]> git.saurik.com Git - wxWidgets.git/blame - src/common/quantize.cpp
Added version of Quantize that manages the palette itself
[wxWidgets.git] / src / common / quantize.cpp
CommitLineData
3f4fc796
JS
1/////////////////////////////////////////////////////////////////////////////
2// Name: quantize.cpp
3// Purpose: wxQuantize implementation
4// Author: Julian Smart
5// Modified by:
6// Created: 22/6/2000
7// RCS-ID: $Id$
8// Copyright: (c) Thomas G. Lane, Vaclav Slavik, Julian Smart
9// Licence: wxWindows licence + JPEG library licence
10/////////////////////////////////////////////////////////////////////////////
11
12/*
13 * jquant2.c
14 *
15 * Copyright (C) 1991-1996, Thomas G. Lane.
16 * This file is part of the Independent JPEG Group's software.
17 * For conditions of distribution and use, see the accompanying README file.
18 *
19 * This file contains 2-pass color quantization (color mapping) routines.
20 * These routines provide selection of a custom color map for an image,
21 * followed by mapping of the image to that color map, with optional
22 * Floyd-Steinberg dithering.
23 * It is also possible to use just the second pass to map to an arbitrary
24 * externally-given color map.
25 *
26 * Note: ordered dithering is not supported, since there isn't any fast
27 * way to compute intercolor distances; it's unclear that ordered dither's
28 * fundamental assumptions even hold with an irregularly spaced color map.
29 */
30
31/* modified by Vaclav Slavik for use as jpeglib-independent module */
32
33#ifdef __GNUG__
34#pragma implementation "quantize.h"
35#endif
36
37// For compilers that support precompilation, includes "wx/wx.h".
38#include "wx/wxprec.h"
39
40#ifdef __BORLANDC__
41#pragma hdrstop
42#endif
43
44#ifndef WX_PRECOMP
45#include "wx/wx.h"
46#endif
47
48#include "wx/image.h"
49#include "wx/quantize.h"
50
51#include <stdlib.h>
52#include <string.h>
53
54#define RGB_RED 0
55#define RGB_GREEN 1
56#define RGB_BLUE 2
57#define RGB_PIXELSIZE 3
58
59#define MAXJSAMPLE 255
60#define CENTERJSAMPLE 128
61#define BITS_IN_JSAMPLE 8
62#define GETJSAMPLE(value) ((int) (value))
63
64#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
65
66typedef unsigned short UINT16;
67typedef signed short INT16;
68typedef signed int INT32;
69
70typedef unsigned char JSAMPLE;
71typedef JSAMPLE *JSAMPROW;
72typedef JSAMPROW *JSAMPARRAY;
73typedef unsigned int JDIMENSION;
74
75typedef struct {
76 void *cquantize;
77 JDIMENSION output_width;
78 JSAMPARRAY colormap;
79 int actual_number_of_colors;
80 int desired_number_of_colors;
81 JSAMPLE *sample_range_limit, *srl_orig;
82} j_decompress;
83
84typedef j_decompress *j_decompress_ptr;
85
86
87/*
88 * This module implements the well-known Heckbert paradigm for color
89 * quantization. Most of the ideas used here can be traced back to
90 * Heckbert's seminal paper
91 * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
92 * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
93 *
94 * In the first pass over the image, we accumulate a histogram showing the
95 * usage count of each possible color. To keep the histogram to a reasonable
96 * size, we reduce the precision of the input; typical practice is to retain
97 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
98 * in the same histogram cell.
99 *
100 * Next, the color-selection step begins with a box representing the whole
101 * color space, and repeatedly splits the "largest" remaining box until we
102 * have as many boxes as desired colors. Then the mean color in each
103 * remaining box becomes one of the possible output colors.
104 *
105 * The second pass over the image maps each input pixel to the closest output
106 * color (optionally after applying a Floyd-Steinberg dithering correction).
107 * This mapping is logically trivial, but making it go fast enough requires
108 * considerable care.
109 *
110 * Heckbert-style quantizers vary a good deal in their policies for choosing
111 * the "largest" box and deciding where to cut it. The particular policies
112 * used here have proved out well in experimental comparisons, but better ones
113 * may yet be found.
114 *
115 * In earlier versions of the IJG code, this module quantized in YCbCr color
116 * space, processing the raw upsampled data without a color conversion step.
117 * This allowed the color conversion math to be done only once per colormap
118 * entry, not once per pixel. However, that optimization precluded other
119 * useful optimizations (such as merging color conversion with upsampling)
120 * and it also interfered with desired capabilities such as quantizing to an
121 * externally-supplied colormap. We have therefore abandoned that approach.
122 * The present code works in the post-conversion color space, typically RGB.
123 *
124 * To improve the visual quality of the results, we actually work in scaled
125 * RGB space, giving G distances more weight than R, and R in turn more than
126 * B. To do everything in integer math, we must use integer scale factors.
127 * The 2/3/1 scale factors used here correspond loosely to the relative
128 * weights of the colors in the NTSC grayscale equation.
129 * If you want to use this code to quantize a non-RGB color space, you'll
130 * probably need to change these scale factors.
131 */
132
133#define R_SCALE 2 /* scale R distances by this much */
134#define G_SCALE 3 /* scale G distances by this much */
135#define B_SCALE 1 /* and B by this much */
136
137/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
138 * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B
139 * and B,G,R orders. If you define some other weird order in jmorecfg.h,
140 * you'll get compile errors until you extend this logic. In that case
141 * you'll probably want to tweak the histogram sizes too.
142 */
143
144#if RGB_RED == 0
145#define C0_SCALE R_SCALE
146#endif
147#if RGB_BLUE == 0
148#define C0_SCALE B_SCALE
149#endif
150#if RGB_GREEN == 1
151#define C1_SCALE G_SCALE
152#endif
153#if RGB_RED == 2
154#define C2_SCALE R_SCALE
155#endif
156#if RGB_BLUE == 2
157#define C2_SCALE B_SCALE
158#endif
159
160
161/*
162 * First we have the histogram data structure and routines for creating it.
163 *
164 * The number of bits of precision can be adjusted by changing these symbols.
165 * We recommend keeping 6 bits for G and 5 each for R and B.
166 * If you have plenty of memory and cycles, 6 bits all around gives marginally
167 * better results; if you are short of memory, 5 bits all around will save
168 * some space but degrade the results.
169 * To maintain a fully accurate histogram, we'd need to allocate a "long"
170 * (preferably unsigned long) for each cell. In practice this is overkill;
171 * we can get by with 16 bits per cell. Few of the cell counts will overflow,
172 * and clamping those that do overflow to the maximum value will give close-
173 * enough results. This reduces the recommended histogram size from 256Kb
174 * to 128Kb, which is a useful savings on PC-class machines.
175 * (In the second pass the histogram space is re-used for pixel mapping data;
176 * in that capacity, each cell must be able to store zero to the number of
177 * desired colors. 16 bits/cell is plenty for that too.)
178 * Since the JPEG code is intended to run in small memory model on 80x86
179 * machines, we can't just allocate the histogram in one chunk. Instead
180 * of a true 3-D array, we use a row of pointers to 2-D arrays. Each
181 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
182 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that
183 * on 80x86 machines, the pointer row is in near memory but the actual
184 * arrays are in far memory (same arrangement as we use for image arrays).
185 */
186
187#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
188
189/* These will do the right thing for either R,G,B or B,G,R color order,
190 * but you may not like the results for other color orders.
191 */
192#define HIST_C0_BITS 5 /* bits of precision in R/B histogram */
193#define HIST_C1_BITS 6 /* bits of precision in G histogram */
194#define HIST_C2_BITS 5 /* bits of precision in B/R histogram */
195
196/* Number of elements along histogram axes. */
197#define HIST_C0_ELEMS (1<<HIST_C0_BITS)
198#define HIST_C1_ELEMS (1<<HIST_C1_BITS)
199#define HIST_C2_ELEMS (1<<HIST_C2_BITS)
200
201/* These are the amounts to shift an input value to get a histogram index. */
202#define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS)
203#define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS)
204#define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS)
205
206
207typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */
208
209typedef histcell * histptr; /* for pointers to histogram cells */
210
211typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
212typedef hist1d * hist2d; /* type for the 2nd-level pointers */
213typedef hist2d * hist3d; /* type for top-level pointer */
214
215
216/* Declarations for Floyd-Steinberg dithering.
217 *
218 * Errors are accumulated into the array fserrors[], at a resolution of
219 * 1/16th of a pixel count. The error at a given pixel is propagated
220 * to its not-yet-processed neighbors using the standard F-S fractions,
221 * ... (here) 7/16
222 * 3/16 5/16 1/16
223 * We work left-to-right on even rows, right-to-left on odd rows.
224 *
225 * We can get away with a single array (holding one row's worth of errors)
226 * by using it to store the current row's errors at pixel columns not yet
227 * processed, but the next row's errors at columns already processed. We
228 * need only a few extra variables to hold the errors immediately around the
229 * current column. (If we are lucky, those variables are in registers, but
230 * even if not, they're probably cheaper to access than array elements are.)
231 *
232 * The fserrors[] array has (#columns + 2) entries; the extra entry at
233 * each end saves us from special-casing the first and last pixels.
234 * Each entry is three values long, one value for each color component.
235 *
236 * Note: on a wide image, we might not have enough room in a PC's near data
237 * segment to hold the error array; so it is allocated with alloc_large.
238 */
239
240#if BITS_IN_JSAMPLE == 8
241typedef INT16 FSERROR; /* 16 bits should be enough */
242typedef int LOCFSERROR; /* use 'int' for calculation temps */
243#else
244typedef INT32 FSERROR; /* may need more than 16 bits */
245typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */
246#endif
247
248typedef FSERROR *FSERRPTR; /* pointer to error array (in storage!) */
249
250
251/* Private subobject */
252
253typedef struct {
254
255 struct {
256 void (*finish_pass)(j_decompress_ptr);
257 void (*color_quantize)(j_decompress_ptr, JSAMPARRAY, JSAMPARRAY, int);
258 void (*start_pass)(j_decompress_ptr, bool);
259 void (*new_color_map)(j_decompress_ptr);
260 } pub;
261
262 /* Space for the eventually created colormap is stashed here */
263 JSAMPARRAY sv_colormap; /* colormap allocated at init time */
264 int desired; /* desired # of colors = size of colormap */
265
266 /* Variables for accumulating image statistics */
267 hist3d histogram; /* pointer to the histogram */
268
269 bool needs_zeroed; /* true if next pass must zero histogram */
270
271 /* Variables for Floyd-Steinberg dithering */
272 FSERRPTR fserrors; /* accumulated errors */
273 bool on_odd_row; /* flag to remember which row we are on */
274 int * error_limiter; /* table for clamping the applied error */
275} my_cquantizer;
276
277typedef my_cquantizer * my_cquantize_ptr;
278
279
280/*
281 * Prescan some rows of pixels.
282 * In this module the prescan simply updates the histogram, which has been
283 * initialized to zeroes by start_pass.
284 * An output_buf parameter is required by the method signature, but no data
285 * is actually output (in fact the buffer controller is probably passing a
286 * NULL pointer).
287 */
288
289void
290prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
291 JSAMPARRAY output_buf, int num_rows)
292{
293 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
294 register JSAMPROW ptr;
295 register histptr histp;
296 register hist3d histogram = cquantize->histogram;
297 int row;
298 JDIMENSION col;
299 JDIMENSION width = cinfo->output_width;
300
301 for (row = 0; row < num_rows; row++) {
302 ptr = input_buf[row];
303 for (col = width; col > 0; col--) {
304
305 {
306
307 /* get pixel value and index into the histogram */
308 histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
309 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
310 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
311 /* increment, check for overflow and undo increment if so. */
312 if (++(*histp) <= 0)
313 (*histp)--;
314 }
315 ptr += 3;
316 }
317 }
318}
319
320
321/*
322 * Next we have the really interesting routines: selection of a colormap
323 * given the completed histogram.
324 * These routines work with a list of "boxes", each representing a rectangular
325 * subset of the input color space (to histogram precision).
326 */
327
328typedef struct {
329 /* The bounds of the box (inclusive); expressed as histogram indexes */
330 int c0min, c0max;
331 int c1min, c1max;
332 int c2min, c2max;
333 /* The volume (actually 2-norm) of the box */
334 INT32 volume;
335 /* The number of nonzero histogram cells within this box */
336 long colorcount;
337} box;
338
339typedef box * boxptr;
340
341
342boxptr
343find_biggest_color_pop (boxptr boxlist, int numboxes)
344/* Find the splittable box with the largest color population */
345/* Returns NULL if no splittable boxes remain */
346{
347 register boxptr boxp;
348 register int i;
349 register long maxc = 0;
350 boxptr which = NULL;
351
352 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
353 if (boxp->colorcount > maxc && boxp->volume > 0) {
354 which = boxp;
355 maxc = boxp->colorcount;
356 }
357 }
358 return which;
359}
360
361
362boxptr
363find_biggest_volume (boxptr boxlist, int numboxes)
364/* Find the splittable box with the largest (scaled) volume */
365/* Returns NULL if no splittable boxes remain */
366{
367 register boxptr boxp;
368 register int i;
369 register INT32 maxv = 0;
370 boxptr which = NULL;
371
372 for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
373 if (boxp->volume > maxv) {
374 which = boxp;
375 maxv = boxp->volume;
376 }
377 }
378 return which;
379}
380
381
382void
383update_box (j_decompress_ptr cinfo, boxptr boxp)
384/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
385/* and recompute its volume and population */
386{
387 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
388 hist3d histogram = cquantize->histogram;
389 histptr histp;
390 int c0,c1,c2;
391 int c0min,c0max,c1min,c1max,c2min,c2max;
392 INT32 dist0,dist1,dist2;
393 long ccount;
394
395 c0min = boxp->c0min; c0max = boxp->c0max;
396 c1min = boxp->c1min; c1max = boxp->c1max;
397 c2min = boxp->c2min; c2max = boxp->c2max;
398
399 if (c0max > c0min)
400 for (c0 = c0min; c0 <= c0max; c0++)
401 for (c1 = c1min; c1 <= c1max; c1++) {
402 histp = & histogram[c0][c1][c2min];
403 for (c2 = c2min; c2 <= c2max; c2++)
404 if (*histp++ != 0) {
405 boxp->c0min = c0min = c0;
406 goto have_c0min;
407 }
408 }
409 have_c0min:
410 if (c0max > c0min)
411 for (c0 = c0max; c0 >= c0min; c0--)
412 for (c1 = c1min; c1 <= c1max; c1++) {
413 histp = & histogram[c0][c1][c2min];
414 for (c2 = c2min; c2 <= c2max; c2++)
415 if (*histp++ != 0) {
416 boxp->c0max = c0max = c0;
417 goto have_c0max;
418 }
419 }
420 have_c0max:
421 if (c1max > c1min)
422 for (c1 = c1min; c1 <= c1max; c1++)
423 for (c0 = c0min; c0 <= c0max; c0++) {
424 histp = & histogram[c0][c1][c2min];
425 for (c2 = c2min; c2 <= c2max; c2++)
426 if (*histp++ != 0) {
427 boxp->c1min = c1min = c1;
428 goto have_c1min;
429 }
430 }
431 have_c1min:
432 if (c1max > c1min)
433 for (c1 = c1max; c1 >= c1min; c1--)
434 for (c0 = c0min; c0 <= c0max; c0++) {
435 histp = & histogram[c0][c1][c2min];
436 for (c2 = c2min; c2 <= c2max; c2++)
437 if (*histp++ != 0) {
438 boxp->c1max = c1max = c1;
439 goto have_c1max;
440 }
441 }
442 have_c1max:
443 if (c2max > c2min)
444 for (c2 = c2min; c2 <= c2max; c2++)
445 for (c0 = c0min; c0 <= c0max; c0++) {
446 histp = & histogram[c0][c1min][c2];
447 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
448 if (*histp != 0) {
449 boxp->c2min = c2min = c2;
450 goto have_c2min;
451 }
452 }
453 have_c2min:
454 if (c2max > c2min)
455 for (c2 = c2max; c2 >= c2min; c2--)
456 for (c0 = c0min; c0 <= c0max; c0++) {
457 histp = & histogram[c0][c1min][c2];
458 for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS)
459 if (*histp != 0) {
460 boxp->c2max = c2max = c2;
461 goto have_c2max;
462 }
463 }
464 have_c2max:
465
466 /* Update box volume.
467 * We use 2-norm rather than real volume here; this biases the method
468 * against making long narrow boxes, and it has the side benefit that
469 * a box is splittable iff norm > 0.
470 * Since the differences are expressed in histogram-cell units,
471 * we have to shift back to JSAMPLE units to get consistent distances;
472 * after which, we scale according to the selected distance scale factors.
473 */
474 dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE;
475 dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE;
476 dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE;
477 boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2;
478
479 /* Now scan remaining volume of box and compute population */
480 ccount = 0;
481 for (c0 = c0min; c0 <= c0max; c0++)
482 for (c1 = c1min; c1 <= c1max; c1++) {
483 histp = & histogram[c0][c1][c2min];
484 for (c2 = c2min; c2 <= c2max; c2++, histp++)
485 if (*histp != 0) {
486 ccount++;
487 }
488 }
489 boxp->colorcount = ccount;
490}
491
492
493int
494median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes,
495 int desired_colors)
496/* Repeatedly select and split the largest box until we have enough boxes */
497{
498 int n,lb;
499 int c0,c1,c2,cmax;
500 register boxptr b1,b2;
501
502 while (numboxes < desired_colors) {
503 /* Select box to split.
504 * Current algorithm: by population for first half, then by volume.
505 */
506 if (numboxes*2 <= desired_colors) {
507 b1 = find_biggest_color_pop(boxlist, numboxes);
508 } else {
509 b1 = find_biggest_volume(boxlist, numboxes);
510 }
511 if (b1 == NULL) /* no splittable boxes left! */
512 break;
513 b2 = &boxlist[numboxes]; /* where new box will go */
514 /* Copy the color bounds to the new box. */
515 b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
516 b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
517 /* Choose which axis to split the box on.
518 * Current algorithm: longest scaled axis.
519 * See notes in update_box about scaling distances.
520 */
521 c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE;
522 c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE;
523 c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE;
524 /* We want to break any ties in favor of green, then red, blue last.
525 * This code does the right thing for R,G,B or B,G,R color orders only.
526 */
527#if RGB_RED == 0
528 cmax = c1; n = 1;
529 if (c0 > cmax) { cmax = c0; n = 0; }
530 if (c2 > cmax) { n = 2; }
531#else
532 cmax = c1; n = 1;
533 if (c2 > cmax) { cmax = c2; n = 2; }
534 if (c0 > cmax) { n = 0; }
535#endif
536 /* Choose split point along selected axis, and update box bounds.
537 * Current algorithm: split at halfway point.
538 * (Since the box has been shrunk to minimum volume,
539 * any split will produce two nonempty subboxes.)
540 * Note that lb value is max for lower box, so must be < old max.
541 */
542 switch (n) {
543 case 0:
544 lb = (b1->c0max + b1->c0min) / 2;
545 b1->c0max = lb;
546 b2->c0min = lb+1;
547 break;
548 case 1:
549 lb = (b1->c1max + b1->c1min) / 2;
550 b1->c1max = lb;
551 b2->c1min = lb+1;
552 break;
553 case 2:
554 lb = (b1->c2max + b1->c2min) / 2;
555 b1->c2max = lb;
556 b2->c2min = lb+1;
557 break;
558 }
559 /* Update stats for boxes */
560 update_box(cinfo, b1);
561 update_box(cinfo, b2);
562 numboxes++;
563 }
564 return numboxes;
565}
566
567
568void
569compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor)
570/* Compute representative color for a box, put it in colormap[icolor] */
571{
572 /* Current algorithm: mean weighted by pixels (not colors) */
573 /* Note it is important to get the rounding correct! */
574 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
575 hist3d histogram = cquantize->histogram;
576 histptr histp;
577 int c0,c1,c2;
578 int c0min,c0max,c1min,c1max,c2min,c2max;
579 long count;
580 long total = 0;
581 long c0total = 0;
582 long c1total = 0;
583 long c2total = 0;
584
585 c0min = boxp->c0min; c0max = boxp->c0max;
586 c1min = boxp->c1min; c1max = boxp->c1max;
587 c2min = boxp->c2min; c2max = boxp->c2max;
588
589 for (c0 = c0min; c0 <= c0max; c0++)
590 for (c1 = c1min; c1 <= c1max; c1++) {
591 histp = & histogram[c0][c1][c2min];
592 for (c2 = c2min; c2 <= c2max; c2++) {
593 if ((count = *histp++) != 0) {
594 total += count;
595 c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count;
596 c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count;
597 c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count;
598 }
599 }
600 }
601
602 cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
603 cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
604 cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
605}
606
607
608static void
609select_colors (j_decompress_ptr cinfo, int desired_colors)
610/* Master routine for color selection */
611{
612 boxptr boxlist;
613 int numboxes;
614 int i;
615
616 /* Allocate workspace for box list */
617 boxlist = (boxptr) malloc(desired_colors * sizeof(box));
618 /* Initialize one box containing whole space */
619 numboxes = 1;
620 boxlist[0].c0min = 0;
621 boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT;
622 boxlist[0].c1min = 0;
623 boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT;
624 boxlist[0].c2min = 0;
625 boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT;
626 /* Shrink it to actually-used volume and set its statistics */
627 update_box(cinfo, & boxlist[0]);
628 /* Perform median-cut to produce final box list */
629 numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors);
630 /* Compute the representative color for each box, fill colormap */
631 for (i = 0; i < numboxes; i++)
632 compute_color(cinfo, & boxlist[i], i);
633 cinfo->actual_number_of_colors = numboxes;
634
635 free(boxlist); //FIXME?? I don't know if this is correct - VS
636}
637
638
639/*
640 * These routines are concerned with the time-critical task of mapping input
641 * colors to the nearest color in the selected colormap.
642 *
643 * We re-use the histogram space as an "inverse color map", essentially a
644 * cache for the results of nearest-color searches. All colors within a
645 * histogram cell will be mapped to the same colormap entry, namely the one
646 * closest to the cell's center. This may not be quite the closest entry to
647 * the actual input color, but it's almost as good. A zero in the cache
648 * indicates we haven't found the nearest color for that cell yet; the array
649 * is cleared to zeroes before starting the mapping pass. When we find the
650 * nearest color for a cell, its colormap index plus one is recorded in the
651 * cache for future use. The pass2 scanning routines call fill_inverse_cmap
652 * when they need to use an unfilled entry in the cache.
653 *
654 * Our method of efficiently finding nearest colors is based on the "locally
655 * sorted search" idea described by Heckbert and on the incremental distance
656 * calculation described by Spencer W. Thomas in chapter III.1 of Graphics
657 * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
658 * the distances from a given colormap entry to each cell of the histogram can
659 * be computed quickly using an incremental method: the differences between
660 * distances to adjacent cells themselves differ by a constant. This allows a
661 * fairly fast implementation of the "brute force" approach of computing the
662 * distance from every colormap entry to every histogram cell. Unfortunately,
663 * it needs a work array to hold the best-distance-so-far for each histogram
664 * cell (because the inner loop has to be over cells, not colormap entries).
665 * The work array elements have to be INT32s, so the work array would need
666 * 256Kb at our recommended precision. This is not feasible in DOS machines.
667 *
668 * To get around these problems, we apply Thomas' method to compute the
669 * nearest colors for only the cells within a small subbox of the histogram.
670 * The work array need be only as big as the subbox, so the memory usage
671 * problem is solved. Furthermore, we need not fill subboxes that are never
672 * referenced in pass2; many images use only part of the color gamut, so a
673 * fair amount of work is saved. An additional advantage of this
674 * approach is that we can apply Heckbert's locality criterion to quickly
675 * eliminate colormap entries that are far away from the subbox; typically
676 * three-fourths of the colormap entries are rejected by Heckbert's criterion,
677 * and we need not compute their distances to individual cells in the subbox.
678 * The speed of this approach is heavily influenced by the subbox size: too
679 * small means too much overhead, too big loses because Heckbert's criterion
680 * can't eliminate as many colormap entries. Empirically the best subbox
681 * size seems to be about 1/512th of the histogram (1/8th in each direction).
682 *
683 * Thomas' article also describes a refined method which is asymptotically
684 * faster than the brute-force method, but it is also far more complex and
685 * cannot efficiently be applied to small subboxes. It is therefore not
686 * useful for programs intended to be portable to DOS machines. On machines
687 * with plenty of memory, filling the whole histogram in one shot with Thomas'
688 * refined method might be faster than the present code --- but then again,
689 * it might not be any faster, and it's certainly more complicated.
690 */
691
692
693/* log2(histogram cells in update box) for each axis; this can be adjusted */
694#define BOX_C0_LOG (HIST_C0_BITS-3)
695#define BOX_C1_LOG (HIST_C1_BITS-3)
696#define BOX_C2_LOG (HIST_C2_BITS-3)
697
698#define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */
699#define BOX_C1_ELEMS (1<<BOX_C1_LOG)
700#define BOX_C2_ELEMS (1<<BOX_C2_LOG)
701
702#define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG)
703#define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG)
704#define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG)
705
706
707/*
708 * The next three routines implement inverse colormap filling. They could
709 * all be folded into one big routine, but splitting them up this way saves
710 * some stack space (the mindist[] and bestdist[] arrays need not coexist)
711 * and may allow some compilers to produce better code by registerizing more
712 * inner-loop variables.
713 */
714
715static int
716find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
717 JSAMPLE colorlist[])
718/* Locate the colormap entries close enough to an update box to be candidates
719 * for the nearest entry to some cell(s) in the update box. The update box
720 * is specified by the center coordinates of its first cell. The number of
721 * candidate colormap entries is returned, and their colormap indexes are
722 * placed in colorlist[].
723 * This routine uses Heckbert's "locally sorted search" criterion to select
724 * the colors that need further consideration.
725 */
726{
727 int numcolors = cinfo->actual_number_of_colors;
728 int maxc0, maxc1, maxc2;
729 int centerc0, centerc1, centerc2;
730 int i, x, ncolors;
731 INT32 minmaxdist, min_dist, max_dist, tdist;
732 INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
733
734 /* Compute true coordinates of update box's upper corner and center.
735 * Actually we compute the coordinates of the center of the upper-corner
736 * histogram cell, which are the upper bounds of the volume we care about.
737 * Note that since ">>" rounds down, the "center" values may be closer to
738 * min than to max; hence comparisons to them must be "<=", not "<".
739 */
740 maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT));
741 centerc0 = (minc0 + maxc0) >> 1;
742 maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT));
743 centerc1 = (minc1 + maxc1) >> 1;
744 maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT));
745 centerc2 = (minc2 + maxc2) >> 1;
746
747 /* For each color in colormap, find:
748 * 1. its minimum squared-distance to any point in the update box
749 * (zero if color is within update box);
750 * 2. its maximum squared-distance to any point in the update box.
751 * Both of these can be found by considering only the corners of the box.
752 * We save the minimum distance for each color in mindist[];
753 * only the smallest maximum distance is of interest.
754 */
755 minmaxdist = 0x7FFFFFFFL;
756
757 for (i = 0; i < numcolors; i++) {
758 /* We compute the squared-c0-distance term, then add in the other two. */
759 x = GETJSAMPLE(cinfo->colormap[0][i]);
760 if (x < minc0) {
761 tdist = (x - minc0) * C0_SCALE;
762 min_dist = tdist*tdist;
763 tdist = (x - maxc0) * C0_SCALE;
764 max_dist = tdist*tdist;
765 } else if (x > maxc0) {
766 tdist = (x - maxc0) * C0_SCALE;
767 min_dist = tdist*tdist;
768 tdist = (x - minc0) * C0_SCALE;
769 max_dist = tdist*tdist;
770 } else {
771 /* within cell range so no contribution to min_dist */
772 min_dist = 0;
773 if (x <= centerc0) {
774 tdist = (x - maxc0) * C0_SCALE;
775 max_dist = tdist*tdist;
776 } else {
777 tdist = (x - minc0) * C0_SCALE;
778 max_dist = tdist*tdist;
779 }
780 }
781
782 x = GETJSAMPLE(cinfo->colormap[1][i]);
783 if (x < minc1) {
784 tdist = (x - minc1) * C1_SCALE;
785 min_dist += tdist*tdist;
786 tdist = (x - maxc1) * C1_SCALE;
787 max_dist += tdist*tdist;
788 } else if (x > maxc1) {
789 tdist = (x - maxc1) * C1_SCALE;
790 min_dist += tdist*tdist;
791 tdist = (x - minc1) * C1_SCALE;
792 max_dist += tdist*tdist;
793 } else {
794 /* within cell range so no contribution to min_dist */
795 if (x <= centerc1) {
796 tdist = (x - maxc1) * C1_SCALE;
797 max_dist += tdist*tdist;
798 } else {
799 tdist = (x - minc1) * C1_SCALE;
800 max_dist += tdist*tdist;
801 }
802 }
803
804 x = GETJSAMPLE(cinfo->colormap[2][i]);
805 if (x < minc2) {
806 tdist = (x - minc2) * C2_SCALE;
807 min_dist += tdist*tdist;
808 tdist = (x - maxc2) * C2_SCALE;
809 max_dist += tdist*tdist;
810 } else if (x > maxc2) {
811 tdist = (x - maxc2) * C2_SCALE;
812 min_dist += tdist*tdist;
813 tdist = (x - minc2) * C2_SCALE;
814 max_dist += tdist*tdist;
815 } else {
816 /* within cell range so no contribution to min_dist */
817 if (x <= centerc2) {
818 tdist = (x - maxc2) * C2_SCALE;
819 max_dist += tdist*tdist;
820 } else {
821 tdist = (x - minc2) * C2_SCALE;
822 max_dist += tdist*tdist;
823 }
824 }
825
826 mindist[i] = min_dist; /* save away the results */
827 if (max_dist < minmaxdist)
828 minmaxdist = max_dist;
829 }
830
831 /* Now we know that no cell in the update box is more than minmaxdist
832 * away from some colormap entry. Therefore, only colors that are
833 * within minmaxdist of some part of the box need be considered.
834 */
835 ncolors = 0;
836 for (i = 0; i < numcolors; i++) {
837 if (mindist[i] <= minmaxdist)
838 colorlist[ncolors++] = (JSAMPLE) i;
839 }
840 return ncolors;
841}
842
843
844static void
845find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2,
846 int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
847/* Find the closest colormap entry for each cell in the update box,
848 * given the list of candidate colors prepared by find_nearby_colors.
849 * Return the indexes of the closest entries in the bestcolor[] array.
850 * This routine uses Thomas' incremental distance calculation method to
851 * find the distance from a colormap entry to successive cells in the box.
852 */
853{
854 int ic0, ic1, ic2;
855 int i, icolor;
856 register INT32 * bptr; /* pointer into bestdist[] array */
857 JSAMPLE * cptr; /* pointer into bestcolor[] array */
858 INT32 dist0, dist1; /* initial distance values */
859 register INT32 dist2; /* current distance in inner loop */
860 INT32 xx0, xx1; /* distance increments */
861 register INT32 xx2;
862 INT32 inc0, inc1, inc2; /* initial values for increments */
863 /* This array holds the distance to the nearest-so-far color for each cell */
864 INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
865
866 /* Initialize best-distance for each cell of the update box */
867 bptr = bestdist;
868 for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--)
869 *bptr++ = 0x7FFFFFFFL;
870
871 /* For each color selected by find_nearby_colors,
872 * compute its distance to the center of each cell in the box.
873 * If that's less than best-so-far, update best distance and color number.
874 */
875
876 /* Nominal steps between cell centers ("x" in Thomas article) */
877#define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE)
878#define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE)
879#define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE)
880
881 for (i = 0; i < numcolors; i++) {
882 icolor = GETJSAMPLE(colorlist[i]);
883 /* Compute (square of) distance from minc0/c1/c2 to this color */
884 inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE;
885 dist0 = inc0*inc0;
886 inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE;
887 dist0 += inc1*inc1;
888 inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE;
889 dist0 += inc2*inc2;
890 /* Form the initial difference increments */
891 inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0;
892 inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1;
893 inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2;
894 /* Now loop over all cells in box, updating distance per Thomas method */
895 bptr = bestdist;
896 cptr = bestcolor;
897 xx0 = inc0;
898 for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) {
899 dist1 = dist0;
900 xx1 = inc1;
901 for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) {
902 dist2 = dist1;
903 xx2 = inc2;
904 for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) {
905 if (dist2 < *bptr) {
906 *bptr = dist2;
907 *cptr = (JSAMPLE) icolor;
908 }
909 dist2 += xx2;
910 xx2 += 2 * STEP_C2 * STEP_C2;
911 bptr++;
912 cptr++;
913 }
914 dist1 += xx1;
915 xx1 += 2 * STEP_C1 * STEP_C1;
916 }
917 dist0 += xx0;
918 xx0 += 2 * STEP_C0 * STEP_C0;
919 }
920 }
921}
922
923
924static void
925fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2)
926/* Fill the inverse-colormap entries in the update box that contains */
927/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
928/* we can fill as many others as we wish.) */
929{
930 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
931 hist3d histogram = cquantize->histogram;
932 int minc0, minc1, minc2; /* lower left corner of update box */
933 int ic0, ic1, ic2;
934 register JSAMPLE * cptr; /* pointer into bestcolor[] array */
935 register histptr cachep; /* pointer into main cache array */
936 /* This array lists the candidate colormap indexes. */
937 JSAMPLE colorlist[MAXNUMCOLORS];
938 int numcolors; /* number of candidate colors */
939 /* This array holds the actually closest colormap index for each cell. */
940 JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS];
941
942 /* Convert cell coordinates to update box ID */
943 c0 >>= BOX_C0_LOG;
944 c1 >>= BOX_C1_LOG;
945 c2 >>= BOX_C2_LOG;
946
947 /* Compute true coordinates of update box's origin corner.
948 * Actually we compute the coordinates of the center of the corner
949 * histogram cell, which are the lower bounds of the volume we care about.
950 */
951 minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1);
952 minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1);
953 minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1);
954
955 /* Determine which colormap entries are close enough to be candidates
956 * for the nearest entry to some cell in the update box.
957 */
958 numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
959
960 /* Determine the actually nearest colors. */
961 find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
962 bestcolor);
963
964 /* Save the best color numbers (plus 1) in the main cache array */
965 c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */
966 c1 <<= BOX_C1_LOG;
967 c2 <<= BOX_C2_LOG;
968 cptr = bestcolor;
969 for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) {
970 for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) {
971 cachep = & histogram[c0+ic0][c1+ic1][c2];
972 for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) {
973 *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
974 }
975 }
976 }
977}
978
979
980/*
981 * Map some rows of pixels to the output colormapped representation.
982 */
983
984void
985pass2_no_dither (j_decompress_ptr cinfo,
986 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
987/* This version performs no dithering */
988{
989 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
990 hist3d histogram = cquantize->histogram;
991 register JSAMPROW inptr, outptr;
992 register histptr cachep;
993 register int c0, c1, c2;
994 int row;
995 JDIMENSION col;
996 JDIMENSION width = cinfo->output_width;
997
998 for (row = 0; row < num_rows; row++) {
999 inptr = input_buf[row];
1000 outptr = output_buf[row];
1001 for (col = width; col > 0; col--) {
1002 /* get pixel value and index into the cache */
1003 c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT;
1004 c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT;
1005 c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT;
1006 cachep = & histogram[c0][c1][c2];
1007 /* If we have not seen this color before, find nearest colormap entry */
1008 /* and update the cache */
1009 if (*cachep == 0)
1010 fill_inverse_cmap(cinfo, c0,c1,c2);
1011 /* Now emit the colormap index for this cell */
1012 *outptr++ = (JSAMPLE) (*cachep - 1);
1013 }
1014 }
1015}
1016
1017
1018void
1019pass2_fs_dither (j_decompress_ptr cinfo,
1020 JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows)
1021/* This version performs Floyd-Steinberg dithering */
1022{
1023 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1024 hist3d histogram = cquantize->histogram;
1025 register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */
1026 LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */
1027 LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */
1028 register FSERRPTR errorptr; /* => fserrors[] at column before current */
1029 JSAMPROW inptr; /* => current input pixel */
1030 JSAMPROW outptr; /* => current output pixel */
1031 histptr cachep;
1032 int dir; /* +1 or -1 depending on direction */
1033 int dir3; /* 3*dir, for advancing inptr & errorptr */
1034 int row;
1035 JDIMENSION col;
1036 JDIMENSION width = cinfo->output_width;
1037 JSAMPLE *range_limit = cinfo->sample_range_limit;
1038 int *error_limit = cquantize->error_limiter;
1039 JSAMPROW colormap0 = cinfo->colormap[0];
1040 JSAMPROW colormap1 = cinfo->colormap[1];
1041 JSAMPROW colormap2 = cinfo->colormap[2];
1042
1043
1044 for (row = 0; row < num_rows; row++) {
1045 inptr = input_buf[row];
1046 outptr = output_buf[row];
1047 if (cquantize->on_odd_row) {
1048 /* work right to left in this row */
1049 inptr += (width-1) * 3; /* so point to rightmost pixel */
1050 outptr += width-1;
1051 dir = -1;
1052 dir3 = -3;
1053 errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */
1054 cquantize->on_odd_row = false; /* flip for next time */
1055 } else {
1056 /* work left to right in this row */
1057 dir = 1;
1058 dir3 = 3;
1059 errorptr = cquantize->fserrors; /* => entry before first real column */
1060 cquantize->on_odd_row = true; /* flip for next time */
1061 }
1062 /* Preset error values: no error propagated to first pixel from left */
1063 cur0 = cur1 = cur2 = 0;
1064 /* and no error propagated to row below yet */
1065 belowerr0 = belowerr1 = belowerr2 = 0;
1066 bpreverr0 = bpreverr1 = bpreverr2 = 0;
1067
1068 for (col = width; col > 0; col--) {
1069 /* curN holds the error propagated from the previous pixel on the
1070 * current line. Add the error propagated from the previous line
1071 * to form the complete error correction term for this pixel, and
1072 * round the error term (which is expressed * 16) to an integer.
1073 * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
1074 * for either sign of the error value.
1075 * Note: errorptr points to *previous* column's array entry.
1076 */
1077 cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4);
1078 cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4);
1079 cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4);
1080 /* Limit the error using transfer function set by init_error_limit.
1081 * See comments with init_error_limit for rationale.
1082 */
1083 cur0 = error_limit[cur0];
1084 cur1 = error_limit[cur1];
1085 cur2 = error_limit[cur2];
1086 /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE.
1087 * The maximum error is +- MAXJSAMPLE (or less with error limiting);
1088 * this sets the required size of the range_limit array.
1089 */
1090 cur0 += GETJSAMPLE(inptr[0]);
1091 cur1 += GETJSAMPLE(inptr[1]);
1092 cur2 += GETJSAMPLE(inptr[2]);
1093 cur0 = GETJSAMPLE(range_limit[cur0]);
1094 cur1 = GETJSAMPLE(range_limit[cur1]);
1095 cur2 = GETJSAMPLE(range_limit[cur2]);
1096 /* Index into the cache with adjusted pixel value */
1097 cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT];
1098 /* If we have not seen this color before, find nearest colormap */
1099 /* entry and update the cache */
1100 if (*cachep == 0)
1101 fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT);
1102 /* Now emit the colormap index for this cell */
1103 { register int pixcode = *cachep - 1;
1104 *outptr = (JSAMPLE) pixcode;
1105 /* Compute representation error for this pixel */
1106 cur0 -= GETJSAMPLE(colormap0[pixcode]);
1107 cur1 -= GETJSAMPLE(colormap1[pixcode]);
1108 cur2 -= GETJSAMPLE(colormap2[pixcode]);
1109 }
1110 /* Compute error fractions to be propagated to adjacent pixels.
1111 * Add these into the running sums, and simultaneously shift the
1112 * next-line error sums left by 1 column.
1113 */
1114 { register LOCFSERROR bnexterr, delta;
1115
1116 bnexterr = cur0; /* Process component 0 */
1117 delta = cur0 * 2;
1118 cur0 += delta; /* form error * 3 */
1119 errorptr[0] = (FSERROR) (bpreverr0 + cur0);
1120 cur0 += delta; /* form error * 5 */
1121 bpreverr0 = belowerr0 + cur0;
1122 belowerr0 = bnexterr;
1123 cur0 += delta; /* form error * 7 */
1124 bnexterr = cur1; /* Process component 1 */
1125 delta = cur1 * 2;
1126 cur1 += delta; /* form error * 3 */
1127 errorptr[1] = (FSERROR) (bpreverr1 + cur1);
1128 cur1 += delta; /* form error * 5 */
1129 bpreverr1 = belowerr1 + cur1;
1130 belowerr1 = bnexterr;
1131 cur1 += delta; /* form error * 7 */
1132 bnexterr = cur2; /* Process component 2 */
1133 delta = cur2 * 2;
1134 cur2 += delta; /* form error * 3 */
1135 errorptr[2] = (FSERROR) (bpreverr2 + cur2);
1136 cur2 += delta; /* form error * 5 */
1137 bpreverr2 = belowerr2 + cur2;
1138 belowerr2 = bnexterr;
1139 cur2 += delta; /* form error * 7 */
1140 }
1141 /* At this point curN contains the 7/16 error value to be propagated
1142 * to the next pixel on the current line, and all the errors for the
1143 * next line have been shifted over. We are therefore ready to move on.
1144 */
1145 inptr += dir3; /* Advance pixel pointers to next column */
1146 outptr += dir;
1147 errorptr += dir3; /* advance errorptr to current column */
1148 }
1149 /* Post-loop cleanup: we must unload the final error values into the
1150 * final fserrors[] entry. Note we need not unload belowerrN because
1151 * it is for the dummy column before or after the actual array.
1152 */
1153 errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */
1154 errorptr[1] = (FSERROR) bpreverr1;
1155 errorptr[2] = (FSERROR) bpreverr2;
1156 }
1157}
1158
1159
1160/*
1161 * Initialize the error-limiting transfer function (lookup table).
1162 * The raw F-S error computation can potentially compute error values of up to
1163 * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be
1164 * much less, otherwise obviously wrong pixels will be created. (Typical
1165 * effects include weird fringes at color-area boundaries, isolated bright
1166 * pixels in a dark area, etc.) The standard advice for avoiding this problem
1167 * is to ensure that the "corners" of the color cube are allocated as output
1168 * colors; then repeated errors in the same direction cannot cause cascading
1169 * error buildup. However, that only prevents the error from getting
1170 * completely out of hand; Aaron Giles reports that error limiting improves
1171 * the results even with corner colors allocated.
1172 * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty
1173 * well, but the smoother transfer function used below is even better. Thanks
1174 * to Aaron Giles for this idea.
1175 */
1176
1177static void
1178init_error_limit (j_decompress_ptr cinfo)
1179/* Allocate and fill in the error_limiter table */
1180{
1181 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1182 int * table;
1183 int in, out;
1184
1185 table = (int *) malloc((MAXJSAMPLE*2+1) * sizeof(int));
1186 table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */
1187 cquantize->error_limiter = table;
1188
1189#define STEPSIZE ((MAXJSAMPLE+1)/16)
1190 /* Map errors 1:1 up to +- MAXJSAMPLE/16 */
1191 out = 0;
1192 for (in = 0; in < STEPSIZE; in++, out++) {
1193 table[in] = out; table[-in] = -out;
1194 }
1195 /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */
1196 for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) {
1197 table[in] = out; table[-in] = -out;
1198 }
1199 /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */
1200 for (; in <= MAXJSAMPLE; in++) {
1201 table[in] = out; table[-in] = -out;
1202 }
1203#undef STEPSIZE
1204}
1205
1206
1207/*
1208 * Finish up at the end of each pass.
1209 */
1210
1211void
1212finish_pass1 (j_decompress_ptr cinfo)
1213{
1214 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1215
1216 /* Select the representative colors and fill in cinfo->colormap */
1217 cinfo->colormap = cquantize->sv_colormap;
1218 select_colors(cinfo, cquantize->desired);
1219 /* Force next pass to zero the color index table */
1220 cquantize->needs_zeroed = true;
1221}
1222
1223
1224void
1225finish_pass2 (j_decompress_ptr cinfo)
1226{
1227 /* no work */
1228}
1229
1230
1231/*
1232 * Initialize for each processing pass.
1233 */
1234
1235void
1236start_pass_2_quant (j_decompress_ptr cinfo, bool is_pre_scan)
1237{
1238 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1239 hist3d histogram = cquantize->histogram;
1240 int i;
1241
1242 if (is_pre_scan) {
1243 /* Set up method pointers */
1244 cquantize->pub.color_quantize = prescan_quantize;
1245 cquantize->pub.finish_pass = finish_pass1;
1246 cquantize->needs_zeroed = true; /* Always zero histogram */
1247 } else {
1248 /* Set up method pointers */
1249 cquantize->pub.color_quantize = pass2_fs_dither;
1250 cquantize->pub.finish_pass = finish_pass2;
1251
1252 /* Make sure color count is acceptable */
1253 i = cinfo->actual_number_of_colors;
1254
1255 {
1256 size_t arraysize = (size_t) ((cinfo->output_width + 2) *
1257 (3 * sizeof(FSERROR)));
1258 /* Allocate Floyd-Steinberg workspace if we didn't already. */
1259 if (cquantize->fserrors == NULL)
1260 cquantize->fserrors = (INT16*) malloc(arraysize);
1261 /* Initialize the propagated errors to zero. */
1262 memset((void *) cquantize->fserrors, 0, arraysize);
1263 /* Make the error-limit table if we didn't already. */
1264 if (cquantize->error_limiter == NULL)
1265 init_error_limit(cinfo);
1266 cquantize->on_odd_row = false;
1267 }
1268
1269 }
1270 /* Zero the histogram or inverse color map, if necessary */
1271 if (cquantize->needs_zeroed) {
1272 for (i = 0; i < HIST_C0_ELEMS; i++) {
1273 memset((void *) histogram[i], 0,
1274 HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1275 }
1276 cquantize->needs_zeroed = false;
1277 }
1278}
1279
1280
1281/*
1282 * Switch to a new external colormap between output passes.
1283 */
1284
1285void
1286new_color_map_2_quant (j_decompress_ptr cinfo)
1287{
1288 my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
1289
1290 /* Reset the inverse color map */
1291 cquantize->needs_zeroed = true;
1292}
1293
1294
1295/*
1296 * Module initialization routine for 2-pass color quantization.
1297 */
1298
1299void
1300jinit_2pass_quantizer (j_decompress_ptr cinfo)
1301{
1302 my_cquantize_ptr cquantize;
1303 int i;
1304
1305 cquantize = (my_cquantize_ptr) malloc(sizeof(my_cquantizer));
1306 cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize;
1307 cquantize->pub.start_pass = start_pass_2_quant;
1308 cquantize->pub.new_color_map = new_color_map_2_quant;
1309 cquantize->fserrors = NULL; /* flag optional arrays not allocated */
1310 cquantize->error_limiter = NULL;
1311
1312
1313 /* Allocate the histogram/inverse colormap storage */
1314 cquantize->histogram = (hist3d) malloc(HIST_C0_ELEMS * sizeof(hist2d));
1315 for (i = 0; i < HIST_C0_ELEMS; i++) {
1316 cquantize->histogram[i] = (hist2d) malloc(HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell));
1317 }
1318 cquantize->needs_zeroed = true; /* histogram is garbage now */
1319
1320 /* Allocate storage for the completed colormap, if required.
1321 * We do this now since it is storage and may affect
1322 * the memory manager's space calculations.
1323 */
1324 {
1325 /* Make sure color count is acceptable */
1326 int desired = cinfo->desired_number_of_colors;
1327
1328 cquantize->sv_colormap = (JSAMPARRAY) malloc(sizeof(JSAMPROW) * 3);
1329 cquantize->sv_colormap[0] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired);
1330 cquantize->sv_colormap[1] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired);
1331 cquantize->sv_colormap[2] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired);
1332
1333 cquantize->desired = desired;
1334 }
1335
1336 /* Allocate Floyd-Steinberg workspace if necessary.
1337 * This isn't really needed until pass 2, but again it is storage.
1338 * Although we will cope with a later change in dither_mode,
1339 * we do not promise to honor max_memory_to_use if dither_mode changes.
1340 */
1341 {
1342 cquantize->fserrors = (FSERRPTR) malloc(
1343 (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR))));
1344 /* Might as well create the error-limiting table too. */
1345 init_error_limit(cinfo);
1346 }
1347}
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358void
1359prepare_range_limit_table (j_decompress_ptr cinfo)
1360/* Allocate and fill in the sample_range_limit table */
1361{
1362 JSAMPLE * table;
1363 int i;
1364
1365 table = (JSAMPLE *) malloc((5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * sizeof(JSAMPLE));
1366 cinfo->srl_orig = table;
1367 table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
1368 cinfo->sample_range_limit = table;
1369 /* First segment of "simple" table: limit[x] = 0 for x < 0 */
1370 memset(table - (MAXJSAMPLE+1), 0, (MAXJSAMPLE+1) * sizeof(JSAMPLE));
1371 /* Main part of "simple" table: limit[x] = x */
1372 for (i = 0; i <= MAXJSAMPLE; i++)
1373 table[i] = (JSAMPLE) i;
1374 table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
1375 /* End of simple table, rest of first half of post-IDCT table */
1376 for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
1377 table[i] = MAXJSAMPLE;
1378 /* Second half of post-IDCT table */
1379 memset(table + (2 * (MAXJSAMPLE+1)), 0,
1380 (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * sizeof(JSAMPLE));
1381 memcpy(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
1382 cinfo->sample_range_limit, CENTERJSAMPLE * sizeof(JSAMPLE));
1383}
1384
1385
1386
1387
1388/*
1389 * wxQuantize
1390 */
1391
1392IMPLEMENT_DYNAMIC_CLASS(wxQuantize, wxObject)
1393
1394void wxQuantize::DoQuantize(unsigned w, unsigned h, unsigned char **in_rows, unsigned char **out_rows,
1395 unsigned char *palette, int desiredNoColours)
1396{
1397 j_decompress dec;
1398 my_cquantize_ptr cquantize;
1399
1400 dec.output_width = w;
1401 dec.desired_number_of_colors = desiredNoColours;
1402 prepare_range_limit_table(&dec);
1403 jinit_2pass_quantizer(&dec);
1404 cquantize = (my_cquantize_ptr) dec.cquantize;
1405
1406
1407 cquantize->pub.start_pass(&dec, true);
1408 cquantize->pub.color_quantize(&dec, in_rows, out_rows, h);
1409 cquantize->pub.finish_pass(&dec);
1410
1411 cquantize->pub.start_pass(&dec, false);
1412 cquantize->pub.color_quantize(&dec, in_rows, out_rows, h);
1413 cquantize->pub.finish_pass(&dec);
1414
1415
1416 for (int i = 0; i < dec.desired_number_of_colors; i++) {
1417 palette[3 * i + 0] = dec.colormap[0][i];
1418 palette[3 * i + 1] = dec.colormap[1][i];
1419 palette[3 * i + 2] = dec.colormap[2][i];
1420 }
1421
1422 for (int ii = 0; ii < HIST_C0_ELEMS; ii++) free(cquantize->histogram[ii]);
1423 free(cquantize->histogram);
1424 free(dec.colormap[0]);
1425 free(dec.colormap[1]);
1426 free(dec.colormap[2]);
1427 free(dec.colormap);
1428 free(dec.srl_orig);
1429
1430 //free(cquantize->error_limiter);
1431 free((void*)(cquantize->error_limiter - MAXJSAMPLE)); // To reverse what was done to it
1432
1433 free(cquantize->fserrors);
1434 free(cquantize);
1435}
1436
1437// TODO: somehow make use of the Windows system colours, rather than ignoring them for the
1438// purposes of quantization.
1439
1440bool wxQuantize::Quantize(const wxImage& src, wxImage& dest, wxPalette** pPalette, int desiredNoColours,
1441 unsigned char** eightBitData, int flags)
1442
1443{
1444 int i;
1445 int w = src.GetWidth();
1446 int h = src.GetHeight();
1447
1448 int windowsSystemColourCount = 20;
1449 int paletteShift = 0;
1450
1451 // Shift the palette up by the number of Windows system colours,
1452 // if necessary
1453 if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS)
1454 paletteShift = windowsSystemColourCount;
1455
1456 // Make room for the Windows system colours
1457#ifdef __WXMSW__
1458 if ((flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS) && (desiredNoColours > (256 - windowsSystemColourCount)))
1459 desiredNoColours = 256 - windowsSystemColourCount;
1460#endif
1461
1462 // create rows info:
1463 unsigned char **rows = new unsigned char *[h];
1464 h = src.GetHeight(), w = src.GetWidth();
1465 unsigned char *imgdt = src.GetData();
1466 for (i = 0; i < h; i++)
1467 rows[i] = imgdt + 3/*RGB*/ * w * i;
1468
1469 unsigned char palette[3*256];
1470
1471 // This is the image as represented by palette indexes.
1472 unsigned char *data8bit = new unsigned char[w * h];
1473 unsigned char **outrows = new unsigned char *[h];
1474 for (i = 0; i < h; i++)
1475 outrows[i] = data8bit + w * i;
1476
1477 //RGB->palette
1478 DoQuantize(w, h, rows, outrows, palette, desiredNoColours);
1479
1480 delete[] rows;
1481 delete[] outrows;
1482
1483 // palette->RGB(max.256)
1484
1485 if (flags & wxQUANTIZE_FILL_DESTINATION_IMAGE)
1486 {
1487 if (!dest.Ok())
1488 dest.Create(w, h);
1489
1490 imgdt = dest.GetData();
1491 for (i = 0; i < w * h; i++)
1492 {
1493 unsigned char c = data8bit[i];
1494 imgdt[3 * i + 0/*R*/] = palette[3 * c + 0];
1495 imgdt[3 * i + 1/*G*/] = palette[3 * c + 1];
1496 imgdt[3 * i + 2/*B*/] = palette[3 * c + 2];
1497 }
1498 }
1499
1500 if (eightBitData && (flags & wxQUANTIZE_RETURN_8BIT_DATA))
1501 {
1502#ifdef __WXMSW__
1503 if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS)
1504 {
1505 // We need to shift the palette entries up
1506 // to make room for the Windows system colours.
1507 for (i = 0; i < w * h; i++)
1508 data8bit[i] = data8bit[i] + paletteShift;
1509 }
1510#endif
1511 *eightBitData = data8bit;
1512 }
1513 else
1514 delete[] data8bit;
1515
1516 // Make a wxWindows palette
1517 if (pPalette)
1518 {
1519 unsigned char* r = new unsigned char[256];
1520 unsigned char* g = new unsigned char[256];
1521 unsigned char* b = new unsigned char[256];
1522
1523#ifdef __WXMSW__
1524 // Fill the first 20 entries with Windows system colours
1525 if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS)
1526 {
1527 HDC hDC = ::GetDC(NULL);
1528 PALETTEENTRY* entries = new PALETTEENTRY[windowsSystemColourCount];
1529 ::GetSystemPaletteEntries(hDC, 0, windowsSystemColourCount, entries);
1530 ::ReleaseDC(NULL, hDC);
1531
1532 for (i = 0; i < windowsSystemColourCount; i++)
1533 {
1534 r[i] = entries[i].peRed;
1535 g[i] = entries[i].peGreen;
1536 b[i] = entries[i].peBlue;
1537 }
1538 delete[] entries;
1539 }
1540#endif
1541
1542 for (i = 0; i < desiredNoColours; i++)
1543 {
1544 r[i+paletteShift] = palette[i*3 + 0];
1545 g[i+paletteShift] = palette[i*3 + 1];
1546 b[i+paletteShift] = palette[i*3 + 2];
1547 }
1548
1549 // Blank out any remaining palette entries
1550 for (i = desiredNoColours+paletteShift; i < 256; i++)
1551 {
1552 r[i] = 0;
1553 g[i] = 0;
1554 b[i] = 0;
1555 }
1556 *pPalette = new wxPalette(256, r, g, b);
1557 delete[] r;
1558 delete[] g;
1559 delete[] b;
1560 }
1561
1562 return TRUE;
1563}
1564
2f382cc6
JS
1565// This version sets a palette in the destination image so you don't
1566// have to manage it yourself.
1567
1568bool wxQuantize::Quantize(const wxImage& src, wxImage& dest, int desiredNoColours,
1569 unsigned char** eightBitData, int flags)
1570{
1571 wxPalette* palette = NULL;
1572 if (Quantize(src, dest, & palette, desiredNoColours, eightBitData, flags))
1573 {
1574 if (palette)
1575 {
1576 dest.SetPalette(* palette);
1577 delete palette;
1578 }
1579 return TRUE;
1580 }
1581 else
1582 return FALSE;
1583}
1584