |
1243 | } | |
1244 | ||
1245 | /* | |
1246 | * 8-bit packed samples => RGBA w/ associated alpha | |
1247 | * (known to have Map == NULL) | |
1248 | */ | |
1249 | DECLAREContigPutFunc(putRGBAAcontig8bittile) | |
1250 | { | |
1251 | int samplesperpixel = img->samplesperpixel; | |
1252 | ||
1253 | (void) x; (void) y; | |
1254 | fromskew *= samplesperpixel; | |
1255 | while (h-- > 0) { | |
1256 | UNROLL8(w, NOP, | |
1257 | *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]); | |
1258 | pp += samplesperpixel); | |
1259 | cp += toskew; | |
1260 | pp += fromskew; | |
1261 | } | |
1262 | } | |
1263 | ||
1264 | /* | |
1265 | * 8-bit packed samples => RGBA w/ unassociated alpha | |
1266 | * (known to have Map == NULL) | |
1267 | */ | |
1268 | DECLAREContigPutFunc(putRGBUAcontig8bittile) | |
1269 | { | |
1270 | int samplesperpixel = img->samplesperpixel; | |
1271 | ||
1272 | (void) y; | |
1273 | fromskew *= samplesperpixel; | |
1274 | while (h-- > 0) { | |
1275 | uint32 r, g, b, a; | |
1276 | for (x = w; x-- > 0;) { | |
1277 | a = pp[3]; | |
1278 | r = (pp[0] * a) / 255; | |
1279 | g = (pp[1] * a) / 255; | |
1280 | b = (pp[2] * a) / 255; | |
1281 | *cp++ = PACK4(r,g,b,a); | |
1282 | pp += samplesperpixel; | |
1283 | } | |
1284 | cp += toskew; | |
1285 | pp += fromskew; | |
1286 | } | |
1287 | } | |
1288 | ||
1289 | /* | |
1290 | * 16-bit packed samples => RGB | |
1291 | */ | |
1292 | DECLAREContigPutFunc(putRGBcontig16bittile) | |
1293 | { | |
1294 | int samplesperpixel = img->samplesperpixel; | |
1295 | uint16 *wp = (uint16 *)pp; | |
1296 | ||
1297 | (void) y; | |
1298 | fromskew *= samplesperpixel; | |
1299 | while (h-- > 0) { | |
1300 | for (x = w; x-- > 0;) { | |
1301 | *cp++ = PACKW(wp[0], wp[1], wp[2]); | |
1302 | wp += samplesperpixel; | |
1303 | } | |
1304 | cp += toskew; | |
1305 | wp += fromskew; | |
1306 | } | |
1307 | } | |
1308 | ||
1309 | /* | |
1310 | * 16-bit packed samples => RGBA w/ associated alpha | |
1311 | * (known to have Map == NULL) | |
1312 | */ | |
1313 | DECLAREContigPutFunc(putRGBAAcontig16bittile) | |
1314 | { | |
1315 | int samplesperpixel = img->samplesperpixel; | |
1316 | uint16 *wp = (uint16 *)pp; | |
1317 | ||
1318 | (void) y; | |
1319 | fromskew *= samplesperpixel; | |
1320 | while (h-- > 0) { | |
1321 | for (x = w; x-- > 0;) { | |
1322 | *cp++ = PACKW4(wp[0], wp[1], wp[2], wp[3]); | |
1323 | wp += samplesperpixel; | |
1324 | } | |
1325 | cp += toskew; | |
1326 | wp += fromskew; | |
1327 | } | |
1328 | } | |
1329 | ||
1330 | /* | |
1331 | * 16-bit packed samples => RGBA w/ unassociated alpha | |
1332 | * (known to have Map == NULL) | |
1333 | */ | |
1334 | DECLAREContigPutFunc(putRGBUAcontig16bittile) | |
1335 | { | |
1336 | int samplesperpixel = img->samplesperpixel; | |
1337 | uint16 *wp = (uint16 *)pp; | |
1338 | ||
1339 | (void) y; | |
1340 | fromskew *= samplesperpixel; | |
1341 | while (h-- > 0) { | |
1342 | uint32 r,g,b,a; | |
1343 | /* | |
1344 | * We shift alpha down four bits just in case unsigned | |
1345 | * arithmetic doesn't handle the full range. | |
1346 | * We still have plenty of accuracy, since the output is 8 bits. | |
1347 | * So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff) | |
1348 | * Since we want r*a * 0xff for eight bit output, | |
1349 | * we divide by (0xffff * 0xfff) / 0xff == 0x10eff. | |
1350 | */ | |
1351 | for (x = w; x-- > 0;) { | |
1352 | a = wp[3] >> 4; | |
1353 | r = (wp[0] * a) / 0x10eff; | |
1354 | g = (wp[1] * a) / 0x10eff; | |
1355 | b = (wp[2] * a) / 0x10eff; | |
1356 | *cp++ = PACK4(r,g,b,a); | |
1357 | wp += samplesperpixel; | |
1358 | } | |
1359 | cp += toskew; | |
1360 | wp += fromskew; | |
1361 | } | |
1362 | } | |
1363 | ||
1364 | /* | |
1365 | * 8-bit packed CMYK samples w/o Map => RGB | |
1366 | * | |
1367 | * NB: The conversion of CMYK->RGB is *very* crude. | |
1368 | */ | |
1369 | DECLAREContigPutFunc(putRGBcontig8bitCMYKtile) | |
1370 | { | |
1371 | int samplesperpixel = img->samplesperpixel; | |
1372 | uint16 r, g, b, k; | |
1373 | ||
1374 | (void) x; (void) y; | |
1375 | fromskew *= samplesperpixel; | |
1376 | while (h-- > 0) { | |
1377 | UNROLL8(w, NOP, | |
1378 | k = 255 - pp[3]; | |
1379 | r = (k*(255-pp[0]))/255; | |
1380 | g = (k*(255-pp[1]))/255; | |
1381 | b = (k*(255-pp[2]))/255; | |
1382 | *cp++ = PACK(r, g, b); | |
1383 | pp += samplesperpixel); | |
1384 | cp += toskew; | |
1385 | pp += fromskew; | |
1386 | } | |
1387 | } | |
1388 | ||
1389 | /* | |
1390 | * 8-bit packed CMYK samples w/Map => RGB | |
1391 | * | |
1392 | * NB: The conversion of CMYK->RGB is *very* crude. | |
1393 | */ | |
1394 | DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile) | |
1395 | { | |
1396 | int samplesperpixel = img->samplesperpixel; | |
1397 | TIFFRGBValue* Map = img->Map; | |
1398 | uint16 r, g, b, k; | |
1399 | ||
1400 | (void) y; | |
1401 | fromskew *= samplesperpixel; | |
1402 | while (h-- > 0) { | |
1403 | for (x = w; x-- > 0;) { | |
1404 | k = 255 - pp[3]; | |
1405 | r = (k*(255-pp[0]))/255; | |
1406 | g = (k*(255-pp[1]))/255; | |
1407 | b = (k*(255-pp[2]))/255; | |
1408 | *cp++ = PACK(Map[r], Map[g], Map[b]); | |
1409 | pp += samplesperpixel; | |
1410 | } | |
1411 | pp += fromskew; | |
1412 | cp += toskew; | |
1413 | } | |
1414 | } | |
1415 | ||
1416 | #define DECLARESepPutFunc(name) \ | |
1417 | static void name(\ | |
1418 | TIFFRGBAImage* img,\ | |
1419 | uint32* cp,\ | |
1420 | uint32 x, uint32 y, \ | |
1421 | uint32 w, uint32 h,\ | |
1422 | int32 fromskew, int32 toskew,\ | |
1423 | unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\ | |
1424 | ) | |
1425 | ||
1426 | /* | |
1427 | * 8-bit unpacked samples => RGB | |
1428 | */ | |
1429 | DECLARESepPutFunc(putRGBseparate8bittile) | |
1430 | { | |
1431 | (void) img; (void) x; (void) y; (void) a; | |
1432 | while (h-- > 0) { | |
1433 | UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++)); | |
1434 | SKEW(r, g, b, fromskew); | |
1435 | cp += toskew; | |
1436 | } | |
1437 | } | |
1438 | ||
1439 | /* | |
1440 | * 8-bit unpacked samples => RGB | |
1441 | */ | |
1442 | DECLARESepPutFunc(putRGBseparate8bitMaptile) | |
1443 | { | |
1444 | TIFFRGBValue* Map = img->Map; | |
1445 | ||
1446 | (void) y; (void) a; | |
1447 | while (h-- > 0) { | |
1448 | for (x = w; x > 0; x--) | |
1449 | *cp++ = PACK(Map[*r++], Map[*g++], Map[*b++]); | |
1450 | SKEW(r, g, b, fromskew); | |
1451 | cp += toskew; | |
1452 | } | |
1453 | } | |
1454 | ||
1455 | /* | |
1456 | * 8-bit unpacked samples => RGBA w/ associated alpha | |
1457 | */ | |
1458 | DECLARESepPutFunc(putRGBAAseparate8bittile) | |
1459 | { | |
1460 | (void) img; (void) x; (void) y; | |
1461 | while (h-- > 0) { | |
1462 | UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++)); | |
1463 | SKEW4(r, g, b, a, fromskew); | |
1464 | cp += toskew; | |
1465 | } | |
1466 | } | |
1467 | ||
1468 | /* | |
1469 | * 8-bit unpacked samples => RGBA w/ unassociated alpha | |
1470 | */ | |
1471 | DECLARESepPutFunc(putRGBUAseparate8bittile) | |
1472 | { | |
1473 | (void) img; (void) y; | |
1474 | while (h-- > 0) { | |
1475 | uint32 rv, gv, bv, av; | |
1476 | for (x = w; x-- > 0;) { | |
1477 | av = *a++; | |
1478 | rv = (*r++ * av) / 255; | |
1479 | gv = (*g++ * av) / 255; | |
1480 | bv = (*b++ * av) / 255; | |
1481 | *cp++ = PACK4(rv,gv,bv,av); | |
1482 | } | |
1483 | SKEW4(r, g, b, a, fromskew); | |
1484 | cp += toskew; | |
1485 | } | |
1486 | } | |
1487 | ||
1488 | /* | |
1489 | * 16-bit unpacked samples => RGB | |
1490 | */ | |
1491 | DECLARESepPutFunc(putRGBseparate16bittile) | |
1492 | { | |
1493 | uint16 *wr = (uint16*) r; | |
1494 | uint16 *wg = (uint16*) g; | |
1495 | uint16 *wb = (uint16*) b; | |
1496 | ||
1497 | (void) img; (void) y; (void) a; | |
1498 | while (h-- > 0) { | |
1499 | for (x = 0; x < w; x++) | |
1500 | *cp++ = PACKW(*wr++, *wg++, *wb++); | |
1501 | SKEW(wr, wg, wb, fromskew); | |
1502 | cp += toskew; | |
1503 | } | |
1504 | } | |
1505 | ||
1506 | /* | |
1507 | * 16-bit unpacked samples => RGBA w/ associated alpha | |
1508 | */ | |
1509 | DECLARESepPutFunc(putRGBAAseparate16bittile) | |
1510 | { | |
1511 | uint16 *wr = (uint16*) r; | |
1512 | uint16 *wg = (uint16*) g; | |
1513 | uint16 *wb = (uint16*) b; | |
1514 | uint16 *wa = (uint16*) a; | |
1515 | ||
1516 | (void) img; (void) y; | |
1517 | while (h-- > 0) { | |
1518 | for (x = 0; x < w; x++) | |
1519 | *cp++ = PACKW4(*wr++, *wg++, *wb++, *wa++); | |
1520 | SKEW4(wr, wg, wb, wa, fromskew); | |
1521 | cp += toskew; | |
1522 | } | |
1523 | } | |
1524 | ||
1525 | /* | |
1526 | * 16-bit unpacked samples => RGBA w/ unassociated alpha | |
1527 | */ | |
1528 | DECLARESepPutFunc(putRGBUAseparate16bittile) | |
1529 | { | |
1530 | uint16 *wr = (uint16*) r; | |
1531 | uint16 *wg = (uint16*) g; | |
1532 | uint16 *wb = (uint16*) b; | |
1533 | uint16 *wa = (uint16*) a; | |
1534 | ||
1535 | (void) img; (void) y; | |
1536 | while (h-- > 0) { | |
1537 | uint32 r,g,b,a; | |
1538 | /* | |
1539 | * We shift alpha down four bits just in case unsigned | |
1540 | * arithmetic doesn't handle the full range. | |
1541 | * We still have plenty of accuracy, since the output is 8 bits. | |
1542 | * So we have (r * 0xffff) * (a * 0xfff)) = r*a * (0xffff*0xfff) | |
1543 | * Since we want r*a * 0xff for eight bit output, | |
1544 | * we divide by (0xffff * 0xfff) / 0xff == 0x10eff. | |
1545 | */ | |
1546 | for (x = w; x-- > 0;) { | |
1547 | a = *wa++ >> 4; | |
1548 | r = (*wr++ * a) / 0x10eff; | |
1549 | g = (*wg++ * a) / 0x10eff; | |
1550 | b = (*wb++ * a) / 0x10eff; | |
1551 | *cp++ = PACK4(r,g,b,a); | |
1552 | } | |
1553 | SKEW4(wr, wg, wb, wa, fromskew); | |
1554 | cp += toskew; | |
1555 | } | |
1556 | } | |
1557 | ||
1558 | /* | |
1559 | * 8-bit packed CIE L*a*b 1976 samples => RGB | |
1560 | */ | |
1561 | DECLAREContigPutFunc(putcontig8bitCIELab) | |
1562 | { | |
1563 | float X, Y, Z; | |
1564 | uint32 r, g, b; | |
1565 | (void) y; | |
1566 | fromskew *= 3; | |
1567 | while (h-- > 0) { | |
1568 | for (x = w; x-- > 0;) { | |
1569 | TIFFCIELabToXYZ(img->cielab, | |
1570 | (unsigned char)pp[0], | |
1571 | (signed char)pp[1], | |
1572 | (signed char)pp[2], | |
1573 | &X, &Y, &Z); | |
1574 | TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b); | |
1575 | *cp++ = PACK(r, g, b); | |
1576 | pp += 3; | |
1577 | } | |
1578 | cp += toskew; | |
1579 | pp += fromskew; | |
1580 | } | |
1581 | } | |
1582 | ||
1583 | /* | |
1584 | * YCbCr -> RGB conversion and packing routines. | |
1585 | */ | |
1586 | ||
1587 | #define YCbCrtoRGB(dst, Y) { \ | |
1588 | uint32 r, g, b; \ | |
1589 | TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b); \ | |
1590 | dst = PACK(r, g, b); \ | |
1591 | } | |
1592 | ||
1593 | /* | |
1594 | * 8-bit packed YCbCr samples => RGB | |
1595 | * This function is generic for different sampling sizes, | |
1596 | * and can handle blocks sizes that aren't multiples of the | |
1597 | * sampling size. However, it is substantially less optimized | |
1598 | * than the specific sampling cases. It is used as a fallback | |
1599 | * for difficult blocks. | |
1600 | */ | |
1601 | #ifdef notdef | |
1602 | static void putcontig8bitYCbCrGenericTile( | |
1603 | TIFFRGBAImage* img, | |
1604 | uint32* cp, | |
1605 | uint32 x, uint32 y, | |
1606 | uint32 w, uint32 h, | |
1607 | int32 fromskew, int32 toskew, | |
1608 | unsigned char* pp, | |
1609 | int h_group, | |
1610 | int v_group ) | |
1611 | ||
1612 | { | |
1613 | uint32* cp1 = cp+w+toskew; | |
1614 | uint32* cp2 = cp1+w+toskew; | |
1615 | uint32* cp3 = cp2+w+toskew; | |
1616 | int32 incr = 3*w+4*toskew; | |
1617 | int32 Cb, Cr; | |
1618 | int group_size = v_group * h_group + 2; | |
1619 | ||
1620 | (void) y; | |
1621 | fromskew = (fromskew * group_size) / h_group; | |
1622 | ||
1623 | for( yy = 0; yy < h; yy++ ) | |
1624 | { | |
1625 | unsigned char *pp_line; | |
1626 | int y_line_group = yy / v_group; | |
1627 | int y_remainder = yy - y_line_group * v_group; | |
1628 | ||
1629 | pp_line = pp + v_line_group * | |
1630 | ||
1631 | ||
1632 | for( xx = 0; xx < w; xx++ ) | |
1633 | { | |
1634 | Cb = pp | |
1635 | } | |
1636 | } | |
1637 | for (; h >= 4; h -= 4) { | |
1638 | x = w>>2; | |
1639 | do { | |
1640 | Cb = pp[16]; | |
1641 | Cr = pp[17]; | |
1642 | ||
1643 | YCbCrtoRGB(cp [0], pp[ 0]); | |
1644 | YCbCrtoRGB(cp [1], pp[ 1]); | |
1645 | YCbCrtoRGB(cp [2], pp[ 2]); | |
1646 | YCbCrtoRGB(cp [3], pp[ 3]); | |
1647 | YCbCrtoRGB(cp1[0], pp[ 4]); | |
1648 | YCbCrtoRGB(cp1[1], pp[ 5]); | |
1649 | YCbCrtoRGB(cp1[2], pp[ 6]); | |
1650 | YCbCrtoRGB(cp1[3], pp[ 7]); | |
1651 | YCbCrtoRGB(cp2[0], pp[ 8]); | |
1652 | YCbCrtoRGB(cp2[1], pp[ 9]); | |
1653 | YCbCrtoRGB(cp2[2], pp[10]); | |
1654 | YCbCrtoRGB(cp2[3], pp[11]); | |
1655 | YCbCrtoRGB(cp3[0], pp[12]); | |
1656 | YCbCrtoRGB(cp3[1], pp[13]); | |
1657 | YCbCrtoRGB(cp3[2], pp[14]); | |
1658 | YCbCrtoRGB(cp3[3], pp[15]); | |
1659 | ||
1660 | cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; | |
1661 | pp += 18; | |
1662 | } while (--x); | |
1663 | cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1664 | pp += fromskew; | |
1665 | } | |
1666 | } | |
1667 | #endif | |
1668 | ||
1669 | /* | |
1670 | * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB | |
1671 | */ | |
1672 | DECLAREContigPutFunc(putcontig8bitYCbCr44tile) | |
1673 | { | |
1674 | uint32* cp1 = cp+w+toskew; | |
1675 | uint32* cp2 = cp1+w+toskew; | |
1676 | uint32* cp3 = cp2+w+toskew; | |
1677 | int32 incr = 3*w+4*toskew; | |
1678 | ||
1679 | (void) y; | |
1680 | /* adjust fromskew */ | |
1681 | fromskew = (fromskew * 18) / 4; | |
1682 | if ((h & 3) == 0 && (w & 3) == 0) { | |
1683 | for (; h >= 4; h -= 4) { | |
1684 | x = w>>2; | |
1685 | do { | |
1686 | int32 Cb = pp[16]; | |
1687 | int32 Cr = pp[17]; | |
1688 | ||
1689 | YCbCrtoRGB(cp [0], pp[ 0]); | |
1690 | YCbCrtoRGB(cp [1], pp[ 1]); | |
1691 | YCbCrtoRGB(cp [2], pp[ 2]); | |
1692 | YCbCrtoRGB(cp [3], pp[ 3]); | |
1693 | YCbCrtoRGB(cp1[0], pp[ 4]); | |
1694 | YCbCrtoRGB(cp1[1], pp[ 5]); | |
1695 | YCbCrtoRGB(cp1[2], pp[ 6]); | |
1696 | YCbCrtoRGB(cp1[3], pp[ 7]); | |
1697 | YCbCrtoRGB(cp2[0], pp[ 8]); | |
1698 | YCbCrtoRGB(cp2[1], pp[ 9]); | |
1699 | YCbCrtoRGB(cp2[2], pp[10]); | |
1700 | YCbCrtoRGB(cp2[3], pp[11]); | |
1701 | YCbCrtoRGB(cp3[0], pp[12]); | |
1702 | YCbCrtoRGB(cp3[1], pp[13]); | |
1703 | YCbCrtoRGB(cp3[2], pp[14]); | |
1704 | YCbCrtoRGB(cp3[3], pp[15]); | |
1705 | ||
1706 | cp += 4, cp1 += 4, cp2 += 4, cp3 += 4; | |
1707 | pp += 18; | |
1708 | } while (--x); | |
1709 | cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1710 | pp += fromskew; | |
1711 | } | |
1712 | } else { | |
1713 | while (h > 0) { | |
1714 | for (x = w; x > 0;) { | |
1715 | int32 Cb = pp[16]; | |
1716 | int32 Cr = pp[17]; | |
1717 | switch (x) { | |
1718 | default: | |
1719 | switch (h) { | |
1720 | default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */ | |
1721 | case 3: YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */ | |
1722 | case 2: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ | |
1723 | case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ | |
1724 | } /* FALLTHROUGH */ | |
1725 | case 3: | |
1726 | switch (h) { | |
1727 | default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */ | |
1728 | case 3: YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */ | |
1729 | case 2: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ | |
1730 | case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ | |
1731 | } /* FALLTHROUGH */ | |
1732 | case 2: | |
1733 | switch (h) { | |
1734 | default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */ | |
1735 | case 3: YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */ | |
1736 | case 2: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ | |
1737 | case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | |
1738 | } /* FALLTHROUGH */ | |
1739 | case 1: | |
1740 | switch (h) { | |
1741 | default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */ | |
1742 | case 3: YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */ | |
1743 | case 2: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ | |
1744 | case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | |
1745 | } /* FALLTHROUGH */ | |
1746 | } | |
1747 | if (x < 4) { | |
1748 | cp += x; cp1 += x; cp2 += x; cp3 += x; | |
1749 | x = 0; | |
1750 | } | |
1751 | else { | |
1752 | cp += 4; cp1 += 4; cp2 += 4; cp3 += 4; | |
1753 | x -= 4; | |
1754 | } | |
1755 | pp += 18; | |
1756 | } | |
1757 | if (h <= 4) | |
1758 | break; | |
1759 | h -= 4; | |
1760 | cp += incr, cp1 += incr, cp2 += incr, cp3 += incr; | |
1761 | pp += fromskew; | |
1762 | } | |
1763 | } | |
1764 | } | |
1765 | ||
1766 | /* | |
1767 | * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB | |
1768 | */ | |
1769 | DECLAREContigPutFunc(putcontig8bitYCbCr42tile) | |
1770 | { | |
1771 | uint32* cp1 = cp+w+toskew; | |
1772 | int32 incr = 2*toskew+w; | |
1773 | ||
1774 | (void) y; | |
1775 | fromskew = (fromskew * 10) / 4; | |
1776 | if ((h & 3) == 0 && (w & 1) == 0) { | |
1777 | for (; h >= 2; h -= 2) { | |
1778 | x = w>>2; | |
1779 | do { | |
1780 | int32 Cb = pp[8]; | |
1781 | int32 Cr = pp[9]; | |
1782 | ||
1783 | YCbCrtoRGB(cp [0], pp[0]); | |
1784 | YCbCrtoRGB(cp [1], pp[1]); | |
1785 | YCbCrtoRGB(cp [2], pp[2]); | |
1786 | YCbCrtoRGB(cp [3], pp[3]); | |
1787 | YCbCrtoRGB(cp1[0], pp[4]); | |
1788 | YCbCrtoRGB(cp1[1], pp[5]); | |
1789 | YCbCrtoRGB(cp1[2], pp[6]); | |
1790 | YCbCrtoRGB(cp1[3], pp[7]); | |
1791 | ||
1792 | cp += 4, cp1 += 4; | |
1793 | pp += 10; | |
1794 | } while (--x); | |
1795 | cp += incr, cp1 += incr; | |
1796 | pp += fromskew; | |
1797 | } | |
1798 | } else { | |
1799 | while (h > 0) { | |
1800 | for (x = w; x > 0;) { | |
1801 | int32 Cb = pp[8]; | |
1802 | int32 Cr = pp[9]; | |
1803 | switch (x) { | |
1804 | default: | |
1805 | switch (h) { | |
1806 | default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */ | |
1807 | case 1: YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */ | |
1808 | } /* FALLTHROUGH */ | |
1809 | case 3: | |
1810 | switch (h) { | |
1811 | default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */ | |
1812 | case 1: YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */ | |
1813 | } /* FALLTHROUGH */ | |
1814 | case 2: | |
1815 | switch (h) { | |
1816 | default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */ | |
1817 | case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | |
1818 | } /* FALLTHROUGH */ | |
1819 | case 1: | |
1820 | switch (h) { | |
1821 | default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */ | |
1822 | case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | |
1823 | } /* FALLTHROUGH */ | |
1824 | } | |
1825 | if (x < 4) { | |
1826 | cp += x; cp1 += x; | |
1827 | x = 0; | |
1828 | } | |
1829 | else { | |
1830 | cp += 4; cp1 += 4; | |
1831 | x -= 4; | |
1832 | } | |
1833 | pp += 10; | |
1834 | } | |
1835 | if (h <= 2) | |
1836 | break; | |
1837 | h -= 2; | |
1838 | cp += incr, cp1 += incr; | |
1839 | pp += fromskew; | |
1840 | } | |
1841 | } | |
1842 | } | |
1843 | ||
1844 | /* | |
1845 | * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB | |
1846 | */ | |
1847 | DECLAREContigPutFunc(putcontig8bitYCbCr41tile) | |
1848 | { | |
1849 | (void) y; | |
1850 | /* XXX adjust fromskew */ | |
1851 | do { | |
1852 | x = w>>2; | |
1853 | do { | |
1854 | int32 Cb = pp[4]; | |
1855 | int32 Cr = pp[5]; | |
1856 | ||
1857 | YCbCrtoRGB(cp [0], pp[0]); | |
1858 | YCbCrtoRGB(cp [1], pp[1]); | |
1859 | YCbCrtoRGB(cp [2], pp[2]); | |
1860 | YCbCrtoRGB(cp [3], pp[3]); | |
1861 | ||
1862 | cp += 4; | |
1863 | pp += 6; | |
1864 | } while (--x); | |
1865 | ||
1866 | if( (w&3) != 0 ) | |
1867 | { | |
1868 | int32 Cb = pp[4]; | |
1869 | int32 Cr = pp[5]; | |
1870 | ||
1871 | switch( (w&3) ) { | |
1872 | case 3: YCbCrtoRGB(cp [2], pp[2]); | |
1873 | case 2: YCbCrtoRGB(cp [1], pp[1]); | |
1874 | case 1: YCbCrtoRGB(cp [0], pp[0]); | |
1875 | case 0: break; | |
1876 | } | |
1877 | ||
1878 | cp += (w&3); | |
1879 | pp += 6; | |
1880 | } | |
1881 | ||
1882 | cp += toskew; | |
1883 | pp += fromskew; | |
1884 | } while (--h); | |
1885 | ||
1886 | } | |
1887 | ||
1888 | /* | |
1889 | * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB | |
1890 | */ | |
1891 | DECLAREContigPutFunc(putcontig8bitYCbCr22tile) | |
1892 | { | |
1893 | uint32* cp1 = cp+w+toskew; | |
1894 | int32 incr = 2*toskew+w; | |
1895 | ||
1896 | (void) y; | |
1897 | fromskew = (fromskew * 6) / 2; | |
1898 | if ((h & 1) == 0 && (w & 1) == 0) { | |
1899 | for (; h >= 2; h -= 2) { | |
1900 | x = w>>1; | |
1901 | do { | |
1902 | int32 Cb = pp[4]; | |
1903 | int32 Cr = pp[5]; | |
1904 | ||
1905 | YCbCrtoRGB(cp [0], pp[0]); | |
1906 | YCbCrtoRGB(cp [1], pp[1]); | |
1907 | YCbCrtoRGB(cp1[0], pp[2]); | |
1908 | YCbCrtoRGB(cp1[1], pp[3]); | |
1909 | ||
1910 | cp += 2, cp1 += 2; | |
1911 | pp += 6; | |
1912 | } while (--x); | |
1913 | cp += incr, cp1 += incr; | |
1914 | pp += fromskew; | |
1915 | } | |
1916 | } else { | |
1917 | while (h > 0) { | |
1918 | for (x = w; x > 0;) { | |
1919 | int32 Cb = pp[4]; | |
1920 | int32 Cr = pp[5]; | |
1921 | switch (x) { | |
1922 | default: | |
1923 | switch (h) { | |
1924 | default: YCbCrtoRGB(cp1[1], pp[ 3]); /* FALLTHROUGH */ | |
1925 | case 1: YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */ | |
1926 | } /* FALLTHROUGH */ | |
1927 | case 1: | |
1928 | switch (h) { | |
1929 | default: YCbCrtoRGB(cp1[0], pp[ 2]); /* FALLTHROUGH */ | |
1930 | case 1: YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */ | |
1931 | } /* FALLTHROUGH */ | |
1932 | } | |
1933 | if (x < 2) { | |
1934 | cp += x; cp1 += x; | |
1935 | x = 0; | |
1936 | } | |
1937 | else { | |
1938 | cp += 2; cp1 += 2; | |
1939 | x -= 2; | |
1940 | } | |
1941 | pp += 6; | |
1942 | } | |
1943 | if (h <= 2) | |
1944 | break; | |
1945 | h -= 2; | |
1946 | cp += incr, cp1 += incr; | |
1947 | pp += fromskew; | |
1948 | } | |
1949 | } | |
1950 | } | |
1951 | ||
1952 | /* | |
1953 | * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB | |
1954 | */ | |
1955 | DECLAREContigPutFunc(putcontig8bitYCbCr21tile) | |
1956 | { | |
1957 | (void) y; | |
1958 | fromskew = (fromskew * 4) / 2; | |
1959 | do { | |
1960 | x = w>>1; | |
1961 | do { | |
1962 | int32 Cb = pp[2]; | |
1963 | int32 Cr = pp[3]; | |
1964 | ||
1965 | YCbCrtoRGB(cp[0], pp[0]); | |
1966 | YCbCrtoRGB(cp[1], pp[1]); | |
1967 | ||
1968 | cp += 2; | |
1969 | pp += 4; | |
1970 | } while (--x); | |
1971 | ||
1972 | if( (w&1) != 0 ) | |
1973 | { | |
1974 | int32 Cb = pp[2]; | |
1975 | int32 Cr = pp[3]; | |
1976 | ||
1977 | YCbCrtoRGB(cp [0], pp[0]); | |
1978 | ||
1979 | cp += 1; | |
1980 | pp += 4; | |
1981 | } | |
1982 | ||
1983 | cp += toskew; | |
1984 | pp += fromskew; | |
1985 | } while (--h); | |
1986 | } | |
1987 | ||
1988 | /* | |
1989 | * 8-bit packed YCbCr samples w/ no subsampling => RGB | |
1990 | */ | |
1991 | DECLAREContigPutFunc(putcontig8bitYCbCr11tile) | |
1992 | { | |
1993 | (void) y; | |
1994 | fromskew *= 3; | |
1995 | do { | |
1996 | x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */ | |
1997 | do { | |
1998 | int32 Cb = pp[1]; | |
1999 | int32 Cr = pp[2]; | |
2000 | ||
2001 | YCbCrtoRGB(*cp++, pp[0]); | |
2002 | ||
2003 | pp += 3; | |
2004 | } while (--x); | |
2005 | cp += toskew; | |
2006 | pp += fromskew; | |
2007 | } while (--h); | |
2008 | } | |
2009 | #undef YCbCrtoRGB | |
2010 | ||
2011 | static tileContigRoutine | |
2012 | initYCbCrConversion(TIFFRGBAImage* img) | |
2013 | { | |
2014 | static char module[] = "initCIELabConversion"; | |
2015 | ||
2016 | float *luma, *refBlackWhite; | |
2017 | uint16 hs, vs; | |
2018 | ||
2019 | if (img->ycbcr == NULL) { | |
2020 | img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc( | |
2021 | TIFFroundup(sizeof (TIFFYCbCrToRGB), sizeof (long)) | |
2022 | + 4*256*sizeof (TIFFRGBValue) | |
2023 | + 2*256*sizeof (int) | |
2024 | + 3*256*sizeof (int32) | |
2025 | ); | |
2026 | if (img->ycbcr == NULL) { | |
2027 | TIFFErrorExt(img->tif->tif_clientdata, module, | |
2028 | "No space for YCbCr->RGB conversion state"); | |
2029 | return (NULL); | |
2030 | } | |
2031 | } | |
2032 | ||
2033 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma); | |
2034 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE, | |
2035 | &refBlackWhite); | |
2036 | if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0) | |
2037 | return NULL; | |
2038 | ||
2039 | /* | |
2040 | * The 6.0 spec says that subsampling must be | |
2041 | * one of 1, 2, or 4, and that vertical subsampling | |
2042 | * must always be <= horizontal subsampling; so | |
2043 | * there are only a few possibilities and we just | |
2044 | * enumerate the cases. | |
2045 | */ | |
2046 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs); | |
2047 | switch ((hs<<4)|vs) { | |
2048 | case 0x44: return (putcontig8bitYCbCr44tile); | |
2049 | case 0x42: return (putcontig8bitYCbCr42tile); | |
2050 | case 0x41: return (putcontig8bitYCbCr41tile); | |
2051 | case 0x22: return (putcontig8bitYCbCr22tile); | |
2052 | case 0x21: return (putcontig8bitYCbCr21tile); | |
2053 | case 0x11: return (putcontig8bitYCbCr11tile); | |
2054 | } | |
2055 | ||
2056 | return (NULL); | |
2057 | } | |
2058 | ||
2059 | static tileContigRoutine | |
2060 | initCIELabConversion(TIFFRGBAImage* img) | |
2061 | { | |
2062 | static char module[] = "initCIELabConversion"; | |
2063 | ||
2064 | float *whitePoint; | |
2065 | float refWhite[3]; | |
2066 | ||
2067 | if (!img->cielab) { | |
2068 | img->cielab = (TIFFCIELabToRGB *) | |
2069 | _TIFFmalloc(sizeof(TIFFCIELabToRGB)); | |
2070 | if (!img->cielab) { | |
2071 | TIFFErrorExt(img->tif->tif_clientdata, module, | |
2072 | "No space for CIE L*a*b*->RGB conversion state."); | |
2073 | return NULL; | |
2074 | } | |
2075 | } | |
2076 | ||
2077 | TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint); | |
2078 | refWhite[1] = 100.0F; | |
2079 | refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1]; | |
2080 | refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1]) | |
2081 | / whitePoint[1] * refWhite[1]; | |
2082 | if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) { | |
2083 | TIFFErrorExt(img->tif->tif_clientdata, module, | |
2084 | "Failed to initialize CIE L*a*b*->RGB conversion state."); | |
2085 | _TIFFfree(img->cielab); | |
2086 | return NULL; | |
2087 | } | |
2088 | ||
2089 | return putcontig8bitCIELab; | |
2090 | } | |
2091 | ||
2092 | /* | |
2093 | * Greyscale images with less than 8 bits/sample are handled | |
2094 | * with a table to avoid lots of shifts and masks. The table | |
2095 | * is setup so that put*bwtile (below) can retrieve 8/bitspersample | |
2096 | * pixel values simply by indexing into the table with one | |
2097 | * number. | |
2098 | */ | |
2099 | static int | |
2100 | makebwmap(TIFFRGBAImage* img) | |
2101 | { | |
2102 | TIFFRGBValue* Map = img->Map; | |
2103 | int bitspersample = img->bitspersample; | |
2104 | int nsamples = 8 / bitspersample; | |
2105 | int i; | |
2106 | uint32* p; | |
2107 | ||
2108 | if( nsamples == 0 ) | |
2109 | nsamples = 1; | |
2110 | ||
2111 | img->BWmap = (uint32**) _TIFFmalloc( | |
2112 | 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | |
2113 | if (img->BWmap == NULL) { | |
2114 | TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table"); | |
2115 | return (0); | |
2116 | } | |
2117 | p = (uint32*)(img->BWmap + 256); | |
2118 | for (i = 0; i < 256; i++) { | |
2119 | TIFFRGBValue c; | |
2120 | img->BWmap[i] = p; | |
2121 | switch (bitspersample) { | |
2122 | #define GREY(x) c = Map[x]; *p++ = PACK(c,c,c); | |
2123 | case 1: | |
2124 | GREY(i>>7); | |
2125 | GREY((i>>6)&1); | |
2126 | GREY((i>>5)&1); | |
2127 | GREY((i>>4)&1); | |
2128 | GREY((i>>3)&1); | |
2129 | GREY((i>>2)&1); | |
2130 | GREY((i>>1)&1); | |
2131 | GREY(i&1); | |
2132 | break; | |
2133 | case 2: | |
2134 | GREY(i>>6); | |
2135 | GREY((i>>4)&3); | |
2136 | GREY((i>>2)&3); | |
2137 | GREY(i&3); | |
2138 | break; | |
2139 | case 4: | |
2140 | GREY(i>>4); | |
2141 | GREY(i&0xf); | |
2142 | break; | |
2143 | case 8: | |
2144 | case 16: | |
2145 | GREY(i); | |
2146 | break; | |
2147 | } | |
2148 | #undef GREY | |
2149 | } | |
2150 | return (1); | |
2151 | } | |
2152 | ||
2153 | /* | |
2154 | * Construct a mapping table to convert from the range | |
2155 | * of the data samples to [0,255] --for display. This | |
2156 | * process also handles inverting B&W images when needed. | |
2157 | */ | |
2158 | static int | |
2159 | setupMap(TIFFRGBAImage* img) | |
2160 | { | |
2161 | int32 x, range; | |
2162 | ||
2163 | range = (int32)((1L<<img->bitspersample)-1); | |
2164 | ||
2165 | /* treat 16 bit the same as eight bit */ | |
2166 | if( img->bitspersample == 16 ) | |
2167 | range = (int32) 255; | |
2168 | ||
2169 | img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue)); | |
2170 | if (img->Map == NULL) { | |
2171 | TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), | |
2172 | "No space for photometric conversion table"); | |
2173 | return (0); | |
2174 | } | |
2175 | if (img->photometric == PHOTOMETRIC_MINISWHITE) { | |
2176 | for (x = 0; x <= range; x++) | |
2177 | img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range); | |
2178 | } else { | |
2179 | for (x = 0; x <= range; x++) | |
2180 | img->Map[x] = (TIFFRGBValue) ((x * 255) / range); | |
2181 | } | |
2182 | if (img->bitspersample <= 16 && | |
2183 | (img->photometric == PHOTOMETRIC_MINISBLACK || | |
2184 | img->photometric == PHOTOMETRIC_MINISWHITE)) { | |
2185 | /* | |
2186 | * Use photometric mapping table to construct | |
2187 | * unpacking tables for samples <= 8 bits. | |
2188 | */ | |
2189 | if (!makebwmap(img)) | |
2190 | return (0); | |
2191 | /* no longer need Map, free it */ | |
2192 | _TIFFfree(img->Map), img->Map = NULL; | |
2193 | } | |
2194 | return (1); | |
2195 | } | |
2196 | ||
2197 | static int | |
2198 | checkcmap(TIFFRGBAImage* img) | |
2199 | { | |
2200 | uint16* r = img->redcmap; | |
2201 | uint16* g = img->greencmap; | |
2202 | uint16* b = img->bluecmap; | |
2203 | long n = 1L<<img->bitspersample; | |
2204 | ||
2205 | while (n-- > 0) | |
2206 | if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256) | |
2207 | return (16); | |
2208 | return (8); | |
2209 | } | |
2210 | ||
2211 | static void | |
2212 | cvtcmap(TIFFRGBAImage* img) | |
2213 | { | |
2214 | uint16* r = img->redcmap; | |
2215 | uint16* g = img->greencmap; | |
2216 | uint16* b = img->bluecmap; | |
2217 | long i; | |
2218 | ||
2219 | for (i = (1L<<img->bitspersample)-1; i >= 0; i--) { | |
2220 | #define CVT(x) ((uint16)((x)>>8)) | |
2221 | r[i] = CVT(r[i]); | |
2222 | g[i] = CVT(g[i]); | |
2223 | b[i] = CVT(b[i]); | |
2224 | #undef CVT | |
2225 | } | |
2226 | } | |
2227 | ||
2228 | /* | |
2229 | * Palette images with <= 8 bits/sample are handled | |
2230 | * with a table to avoid lots of shifts and masks. The table | |
2231 | * is setup so that put*cmaptile (below) can retrieve 8/bitspersample | |
2232 | * pixel values simply by indexing into the table with one | |
2233 | * number. | |
2234 | */ | |
2235 | static int | |
2236 | makecmap(TIFFRGBAImage* img) | |
2237 | { | |
2238 | int bitspersample = img->bitspersample; | |
2239 | int nsamples = 8 / bitspersample; | |
2240 | uint16* r = img->redcmap; | |
2241 | uint16* g = img->greencmap; | |
2242 | uint16* b = img->bluecmap; | |
2243 | uint32 *p; | |
2244 | int i; | |
2245 | ||
2246 | img->PALmap = (uint32**) _TIFFmalloc( | |
2247 | 256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32))); | |
2248 | if (img->PALmap == NULL) { | |
2249 | TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table"); | |
2250 | return (0); | |
2251 | } | |
2252 | p = (uint32*)(img->PALmap + 256); | |
2253 | for (i = 0; i < 256; i++) { | |
2254 | TIFFRGBValue c; | |
2255 | img->PALmap[i] = p; | |
2256 | #define CMAP(x) c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff); | |
2257 | switch (bitspersample) { | |
2258 | case 1: | |
2259 | CMAP(i>>7); | |
2260 | CMAP((i>>6)&1); | |
2261 | CMAP((i>>5)&1); | |
2262 | CMAP((i>>4)&1); | |
2263 | CMAP((i>>3)&1); | |
2264 | CMAP((i>>2)&1); | |
2265 | CMAP((i>>1)&1); | |
2266 | CMAP(i&1); | |
2267 | break; | |
2268 | case 2: | |
2269 | CMAP(i>>6); | |
2270 | CMAP((i>>4)&3); | |
2271 | CMAP((i>>2)&3); | |
2272 | CMAP(i&3); | |
2273 | break; | |
2274 | case 4: | |
2275 | CMAP(i>>4); | |
2276 | CMAP(i&0xf); | |
2277 | break; | |
2278 | case 8: | |
2279 | CMAP(i); | |
2280 | break; | |
2281 | } | |
2282 | #undef CMAP | |
2283 | } | |
2284 | return (1); | |
2285 | } | |
2286 | ||
2287 | /* | |
2288 | * Construct any mapping table used | |
2289 | * by the associated put routine. | |
2290 | */ | |
2291 | static int | |
2292 | buildMap(TIFFRGBAImage* img) | |
2293 | { | |
2294 | switch (img->photometric) { | |
2295 | case PHOTOMETRIC_RGB: | |
2296 | case PHOTOMETRIC_YCBCR: | |
2297 | case PHOTOMETRIC_SEPARATED: | |
2298 | if (img->bitspersample == 8) | |
2299 | break; | |
2300 | /* fall thru... */ | |
2301 | case PHOTOMETRIC_MINISBLACK: | |
2302 | case PHOTOMETRIC_MINISWHITE: | |
2303 | if (!setupMap(img)) | |
2304 | return (0); | |
2305 | break; | |
2306 | case PHOTOMETRIC_PALETTE: | |
2307 | /* | |
2308 | * Convert 16-bit colormap to 8-bit (unless it looks | |
2309 | * like an old-style 8-bit colormap). | |
2310 | */ | |
2311 | if (checkcmap(img) == 16) | |
2312 | cvtcmap(img); | |
2313 | else | |
2314 | TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap"); | |
2315 | /* | |
2316 | * Use mapping table and colormap to construct | |
2317 | * unpacking tables for samples < 8 bits. | |
2318 | */ | |
2319 | if (img->bitspersample <= 8 && !makecmap(img)) | |
2320 | return (0); | |
2321 | break; | |
2322 | } | |
2323 | return (1); | |
2324 | } | |
2325 | ||
2326 | /* | |
2327 | * Select the appropriate conversion routine for packed data. | |
2328 | */ | |
2329 | static int | |
2330 | pickTileContigCase(TIFFRGBAImage* img) | |
2331 | { | |
2332 | tileContigRoutine put = 0; | |
2333 | ||
2334 | if (buildMap(img)) { | |
2335 | switch (img->photometric) { | |
2336 | case PHOTOMETRIC_RGB: | |
2337 | switch (img->bitspersample) { | |
2338 | case 8: | |
2339 | if (!img->Map) { | |
2340 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2341 | put = putRGBAAcontig8bittile; | |
2342 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2343 | put = putRGBUAcontig8bittile; | |
2344 | else | |
2345 | put = putRGBcontig8bittile; | |
2346 | } else | |
2347 | put = putRGBcontig8bitMaptile; | |
2348 | break; | |
2349 | case 16: | |
2350 | put = putRGBcontig16bittile; | |
2351 | if (!img->Map) { | |
2352 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2353 | put = putRGBAAcontig16bittile; | |
2354 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2355 | put = putRGBUAcontig16bittile; | |
2356 | } | |
2357 | break; | |
2358 | } | |
2359 | break; | |
2360 | case PHOTOMETRIC_SEPARATED: | |
2361 | if (img->bitspersample == 8) { | |
2362 | if (!img->Map) | |
2363 | put = putRGBcontig8bitCMYKtile; | |
2364 | else | |
2365 | put = putRGBcontig8bitCMYKMaptile; | |
2366 | } | |
2367 | break; | |
2368 | case PHOTOMETRIC_PALETTE: | |
2369 | switch (img->bitspersample) { | |
2370 | case 8: put = put8bitcmaptile; break; | |
2371 | case 4: put = put4bitcmaptile; break; | |
2372 | case 2: put = put2bitcmaptile; break; | |
2373 | case 1: put = put1bitcmaptile; break; | |
2374 | } | |
2375 | break; | |
2376 | case PHOTOMETRIC_MINISWHITE: | |
2377 | case PHOTOMETRIC_MINISBLACK: | |
2378 | switch (img->bitspersample) { | |
2379 | case 16: put = put16bitbwtile; break; | |
2380 | case 8: put = putgreytile; break; | |
2381 | case 4: put = put4bitbwtile; break; | |
2382 | case 2: put = put2bitbwtile; break; | |
2383 | case 1: put = put1bitbwtile; break; | |
2384 | } | |
2385 | break; | |
2386 | case PHOTOMETRIC_YCBCR: | |
2387 | if (img->bitspersample == 8) | |
2388 | put = initYCbCrConversion(img); | |
2389 | break; | |
2390 | case PHOTOMETRIC_CIELAB: | |
2391 | if (img->bitspersample == 8) | |
2392 | put = initCIELabConversion(img); | |
2393 | break; | |
2394 | } | |
2395 | } | |
2396 | return ((img->put.contig = put) != 0); | |
2397 | } | |
2398 | ||
2399 | /* | |
2400 | * Select the appropriate conversion routine for unpacked data. | |
2401 | * | |
2402 | * NB: we assume that unpacked single channel data is directed | |
2403 | * to the "packed routines. | |
2404 | */ | |
2405 | static int | |
2406 | pickTileSeparateCase(TIFFRGBAImage* img) | |
2407 | { | |
2408 | tileSeparateRoutine put = 0; | |
2409 | ||
2410 | if (buildMap(img)) { | |
2411 | switch (img->photometric) { | |
2412 | case PHOTOMETRIC_RGB: | |
2413 | switch (img->bitspersample) { | |
2414 | case 8: | |
2415 | if (!img->Map) { | |
2416 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2417 | put = putRGBAAseparate8bittile; | |
2418 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2419 | put = putRGBUAseparate8bittile; | |
2420 | else | |
2421 | put = putRGBseparate8bittile; | |
2422 | } else | |
2423 | put = putRGBseparate8bitMaptile; | |
2424 | break; | |
2425 | case 16: | |
2426 | put = putRGBseparate16bittile; | |
2427 | if (!img->Map) { | |
2428 | if (img->alpha == EXTRASAMPLE_ASSOCALPHA) | |
2429 | put = putRGBAAseparate16bittile; | |
2430 | else if (img->alpha == EXTRASAMPLE_UNASSALPHA) | |
2431 | put = putRGBUAseparate16bittile; | |
2432 | } | |
2433 | break; | |
2434 | } | |
2435 | break; | |
2436 | } | |
2437 | } | |
2438 | return ((img->put.separate = put) != 0); | |
2439 | } | |
2440 | ||
2441 | /* | |
2442 | * Read a whole strip off data from the file, and convert to RGBA form. | |
2443 | * If this is the last strip, then it will only contain the portion of | |
2444 | * the strip that is actually within the image space. The result is | |
2445 | * organized in bottom to top form. | |
2446 | */ | |
2447 | ||
2448 | ||
2449 | int | |
2450 | TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster ) | |
2451 | ||
2452 | { | |
2453 | char emsg[1024] = ""; | |
2454 | TIFFRGBAImage img; | |
2455 | int ok; | |
2456 | uint32 rowsperstrip, rows_to_read; | |
2457 | ||
2458 | if( TIFFIsTiled( tif ) ) | |
2459 | { | |
2460 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
2461 | "Can't use TIFFReadRGBAStrip() with tiled file."); | |
2462 | return (0); | |
2463 | } | |
2464 | ||
2465 | TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip); | |
2466 | if( (row % rowsperstrip) != 0 ) | |
2467 | { | |
2468 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
2469 | "Row passed to TIFFReadRGBAStrip() must be first in a strip."); | |
2470 | return (0); | |
2471 | } | |
2472 | ||
2473 | if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) { | |
2474 | ||
2475 | img.row_offset = row; | |
2476 | img.col_offset = 0; | |
2477 | ||
2478 | if( row + rowsperstrip > img.height ) | |
2479 | rows_to_read = img.height - row; | |
2480 | else | |
2481 | rows_to_read = rowsperstrip; | |
2482 | ||
2483 | ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read ); | |
2484 | ||
2485 | TIFFRGBAImageEnd(&img); | |
2486 | } else { | |
2487 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), emsg); | |
2488 | ok = 0; | |
2489 | } | |
2490 | ||
2491 | return (ok); | |
2492 | } | |
2493 | ||
2494 | /* | |
2495 | * Read a whole tile off data from the file, and convert to RGBA form. | |
2496 | * The returned RGBA data is organized from bottom to top of tile, | |
2497 | * and may include zeroed areas if the tile extends off the image. | |
2498 | */ | |
2499 | ||
2500 | int | |
2501 | TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster) | |
2502 | ||
2503 | { | |
2504 | char emsg[1024] = ""; | |
2505 | TIFFRGBAImage img; | |
2506 | int ok; | |
2507 | uint32 tile_xsize, tile_ysize; | |
2508 | uint32 read_xsize, read_ysize; | |
2509 | uint32 i_row; | |
2510 | ||
2511 | /* | |
2512 | * Verify that our request is legal - on a tile file, and on a | |
2513 | * tile boundary. | |
2514 | */ | |
2515 | ||
2516 | if( !TIFFIsTiled( tif ) ) | |
2517 | { | |
2518 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
2519 | "Can't use TIFFReadRGBATile() with stripped file."); | |
2520 | return (0); | |
2521 | } | |
2522 | ||
2523 | TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize); | |
2524 | TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize); | |
2525 | if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 ) | |
2526 | { | |
2527 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), | |
2528 | "Row/col passed to TIFFReadRGBATile() must be top" | |
2529 | "left corner of a tile."); | |
2530 | return (0); | |
2531 | } | |
2532 | ||
2533 | /* | |
2534 | * Setup the RGBA reader. | |
2535 | */ | |
2536 | ||
2537 | if (!TIFFRGBAImageOK(tif, emsg) | |
2538 | || !TIFFRGBAImageBegin(&img, tif, 0, emsg)) { | |
2539 | TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), emsg); | |
2540 | return( 0 ); | |
2541 | } | |
2542 | ||
2543 | /* | |
2544 | * The TIFFRGBAImageGet() function doesn't allow us to get off the | |
2545 | * edge of the image, even to fill an otherwise valid tile. So we | |
2546 | * figure out how much we can read, and fix up the tile buffer to | |
2547 | * a full tile configuration afterwards. | |
2548 | */ | |
2549 | ||
2550 | if( row + tile_ysize > img.height ) | |
2551 | read_ysize = img.height - row; | |
2552 | else | |
2553 | read_ysize = tile_ysize; | |
2554 | ||
2555 | if( col + tile_xsize > img.width ) | |
2556 | read_xsize = img.width - col; | |
2557 | else | |
2558 | read_xsize = tile_xsize; | |
2559 | ||
2560 | /* | |
2561 | * Read the chunk of imagery. | |
2562 | */ | |
2563 | ||
2564 | img.row_offset = row; | |
2565 | img.col_offset = col; | |
2566 | ||
2567 | ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize ); | |
2568 | ||
2569 | TIFFRGBAImageEnd(&img); | |
2570 | ||
2571 | /* | |
2572 | * If our read was incomplete we will need to fix up the tile by | |
2573 | * shifting the data around as if a full tile of data is being returned. | |
2574 | * | |
2575 | * This is all the more complicated because the image is organized in | |
2576 | * bottom to top format. | |
2577 | */ | |
2578 | ||
2579 | if( read_xsize == tile_xsize && read_ysize == tile_ysize ) | |
2580 | return( ok ); | |
2581 | ||
2582 | for( i_row = 0; i_row < read_ysize; i_row++ ) { | |
2583 | memmove( raster + (tile_ysize - i_row - 1) * tile_xsize, | |
2584 | raster + (read_ysize - i_row - 1) * read_xsize, | |
2585 | read_xsize * sizeof(uint32) ); | |
2586 | _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize, | |
2587 | 0, sizeof(uint32) * (tile_xsize - read_xsize) ); | |
2588 | } | |
2589 | ||
2590 | for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) { | |
2591 | _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize, | |
2592 | 0, sizeof(uint32) * tile_xsize ); | |
2593 | } | |
2594 | ||
2595 | return (ok); | |
2596 | } | |
2597 | ||
2598 | /* vim: set ts=8 sts=8 sw=8 noet: */ |