]>
Commit | Line | Data |
---|---|---|
3f4fc796 JS |
1 | ///////////////////////////////////////////////////////////////////////////// |
2 | // Name: quantize.cpp | |
3 | // Purpose: wxQuantize implementation | |
4 | // Author: Julian Smart | |
5 | // Modified by: | |
6 | // Created: 22/6/2000 | |
7 | // RCS-ID: $Id$ | |
8 | // Copyright: (c) Thomas G. Lane, Vaclav Slavik, Julian Smart | |
9 | // Licence: wxWindows licence + JPEG library licence | |
10 | ///////////////////////////////////////////////////////////////////////////// | |
11 | ||
12 | /* | |
13 | * jquant2.c | |
14 | * | |
15 | * Copyright (C) 1991-1996, Thomas G. Lane. | |
16 | * This file is part of the Independent JPEG Group's software. | |
17 | * For conditions of distribution and use, see the accompanying README file. | |
18 | * | |
19 | * This file contains 2-pass color quantization (color mapping) routines. | |
20 | * These routines provide selection of a custom color map for an image, | |
21 | * followed by mapping of the image to that color map, with optional | |
22 | * Floyd-Steinberg dithering. | |
23 | * It is also possible to use just the second pass to map to an arbitrary | |
24 | * externally-given color map. | |
25 | * | |
26 | * Note: ordered dithering is not supported, since there isn't any fast | |
27 | * way to compute intercolor distances; it's unclear that ordered dither's | |
28 | * fundamental assumptions even hold with an irregularly spaced color map. | |
29 | */ | |
30 | ||
31 | /* modified by Vaclav Slavik for use as jpeglib-independent module */ | |
32 | ||
33 | #ifdef __GNUG__ | |
34 | #pragma implementation "quantize.h" | |
35 | #endif | |
36 | ||
37 | // For compilers that support precompilation, includes "wx/wx.h". | |
38 | #include "wx/wxprec.h" | |
39 | ||
40 | #ifdef __BORLANDC__ | |
41 | #pragma hdrstop | |
42 | #endif | |
43 | ||
44 | #ifndef WX_PRECOMP | |
45 | #include "wx/wx.h" | |
46 | #endif | |
47 | ||
48 | #include "wx/image.h" | |
49 | #include "wx/quantize.h" | |
50 | ||
51 | #include <stdlib.h> | |
52 | #include <string.h> | |
53 | ||
54 | #define RGB_RED 0 | |
55 | #define RGB_GREEN 1 | |
56 | #define RGB_BLUE 2 | |
57 | #define RGB_PIXELSIZE 3 | |
58 | ||
59 | #define MAXJSAMPLE 255 | |
60 | #define CENTERJSAMPLE 128 | |
61 | #define BITS_IN_JSAMPLE 8 | |
62 | #define GETJSAMPLE(value) ((int) (value)) | |
63 | ||
64 | #define RIGHT_SHIFT(x,shft) ((x) >> (shft)) | |
65 | ||
66 | typedef unsigned short UINT16; | |
67 | typedef signed short INT16; | |
68 | typedef signed int INT32; | |
69 | ||
70 | typedef unsigned char JSAMPLE; | |
71 | typedef JSAMPLE *JSAMPROW; | |
72 | typedef JSAMPROW *JSAMPARRAY; | |
73 | typedef unsigned int JDIMENSION; | |
74 | ||
75 | typedef struct { | |
76 | void *cquantize; | |
77 | JDIMENSION output_width; | |
78 | JSAMPARRAY colormap; | |
79 | int actual_number_of_colors; | |
80 | int desired_number_of_colors; | |
81 | JSAMPLE *sample_range_limit, *srl_orig; | |
82 | } j_decompress; | |
83 | ||
84 | typedef j_decompress *j_decompress_ptr; | |
85 | ||
86 | ||
87 | /* | |
88 | * This module implements the well-known Heckbert paradigm for color | |
89 | * quantization. Most of the ideas used here can be traced back to | |
90 | * Heckbert's seminal paper | |
91 | * Heckbert, Paul. "Color Image Quantization for Frame Buffer Display", | |
92 | * Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304. | |
93 | * | |
94 | * In the first pass over the image, we accumulate a histogram showing the | |
95 | * usage count of each possible color. To keep the histogram to a reasonable | |
96 | * size, we reduce the precision of the input; typical practice is to retain | |
97 | * 5 or 6 bits per color, so that 8 or 4 different input values are counted | |
98 | * in the same histogram cell. | |
99 | * | |
100 | * Next, the color-selection step begins with a box representing the whole | |
101 | * color space, and repeatedly splits the "largest" remaining box until we | |
102 | * have as many boxes as desired colors. Then the mean color in each | |
103 | * remaining box becomes one of the possible output colors. | |
104 | * | |
105 | * The second pass over the image maps each input pixel to the closest output | |
106 | * color (optionally after applying a Floyd-Steinberg dithering correction). | |
107 | * This mapping is logically trivial, but making it go fast enough requires | |
108 | * considerable care. | |
109 | * | |
110 | * Heckbert-style quantizers vary a good deal in their policies for choosing | |
111 | * the "largest" box and deciding where to cut it. The particular policies | |
112 | * used here have proved out well in experimental comparisons, but better ones | |
113 | * may yet be found. | |
114 | * | |
115 | * In earlier versions of the IJG code, this module quantized in YCbCr color | |
116 | * space, processing the raw upsampled data without a color conversion step. | |
117 | * This allowed the color conversion math to be done only once per colormap | |
118 | * entry, not once per pixel. However, that optimization precluded other | |
119 | * useful optimizations (such as merging color conversion with upsampling) | |
120 | * and it also interfered with desired capabilities such as quantizing to an | |
121 | * externally-supplied colormap. We have therefore abandoned that approach. | |
122 | * The present code works in the post-conversion color space, typically RGB. | |
123 | * | |
124 | * To improve the visual quality of the results, we actually work in scaled | |
125 | * RGB space, giving G distances more weight than R, and R in turn more than | |
126 | * B. To do everything in integer math, we must use integer scale factors. | |
127 | * The 2/3/1 scale factors used here correspond loosely to the relative | |
128 | * weights of the colors in the NTSC grayscale equation. | |
129 | * If you want to use this code to quantize a non-RGB color space, you'll | |
130 | * probably need to change these scale factors. | |
131 | */ | |
132 | ||
133 | #define R_SCALE 2 /* scale R distances by this much */ | |
134 | #define G_SCALE 3 /* scale G distances by this much */ | |
135 | #define B_SCALE 1 /* and B by this much */ | |
136 | ||
137 | /* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined | |
138 | * in jmorecfg.h. As the code stands, it will do the right thing for R,G,B | |
139 | * and B,G,R orders. If you define some other weird order in jmorecfg.h, | |
140 | * you'll get compile errors until you extend this logic. In that case | |
141 | * you'll probably want to tweak the histogram sizes too. | |
142 | */ | |
143 | ||
144 | #if RGB_RED == 0 | |
145 | #define C0_SCALE R_SCALE | |
146 | #endif | |
147 | #if RGB_BLUE == 0 | |
148 | #define C0_SCALE B_SCALE | |
149 | #endif | |
150 | #if RGB_GREEN == 1 | |
151 | #define C1_SCALE G_SCALE | |
152 | #endif | |
153 | #if RGB_RED == 2 | |
154 | #define C2_SCALE R_SCALE | |
155 | #endif | |
156 | #if RGB_BLUE == 2 | |
157 | #define C2_SCALE B_SCALE | |
158 | #endif | |
159 | ||
160 | ||
161 | /* | |
162 | * First we have the histogram data structure and routines for creating it. | |
163 | * | |
164 | * The number of bits of precision can be adjusted by changing these symbols. | |
165 | * We recommend keeping 6 bits for G and 5 each for R and B. | |
166 | * If you have plenty of memory and cycles, 6 bits all around gives marginally | |
167 | * better results; if you are short of memory, 5 bits all around will save | |
168 | * some space but degrade the results. | |
169 | * To maintain a fully accurate histogram, we'd need to allocate a "long" | |
170 | * (preferably unsigned long) for each cell. In practice this is overkill; | |
171 | * we can get by with 16 bits per cell. Few of the cell counts will overflow, | |
172 | * and clamping those that do overflow to the maximum value will give close- | |
173 | * enough results. This reduces the recommended histogram size from 256Kb | |
174 | * to 128Kb, which is a useful savings on PC-class machines. | |
175 | * (In the second pass the histogram space is re-used for pixel mapping data; | |
176 | * in that capacity, each cell must be able to store zero to the number of | |
177 | * desired colors. 16 bits/cell is plenty for that too.) | |
178 | * Since the JPEG code is intended to run in small memory model on 80x86 | |
179 | * machines, we can't just allocate the histogram in one chunk. Instead | |
180 | * of a true 3-D array, we use a row of pointers to 2-D arrays. Each | |
181 | * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and | |
182 | * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries. Note that | |
183 | * on 80x86 machines, the pointer row is in near memory but the actual | |
184 | * arrays are in far memory (same arrangement as we use for image arrays). | |
185 | */ | |
186 | ||
187 | #define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */ | |
188 | ||
189 | /* These will do the right thing for either R,G,B or B,G,R color order, | |
190 | * but you may not like the results for other color orders. | |
191 | */ | |
192 | #define HIST_C0_BITS 5 /* bits of precision in R/B histogram */ | |
193 | #define HIST_C1_BITS 6 /* bits of precision in G histogram */ | |
194 | #define HIST_C2_BITS 5 /* bits of precision in B/R histogram */ | |
195 | ||
196 | /* Number of elements along histogram axes. */ | |
197 | #define HIST_C0_ELEMS (1<<HIST_C0_BITS) | |
198 | #define HIST_C1_ELEMS (1<<HIST_C1_BITS) | |
199 | #define HIST_C2_ELEMS (1<<HIST_C2_BITS) | |
200 | ||
201 | /* These are the amounts to shift an input value to get a histogram index. */ | |
202 | #define C0_SHIFT (BITS_IN_JSAMPLE-HIST_C0_BITS) | |
203 | #define C1_SHIFT (BITS_IN_JSAMPLE-HIST_C1_BITS) | |
204 | #define C2_SHIFT (BITS_IN_JSAMPLE-HIST_C2_BITS) | |
205 | ||
206 | ||
207 | typedef UINT16 histcell; /* histogram cell; prefer an unsigned type */ | |
208 | ||
209 | typedef histcell * histptr; /* for pointers to histogram cells */ | |
210 | ||
211 | typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */ | |
212 | typedef hist1d * hist2d; /* type for the 2nd-level pointers */ | |
213 | typedef hist2d * hist3d; /* type for top-level pointer */ | |
214 | ||
215 | ||
216 | /* Declarations for Floyd-Steinberg dithering. | |
217 | * | |
218 | * Errors are accumulated into the array fserrors[], at a resolution of | |
219 | * 1/16th of a pixel count. The error at a given pixel is propagated | |
220 | * to its not-yet-processed neighbors using the standard F-S fractions, | |
221 | * ... (here) 7/16 | |
222 | * 3/16 5/16 1/16 | |
223 | * We work left-to-right on even rows, right-to-left on odd rows. | |
224 | * | |
225 | * We can get away with a single array (holding one row's worth of errors) | |
226 | * by using it to store the current row's errors at pixel columns not yet | |
227 | * processed, but the next row's errors at columns already processed. We | |
228 | * need only a few extra variables to hold the errors immediately around the | |
229 | * current column. (If we are lucky, those variables are in registers, but | |
230 | * even if not, they're probably cheaper to access than array elements are.) | |
231 | * | |
232 | * The fserrors[] array has (#columns + 2) entries; the extra entry at | |
233 | * each end saves us from special-casing the first and last pixels. | |
234 | * Each entry is three values long, one value for each color component. | |
235 | * | |
236 | * Note: on a wide image, we might not have enough room in a PC's near data | |
237 | * segment to hold the error array; so it is allocated with alloc_large. | |
238 | */ | |
239 | ||
240 | #if BITS_IN_JSAMPLE == 8 | |
241 | typedef INT16 FSERROR; /* 16 bits should be enough */ | |
242 | typedef int LOCFSERROR; /* use 'int' for calculation temps */ | |
243 | #else | |
244 | typedef INT32 FSERROR; /* may need more than 16 bits */ | |
245 | typedef INT32 LOCFSERROR; /* be sure calculation temps are big enough */ | |
246 | #endif | |
247 | ||
248 | typedef FSERROR *FSERRPTR; /* pointer to error array (in storage!) */ | |
249 | ||
250 | ||
251 | /* Private subobject */ | |
252 | ||
253 | typedef struct { | |
254 | ||
255 | struct { | |
256 | void (*finish_pass)(j_decompress_ptr); | |
257 | void (*color_quantize)(j_decompress_ptr, JSAMPARRAY, JSAMPARRAY, int); | |
258 | void (*start_pass)(j_decompress_ptr, bool); | |
259 | void (*new_color_map)(j_decompress_ptr); | |
260 | } pub; | |
261 | ||
262 | /* Space for the eventually created colormap is stashed here */ | |
263 | JSAMPARRAY sv_colormap; /* colormap allocated at init time */ | |
264 | int desired; /* desired # of colors = size of colormap */ | |
265 | ||
266 | /* Variables for accumulating image statistics */ | |
267 | hist3d histogram; /* pointer to the histogram */ | |
268 | ||
269 | bool needs_zeroed; /* true if next pass must zero histogram */ | |
270 | ||
271 | /* Variables for Floyd-Steinberg dithering */ | |
272 | FSERRPTR fserrors; /* accumulated errors */ | |
273 | bool on_odd_row; /* flag to remember which row we are on */ | |
274 | int * error_limiter; /* table for clamping the applied error */ | |
275 | } my_cquantizer; | |
276 | ||
277 | typedef my_cquantizer * my_cquantize_ptr; | |
278 | ||
279 | ||
280 | /* | |
281 | * Prescan some rows of pixels. | |
282 | * In this module the prescan simply updates the histogram, which has been | |
283 | * initialized to zeroes by start_pass. | |
284 | * An output_buf parameter is required by the method signature, but no data | |
285 | * is actually output (in fact the buffer controller is probably passing a | |
286 | * NULL pointer). | |
287 | */ | |
288 | ||
289 | void | |
290 | prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | |
291 | JSAMPARRAY output_buf, int num_rows) | |
292 | { | |
293 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
294 | register JSAMPROW ptr; | |
295 | register histptr histp; | |
296 | register hist3d histogram = cquantize->histogram; | |
297 | int row; | |
298 | JDIMENSION col; | |
299 | JDIMENSION width = cinfo->output_width; | |
300 | ||
301 | for (row = 0; row < num_rows; row++) { | |
302 | ptr = input_buf[row]; | |
303 | for (col = width; col > 0; col--) { | |
304 | ||
305 | { | |
306 | ||
307 | /* get pixel value and index into the histogram */ | |
308 | histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT] | |
309 | [GETJSAMPLE(ptr[1]) >> C1_SHIFT] | |
310 | [GETJSAMPLE(ptr[2]) >> C2_SHIFT]; | |
311 | /* increment, check for overflow and undo increment if so. */ | |
312 | if (++(*histp) <= 0) | |
313 | (*histp)--; | |
314 | } | |
315 | ptr += 3; | |
316 | } | |
317 | } | |
318 | } | |
319 | ||
320 | ||
321 | /* | |
322 | * Next we have the really interesting routines: selection of a colormap | |
323 | * given the completed histogram. | |
324 | * These routines work with a list of "boxes", each representing a rectangular | |
325 | * subset of the input color space (to histogram precision). | |
326 | */ | |
327 | ||
328 | typedef struct { | |
329 | /* The bounds of the box (inclusive); expressed as histogram indexes */ | |
330 | int c0min, c0max; | |
331 | int c1min, c1max; | |
332 | int c2min, c2max; | |
333 | /* The volume (actually 2-norm) of the box */ | |
334 | INT32 volume; | |
335 | /* The number of nonzero histogram cells within this box */ | |
336 | long colorcount; | |
337 | } box; | |
338 | ||
339 | typedef box * boxptr; | |
340 | ||
341 | ||
342 | boxptr | |
343 | find_biggest_color_pop (boxptr boxlist, int numboxes) | |
344 | /* Find the splittable box with the largest color population */ | |
345 | /* Returns NULL if no splittable boxes remain */ | |
346 | { | |
347 | register boxptr boxp; | |
348 | register int i; | |
349 | register long maxc = 0; | |
350 | boxptr which = NULL; | |
351 | ||
352 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | |
353 | if (boxp->colorcount > maxc && boxp->volume > 0) { | |
354 | which = boxp; | |
355 | maxc = boxp->colorcount; | |
356 | } | |
357 | } | |
358 | return which; | |
359 | } | |
360 | ||
361 | ||
362 | boxptr | |
363 | find_biggest_volume (boxptr boxlist, int numboxes) | |
364 | /* Find the splittable box with the largest (scaled) volume */ | |
365 | /* Returns NULL if no splittable boxes remain */ | |
366 | { | |
367 | register boxptr boxp; | |
368 | register int i; | |
369 | register INT32 maxv = 0; | |
370 | boxptr which = NULL; | |
371 | ||
372 | for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) { | |
373 | if (boxp->volume > maxv) { | |
374 | which = boxp; | |
375 | maxv = boxp->volume; | |
376 | } | |
377 | } | |
378 | return which; | |
379 | } | |
380 | ||
381 | ||
382 | void | |
383 | update_box (j_decompress_ptr cinfo, boxptr boxp) | |
384 | /* Shrink the min/max bounds of a box to enclose only nonzero elements, */ | |
385 | /* and recompute its volume and population */ | |
386 | { | |
387 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
388 | hist3d histogram = cquantize->histogram; | |
389 | histptr histp; | |
390 | int c0,c1,c2; | |
391 | int c0min,c0max,c1min,c1max,c2min,c2max; | |
392 | INT32 dist0,dist1,dist2; | |
393 | long ccount; | |
394 | ||
395 | c0min = boxp->c0min; c0max = boxp->c0max; | |
396 | c1min = boxp->c1min; c1max = boxp->c1max; | |
397 | c2min = boxp->c2min; c2max = boxp->c2max; | |
398 | ||
399 | if (c0max > c0min) | |
400 | for (c0 = c0min; c0 <= c0max; c0++) | |
401 | for (c1 = c1min; c1 <= c1max; c1++) { | |
402 | histp = & histogram[c0][c1][c2min]; | |
403 | for (c2 = c2min; c2 <= c2max; c2++) | |
404 | if (*histp++ != 0) { | |
405 | boxp->c0min = c0min = c0; | |
406 | goto have_c0min; | |
407 | } | |
408 | } | |
409 | have_c0min: | |
410 | if (c0max > c0min) | |
411 | for (c0 = c0max; c0 >= c0min; c0--) | |
412 | for (c1 = c1min; c1 <= c1max; c1++) { | |
413 | histp = & histogram[c0][c1][c2min]; | |
414 | for (c2 = c2min; c2 <= c2max; c2++) | |
415 | if (*histp++ != 0) { | |
416 | boxp->c0max = c0max = c0; | |
417 | goto have_c0max; | |
418 | } | |
419 | } | |
420 | have_c0max: | |
421 | if (c1max > c1min) | |
422 | for (c1 = c1min; c1 <= c1max; c1++) | |
423 | for (c0 = c0min; c0 <= c0max; c0++) { | |
424 | histp = & histogram[c0][c1][c2min]; | |
425 | for (c2 = c2min; c2 <= c2max; c2++) | |
426 | if (*histp++ != 0) { | |
427 | boxp->c1min = c1min = c1; | |
428 | goto have_c1min; | |
429 | } | |
430 | } | |
431 | have_c1min: | |
432 | if (c1max > c1min) | |
433 | for (c1 = c1max; c1 >= c1min; c1--) | |
434 | for (c0 = c0min; c0 <= c0max; c0++) { | |
435 | histp = & histogram[c0][c1][c2min]; | |
436 | for (c2 = c2min; c2 <= c2max; c2++) | |
437 | if (*histp++ != 0) { | |
438 | boxp->c1max = c1max = c1; | |
439 | goto have_c1max; | |
440 | } | |
441 | } | |
442 | have_c1max: | |
443 | if (c2max > c2min) | |
444 | for (c2 = c2min; c2 <= c2max; c2++) | |
445 | for (c0 = c0min; c0 <= c0max; c0++) { | |
446 | histp = & histogram[c0][c1min][c2]; | |
447 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) | |
448 | if (*histp != 0) { | |
449 | boxp->c2min = c2min = c2; | |
450 | goto have_c2min; | |
451 | } | |
452 | } | |
453 | have_c2min: | |
454 | if (c2max > c2min) | |
455 | for (c2 = c2max; c2 >= c2min; c2--) | |
456 | for (c0 = c0min; c0 <= c0max; c0++) { | |
457 | histp = & histogram[c0][c1min][c2]; | |
458 | for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C2_ELEMS) | |
459 | if (*histp != 0) { | |
460 | boxp->c2max = c2max = c2; | |
461 | goto have_c2max; | |
462 | } | |
463 | } | |
464 | have_c2max: | |
465 | ||
466 | /* Update box volume. | |
467 | * We use 2-norm rather than real volume here; this biases the method | |
468 | * against making long narrow boxes, and it has the side benefit that | |
469 | * a box is splittable iff norm > 0. | |
470 | * Since the differences are expressed in histogram-cell units, | |
471 | * we have to shift back to JSAMPLE units to get consistent distances; | |
472 | * after which, we scale according to the selected distance scale factors. | |
473 | */ | |
474 | dist0 = ((c0max - c0min) << C0_SHIFT) * C0_SCALE; | |
475 | dist1 = ((c1max - c1min) << C1_SHIFT) * C1_SCALE; | |
476 | dist2 = ((c2max - c2min) << C2_SHIFT) * C2_SCALE; | |
477 | boxp->volume = dist0*dist0 + dist1*dist1 + dist2*dist2; | |
478 | ||
479 | /* Now scan remaining volume of box and compute population */ | |
480 | ccount = 0; | |
481 | for (c0 = c0min; c0 <= c0max; c0++) | |
482 | for (c1 = c1min; c1 <= c1max; c1++) { | |
483 | histp = & histogram[c0][c1][c2min]; | |
484 | for (c2 = c2min; c2 <= c2max; c2++, histp++) | |
485 | if (*histp != 0) { | |
486 | ccount++; | |
487 | } | |
488 | } | |
489 | boxp->colorcount = ccount; | |
490 | } | |
491 | ||
492 | ||
493 | int | |
494 | median_cut (j_decompress_ptr cinfo, boxptr boxlist, int numboxes, | |
495 | int desired_colors) | |
496 | /* Repeatedly select and split the largest box until we have enough boxes */ | |
497 | { | |
498 | int n,lb; | |
499 | int c0,c1,c2,cmax; | |
500 | register boxptr b1,b2; | |
501 | ||
502 | while (numboxes < desired_colors) { | |
503 | /* Select box to split. | |
504 | * Current algorithm: by population for first half, then by volume. | |
505 | */ | |
506 | if (numboxes*2 <= desired_colors) { | |
507 | b1 = find_biggest_color_pop(boxlist, numboxes); | |
508 | } else { | |
509 | b1 = find_biggest_volume(boxlist, numboxes); | |
510 | } | |
511 | if (b1 == NULL) /* no splittable boxes left! */ | |
512 | break; | |
513 | b2 = &boxlist[numboxes]; /* where new box will go */ | |
514 | /* Copy the color bounds to the new box. */ | |
515 | b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max; | |
516 | b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min; | |
517 | /* Choose which axis to split the box on. | |
518 | * Current algorithm: longest scaled axis. | |
519 | * See notes in update_box about scaling distances. | |
520 | */ | |
521 | c0 = ((b1->c0max - b1->c0min) << C0_SHIFT) * C0_SCALE; | |
522 | c1 = ((b1->c1max - b1->c1min) << C1_SHIFT) * C1_SCALE; | |
523 | c2 = ((b1->c2max - b1->c2min) << C2_SHIFT) * C2_SCALE; | |
524 | /* We want to break any ties in favor of green, then red, blue last. | |
525 | * This code does the right thing for R,G,B or B,G,R color orders only. | |
526 | */ | |
527 | #if RGB_RED == 0 | |
528 | cmax = c1; n = 1; | |
529 | if (c0 > cmax) { cmax = c0; n = 0; } | |
530 | if (c2 > cmax) { n = 2; } | |
531 | #else | |
532 | cmax = c1; n = 1; | |
533 | if (c2 > cmax) { cmax = c2; n = 2; } | |
534 | if (c0 > cmax) { n = 0; } | |
535 | #endif | |
536 | /* Choose split point along selected axis, and update box bounds. | |
537 | * Current algorithm: split at halfway point. | |
538 | * (Since the box has been shrunk to minimum volume, | |
539 | * any split will produce two nonempty subboxes.) | |
540 | * Note that lb value is max for lower box, so must be < old max. | |
541 | */ | |
542 | switch (n) { | |
543 | case 0: | |
544 | lb = (b1->c0max + b1->c0min) / 2; | |
545 | b1->c0max = lb; | |
546 | b2->c0min = lb+1; | |
547 | break; | |
548 | case 1: | |
549 | lb = (b1->c1max + b1->c1min) / 2; | |
550 | b1->c1max = lb; | |
551 | b2->c1min = lb+1; | |
552 | break; | |
553 | case 2: | |
554 | lb = (b1->c2max + b1->c2min) / 2; | |
555 | b1->c2max = lb; | |
556 | b2->c2min = lb+1; | |
557 | break; | |
558 | } | |
559 | /* Update stats for boxes */ | |
560 | update_box(cinfo, b1); | |
561 | update_box(cinfo, b2); | |
562 | numboxes++; | |
563 | } | |
564 | return numboxes; | |
565 | } | |
566 | ||
567 | ||
568 | void | |
569 | compute_color (j_decompress_ptr cinfo, boxptr boxp, int icolor) | |
570 | /* Compute representative color for a box, put it in colormap[icolor] */ | |
571 | { | |
572 | /* Current algorithm: mean weighted by pixels (not colors) */ | |
573 | /* Note it is important to get the rounding correct! */ | |
574 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
575 | hist3d histogram = cquantize->histogram; | |
576 | histptr histp; | |
577 | int c0,c1,c2; | |
578 | int c0min,c0max,c1min,c1max,c2min,c2max; | |
579 | long count; | |
580 | long total = 0; | |
581 | long c0total = 0; | |
582 | long c1total = 0; | |
583 | long c2total = 0; | |
584 | ||
585 | c0min = boxp->c0min; c0max = boxp->c0max; | |
586 | c1min = boxp->c1min; c1max = boxp->c1max; | |
587 | c2min = boxp->c2min; c2max = boxp->c2max; | |
588 | ||
589 | for (c0 = c0min; c0 <= c0max; c0++) | |
590 | for (c1 = c1min; c1 <= c1max; c1++) { | |
591 | histp = & histogram[c0][c1][c2min]; | |
592 | for (c2 = c2min; c2 <= c2max; c2++) { | |
593 | if ((count = *histp++) != 0) { | |
594 | total += count; | |
595 | c0total += ((c0 << C0_SHIFT) + ((1<<C0_SHIFT)>>1)) * count; | |
596 | c1total += ((c1 << C1_SHIFT) + ((1<<C1_SHIFT)>>1)) * count; | |
597 | c2total += ((c2 << C2_SHIFT) + ((1<<C2_SHIFT)>>1)) * count; | |
598 | } | |
599 | } | |
600 | } | |
601 | ||
602 | cinfo->colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total); | |
603 | cinfo->colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total); | |
604 | cinfo->colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total); | |
605 | } | |
606 | ||
607 | ||
608 | static void | |
609 | select_colors (j_decompress_ptr cinfo, int desired_colors) | |
610 | /* Master routine for color selection */ | |
611 | { | |
612 | boxptr boxlist; | |
613 | int numboxes; | |
614 | int i; | |
615 | ||
616 | /* Allocate workspace for box list */ | |
617 | boxlist = (boxptr) malloc(desired_colors * sizeof(box)); | |
618 | /* Initialize one box containing whole space */ | |
619 | numboxes = 1; | |
620 | boxlist[0].c0min = 0; | |
621 | boxlist[0].c0max = MAXJSAMPLE >> C0_SHIFT; | |
622 | boxlist[0].c1min = 0; | |
623 | boxlist[0].c1max = MAXJSAMPLE >> C1_SHIFT; | |
624 | boxlist[0].c2min = 0; | |
625 | boxlist[0].c2max = MAXJSAMPLE >> C2_SHIFT; | |
626 | /* Shrink it to actually-used volume and set its statistics */ | |
627 | update_box(cinfo, & boxlist[0]); | |
628 | /* Perform median-cut to produce final box list */ | |
629 | numboxes = median_cut(cinfo, boxlist, numboxes, desired_colors); | |
630 | /* Compute the representative color for each box, fill colormap */ | |
631 | for (i = 0; i < numboxes; i++) | |
632 | compute_color(cinfo, & boxlist[i], i); | |
633 | cinfo->actual_number_of_colors = numboxes; | |
634 | ||
635 | free(boxlist); //FIXME?? I don't know if this is correct - VS | |
636 | } | |
637 | ||
638 | ||
639 | /* | |
640 | * These routines are concerned with the time-critical task of mapping input | |
641 | * colors to the nearest color in the selected colormap. | |
642 | * | |
643 | * We re-use the histogram space as an "inverse color map", essentially a | |
644 | * cache for the results of nearest-color searches. All colors within a | |
645 | * histogram cell will be mapped to the same colormap entry, namely the one | |
646 | * closest to the cell's center. This may not be quite the closest entry to | |
647 | * the actual input color, but it's almost as good. A zero in the cache | |
648 | * indicates we haven't found the nearest color for that cell yet; the array | |
649 | * is cleared to zeroes before starting the mapping pass. When we find the | |
650 | * nearest color for a cell, its colormap index plus one is recorded in the | |
651 | * cache for future use. The pass2 scanning routines call fill_inverse_cmap | |
652 | * when they need to use an unfilled entry in the cache. | |
653 | * | |
654 | * Our method of efficiently finding nearest colors is based on the "locally | |
655 | * sorted search" idea described by Heckbert and on the incremental distance | |
656 | * calculation described by Spencer W. Thomas in chapter III.1 of Graphics | |
657 | * Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that | |
658 | * the distances from a given colormap entry to each cell of the histogram can | |
659 | * be computed quickly using an incremental method: the differences between | |
660 | * distances to adjacent cells themselves differ by a constant. This allows a | |
661 | * fairly fast implementation of the "brute force" approach of computing the | |
662 | * distance from every colormap entry to every histogram cell. Unfortunately, | |
663 | * it needs a work array to hold the best-distance-so-far for each histogram | |
664 | * cell (because the inner loop has to be over cells, not colormap entries). | |
665 | * The work array elements have to be INT32s, so the work array would need | |
666 | * 256Kb at our recommended precision. This is not feasible in DOS machines. | |
667 | * | |
668 | * To get around these problems, we apply Thomas' method to compute the | |
669 | * nearest colors for only the cells within a small subbox of the histogram. | |
670 | * The work array need be only as big as the subbox, so the memory usage | |
671 | * problem is solved. Furthermore, we need not fill subboxes that are never | |
672 | * referenced in pass2; many images use only part of the color gamut, so a | |
673 | * fair amount of work is saved. An additional advantage of this | |
674 | * approach is that we can apply Heckbert's locality criterion to quickly | |
675 | * eliminate colormap entries that are far away from the subbox; typically | |
676 | * three-fourths of the colormap entries are rejected by Heckbert's criterion, | |
677 | * and we need not compute their distances to individual cells in the subbox. | |
678 | * The speed of this approach is heavily influenced by the subbox size: too | |
679 | * small means too much overhead, too big loses because Heckbert's criterion | |
680 | * can't eliminate as many colormap entries. Empirically the best subbox | |
681 | * size seems to be about 1/512th of the histogram (1/8th in each direction). | |
682 | * | |
683 | * Thomas' article also describes a refined method which is asymptotically | |
684 | * faster than the brute-force method, but it is also far more complex and | |
685 | * cannot efficiently be applied to small subboxes. It is therefore not | |
686 | * useful for programs intended to be portable to DOS machines. On machines | |
687 | * with plenty of memory, filling the whole histogram in one shot with Thomas' | |
688 | * refined method might be faster than the present code --- but then again, | |
689 | * it might not be any faster, and it's certainly more complicated. | |
690 | */ | |
691 | ||
692 | ||
693 | /* log2(histogram cells in update box) for each axis; this can be adjusted */ | |
694 | #define BOX_C0_LOG (HIST_C0_BITS-3) | |
695 | #define BOX_C1_LOG (HIST_C1_BITS-3) | |
696 | #define BOX_C2_LOG (HIST_C2_BITS-3) | |
697 | ||
698 | #define BOX_C0_ELEMS (1<<BOX_C0_LOG) /* # of hist cells in update box */ | |
699 | #define BOX_C1_ELEMS (1<<BOX_C1_LOG) | |
700 | #define BOX_C2_ELEMS (1<<BOX_C2_LOG) | |
701 | ||
702 | #define BOX_C0_SHIFT (C0_SHIFT + BOX_C0_LOG) | |
703 | #define BOX_C1_SHIFT (C1_SHIFT + BOX_C1_LOG) | |
704 | #define BOX_C2_SHIFT (C2_SHIFT + BOX_C2_LOG) | |
705 | ||
706 | ||
707 | /* | |
708 | * The next three routines implement inverse colormap filling. They could | |
709 | * all be folded into one big routine, but splitting them up this way saves | |
710 | * some stack space (the mindist[] and bestdist[] arrays need not coexist) | |
711 | * and may allow some compilers to produce better code by registerizing more | |
712 | * inner-loop variables. | |
713 | */ | |
714 | ||
715 | static int | |
716 | find_nearby_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | |
717 | JSAMPLE colorlist[]) | |
718 | /* Locate the colormap entries close enough to an update box to be candidates | |
719 | * for the nearest entry to some cell(s) in the update box. The update box | |
720 | * is specified by the center coordinates of its first cell. The number of | |
721 | * candidate colormap entries is returned, and their colormap indexes are | |
722 | * placed in colorlist[]. | |
723 | * This routine uses Heckbert's "locally sorted search" criterion to select | |
724 | * the colors that need further consideration. | |
725 | */ | |
726 | { | |
727 | int numcolors = cinfo->actual_number_of_colors; | |
728 | int maxc0, maxc1, maxc2; | |
729 | int centerc0, centerc1, centerc2; | |
730 | int i, x, ncolors; | |
731 | INT32 minmaxdist, min_dist, max_dist, tdist; | |
732 | INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */ | |
733 | ||
734 | /* Compute true coordinates of update box's upper corner and center. | |
735 | * Actually we compute the coordinates of the center of the upper-corner | |
736 | * histogram cell, which are the upper bounds of the volume we care about. | |
737 | * Note that since ">>" rounds down, the "center" values may be closer to | |
738 | * min than to max; hence comparisons to them must be "<=", not "<". | |
739 | */ | |
740 | maxc0 = minc0 + ((1 << BOX_C0_SHIFT) - (1 << C0_SHIFT)); | |
741 | centerc0 = (minc0 + maxc0) >> 1; | |
742 | maxc1 = minc1 + ((1 << BOX_C1_SHIFT) - (1 << C1_SHIFT)); | |
743 | centerc1 = (minc1 + maxc1) >> 1; | |
744 | maxc2 = minc2 + ((1 << BOX_C2_SHIFT) - (1 << C2_SHIFT)); | |
745 | centerc2 = (minc2 + maxc2) >> 1; | |
746 | ||
747 | /* For each color in colormap, find: | |
748 | * 1. its minimum squared-distance to any point in the update box | |
749 | * (zero if color is within update box); | |
750 | * 2. its maximum squared-distance to any point in the update box. | |
751 | * Both of these can be found by considering only the corners of the box. | |
752 | * We save the minimum distance for each color in mindist[]; | |
753 | * only the smallest maximum distance is of interest. | |
754 | */ | |
755 | minmaxdist = 0x7FFFFFFFL; | |
756 | ||
757 | for (i = 0; i < numcolors; i++) { | |
758 | /* We compute the squared-c0-distance term, then add in the other two. */ | |
759 | x = GETJSAMPLE(cinfo->colormap[0][i]); | |
760 | if (x < minc0) { | |
761 | tdist = (x - minc0) * C0_SCALE; | |
762 | min_dist = tdist*tdist; | |
763 | tdist = (x - maxc0) * C0_SCALE; | |
764 | max_dist = tdist*tdist; | |
765 | } else if (x > maxc0) { | |
766 | tdist = (x - maxc0) * C0_SCALE; | |
767 | min_dist = tdist*tdist; | |
768 | tdist = (x - minc0) * C0_SCALE; | |
769 | max_dist = tdist*tdist; | |
770 | } else { | |
771 | /* within cell range so no contribution to min_dist */ | |
772 | min_dist = 0; | |
773 | if (x <= centerc0) { | |
774 | tdist = (x - maxc0) * C0_SCALE; | |
775 | max_dist = tdist*tdist; | |
776 | } else { | |
777 | tdist = (x - minc0) * C0_SCALE; | |
778 | max_dist = tdist*tdist; | |
779 | } | |
780 | } | |
781 | ||
782 | x = GETJSAMPLE(cinfo->colormap[1][i]); | |
783 | if (x < minc1) { | |
784 | tdist = (x - minc1) * C1_SCALE; | |
785 | min_dist += tdist*tdist; | |
786 | tdist = (x - maxc1) * C1_SCALE; | |
787 | max_dist += tdist*tdist; | |
788 | } else if (x > maxc1) { | |
789 | tdist = (x - maxc1) * C1_SCALE; | |
790 | min_dist += tdist*tdist; | |
791 | tdist = (x - minc1) * C1_SCALE; | |
792 | max_dist += tdist*tdist; | |
793 | } else { | |
794 | /* within cell range so no contribution to min_dist */ | |
795 | if (x <= centerc1) { | |
796 | tdist = (x - maxc1) * C1_SCALE; | |
797 | max_dist += tdist*tdist; | |
798 | } else { | |
799 | tdist = (x - minc1) * C1_SCALE; | |
800 | max_dist += tdist*tdist; | |
801 | } | |
802 | } | |
803 | ||
804 | x = GETJSAMPLE(cinfo->colormap[2][i]); | |
805 | if (x < minc2) { | |
806 | tdist = (x - minc2) * C2_SCALE; | |
807 | min_dist += tdist*tdist; | |
808 | tdist = (x - maxc2) * C2_SCALE; | |
809 | max_dist += tdist*tdist; | |
810 | } else if (x > maxc2) { | |
811 | tdist = (x - maxc2) * C2_SCALE; | |
812 | min_dist += tdist*tdist; | |
813 | tdist = (x - minc2) * C2_SCALE; | |
814 | max_dist += tdist*tdist; | |
815 | } else { | |
816 | /* within cell range so no contribution to min_dist */ | |
817 | if (x <= centerc2) { | |
818 | tdist = (x - maxc2) * C2_SCALE; | |
819 | max_dist += tdist*tdist; | |
820 | } else { | |
821 | tdist = (x - minc2) * C2_SCALE; | |
822 | max_dist += tdist*tdist; | |
823 | } | |
824 | } | |
825 | ||
826 | mindist[i] = min_dist; /* save away the results */ | |
827 | if (max_dist < minmaxdist) | |
828 | minmaxdist = max_dist; | |
829 | } | |
830 | ||
831 | /* Now we know that no cell in the update box is more than minmaxdist | |
832 | * away from some colormap entry. Therefore, only colors that are | |
833 | * within minmaxdist of some part of the box need be considered. | |
834 | */ | |
835 | ncolors = 0; | |
836 | for (i = 0; i < numcolors; i++) { | |
837 | if (mindist[i] <= minmaxdist) | |
838 | colorlist[ncolors++] = (JSAMPLE) i; | |
839 | } | |
840 | return ncolors; | |
841 | } | |
842 | ||
843 | ||
844 | static void | |
845 | find_best_colors (j_decompress_ptr cinfo, int minc0, int minc1, int minc2, | |
846 | int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[]) | |
847 | /* Find the closest colormap entry for each cell in the update box, | |
848 | * given the list of candidate colors prepared by find_nearby_colors. | |
849 | * Return the indexes of the closest entries in the bestcolor[] array. | |
850 | * This routine uses Thomas' incremental distance calculation method to | |
851 | * find the distance from a colormap entry to successive cells in the box. | |
852 | */ | |
853 | { | |
854 | int ic0, ic1, ic2; | |
855 | int i, icolor; | |
856 | register INT32 * bptr; /* pointer into bestdist[] array */ | |
857 | JSAMPLE * cptr; /* pointer into bestcolor[] array */ | |
858 | INT32 dist0, dist1; /* initial distance values */ | |
859 | register INT32 dist2; /* current distance in inner loop */ | |
860 | INT32 xx0, xx1; /* distance increments */ | |
861 | register INT32 xx2; | |
862 | INT32 inc0, inc1, inc2; /* initial values for increments */ | |
863 | /* This array holds the distance to the nearest-so-far color for each cell */ | |
864 | INT32 bestdist[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; | |
865 | ||
866 | /* Initialize best-distance for each cell of the update box */ | |
867 | bptr = bestdist; | |
868 | for (i = BOX_C0_ELEMS*BOX_C1_ELEMS*BOX_C2_ELEMS-1; i >= 0; i--) | |
869 | *bptr++ = 0x7FFFFFFFL; | |
870 | ||
871 | /* For each color selected by find_nearby_colors, | |
872 | * compute its distance to the center of each cell in the box. | |
873 | * If that's less than best-so-far, update best distance and color number. | |
874 | */ | |
875 | ||
876 | /* Nominal steps between cell centers ("x" in Thomas article) */ | |
877 | #define STEP_C0 ((1 << C0_SHIFT) * C0_SCALE) | |
878 | #define STEP_C1 ((1 << C1_SHIFT) * C1_SCALE) | |
879 | #define STEP_C2 ((1 << C2_SHIFT) * C2_SCALE) | |
880 | ||
881 | for (i = 0; i < numcolors; i++) { | |
882 | icolor = GETJSAMPLE(colorlist[i]); | |
883 | /* Compute (square of) distance from minc0/c1/c2 to this color */ | |
884 | inc0 = (minc0 - GETJSAMPLE(cinfo->colormap[0][icolor])) * C0_SCALE; | |
885 | dist0 = inc0*inc0; | |
886 | inc1 = (minc1 - GETJSAMPLE(cinfo->colormap[1][icolor])) * C1_SCALE; | |
887 | dist0 += inc1*inc1; | |
888 | inc2 = (minc2 - GETJSAMPLE(cinfo->colormap[2][icolor])) * C2_SCALE; | |
889 | dist0 += inc2*inc2; | |
890 | /* Form the initial difference increments */ | |
891 | inc0 = inc0 * (2 * STEP_C0) + STEP_C0 * STEP_C0; | |
892 | inc1 = inc1 * (2 * STEP_C1) + STEP_C1 * STEP_C1; | |
893 | inc2 = inc2 * (2 * STEP_C2) + STEP_C2 * STEP_C2; | |
894 | /* Now loop over all cells in box, updating distance per Thomas method */ | |
895 | bptr = bestdist; | |
896 | cptr = bestcolor; | |
897 | xx0 = inc0; | |
898 | for (ic0 = BOX_C0_ELEMS-1; ic0 >= 0; ic0--) { | |
899 | dist1 = dist0; | |
900 | xx1 = inc1; | |
901 | for (ic1 = BOX_C1_ELEMS-1; ic1 >= 0; ic1--) { | |
902 | dist2 = dist1; | |
903 | xx2 = inc2; | |
904 | for (ic2 = BOX_C2_ELEMS-1; ic2 >= 0; ic2--) { | |
905 | if (dist2 < *bptr) { | |
906 | *bptr = dist2; | |
907 | *cptr = (JSAMPLE) icolor; | |
908 | } | |
909 | dist2 += xx2; | |
910 | xx2 += 2 * STEP_C2 * STEP_C2; | |
911 | bptr++; | |
912 | cptr++; | |
913 | } | |
914 | dist1 += xx1; | |
915 | xx1 += 2 * STEP_C1 * STEP_C1; | |
916 | } | |
917 | dist0 += xx0; | |
918 | xx0 += 2 * STEP_C0 * STEP_C0; | |
919 | } | |
920 | } | |
921 | } | |
922 | ||
923 | ||
924 | static void | |
925 | fill_inverse_cmap (j_decompress_ptr cinfo, int c0, int c1, int c2) | |
926 | /* Fill the inverse-colormap entries in the update box that contains */ | |
927 | /* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */ | |
928 | /* we can fill as many others as we wish.) */ | |
929 | { | |
930 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
931 | hist3d histogram = cquantize->histogram; | |
932 | int minc0, minc1, minc2; /* lower left corner of update box */ | |
933 | int ic0, ic1, ic2; | |
934 | register JSAMPLE * cptr; /* pointer into bestcolor[] array */ | |
935 | register histptr cachep; /* pointer into main cache array */ | |
936 | /* This array lists the candidate colormap indexes. */ | |
937 | JSAMPLE colorlist[MAXNUMCOLORS]; | |
938 | int numcolors; /* number of candidate colors */ | |
939 | /* This array holds the actually closest colormap index for each cell. */ | |
940 | JSAMPLE bestcolor[BOX_C0_ELEMS * BOX_C1_ELEMS * BOX_C2_ELEMS]; | |
941 | ||
942 | /* Convert cell coordinates to update box ID */ | |
943 | c0 >>= BOX_C0_LOG; | |
944 | c1 >>= BOX_C1_LOG; | |
945 | c2 >>= BOX_C2_LOG; | |
946 | ||
947 | /* Compute true coordinates of update box's origin corner. | |
948 | * Actually we compute the coordinates of the center of the corner | |
949 | * histogram cell, which are the lower bounds of the volume we care about. | |
950 | */ | |
951 | minc0 = (c0 << BOX_C0_SHIFT) + ((1 << C0_SHIFT) >> 1); | |
952 | minc1 = (c1 << BOX_C1_SHIFT) + ((1 << C1_SHIFT) >> 1); | |
953 | minc2 = (c2 << BOX_C2_SHIFT) + ((1 << C2_SHIFT) >> 1); | |
954 | ||
955 | /* Determine which colormap entries are close enough to be candidates | |
956 | * for the nearest entry to some cell in the update box. | |
957 | */ | |
958 | numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist); | |
959 | ||
960 | /* Determine the actually nearest colors. */ | |
961 | find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist, | |
962 | bestcolor); | |
963 | ||
964 | /* Save the best color numbers (plus 1) in the main cache array */ | |
965 | c0 <<= BOX_C0_LOG; /* convert ID back to base cell indexes */ | |
966 | c1 <<= BOX_C1_LOG; | |
967 | c2 <<= BOX_C2_LOG; | |
968 | cptr = bestcolor; | |
969 | for (ic0 = 0; ic0 < BOX_C0_ELEMS; ic0++) { | |
970 | for (ic1 = 0; ic1 < BOX_C1_ELEMS; ic1++) { | |
971 | cachep = & histogram[c0+ic0][c1+ic1][c2]; | |
972 | for (ic2 = 0; ic2 < BOX_C2_ELEMS; ic2++) { | |
973 | *cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1); | |
974 | } | |
975 | } | |
976 | } | |
977 | } | |
978 | ||
979 | ||
980 | /* | |
981 | * Map some rows of pixels to the output colormapped representation. | |
982 | */ | |
983 | ||
984 | void | |
985 | pass2_no_dither (j_decompress_ptr cinfo, | |
986 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | |
987 | /* This version performs no dithering */ | |
988 | { | |
989 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
990 | hist3d histogram = cquantize->histogram; | |
991 | register JSAMPROW inptr, outptr; | |
992 | register histptr cachep; | |
993 | register int c0, c1, c2; | |
994 | int row; | |
995 | JDIMENSION col; | |
996 | JDIMENSION width = cinfo->output_width; | |
997 | ||
998 | for (row = 0; row < num_rows; row++) { | |
999 | inptr = input_buf[row]; | |
1000 | outptr = output_buf[row]; | |
1001 | for (col = width; col > 0; col--) { | |
1002 | /* get pixel value and index into the cache */ | |
1003 | c0 = GETJSAMPLE(*inptr++) >> C0_SHIFT; | |
1004 | c1 = GETJSAMPLE(*inptr++) >> C1_SHIFT; | |
1005 | c2 = GETJSAMPLE(*inptr++) >> C2_SHIFT; | |
1006 | cachep = & histogram[c0][c1][c2]; | |
1007 | /* If we have not seen this color before, find nearest colormap entry */ | |
1008 | /* and update the cache */ | |
1009 | if (*cachep == 0) | |
1010 | fill_inverse_cmap(cinfo, c0,c1,c2); | |
1011 | /* Now emit the colormap index for this cell */ | |
1012 | *outptr++ = (JSAMPLE) (*cachep - 1); | |
1013 | } | |
1014 | } | |
1015 | } | |
1016 | ||
1017 | ||
1018 | void | |
1019 | pass2_fs_dither (j_decompress_ptr cinfo, | |
1020 | JSAMPARRAY input_buf, JSAMPARRAY output_buf, int num_rows) | |
1021 | /* This version performs Floyd-Steinberg dithering */ | |
1022 | { | |
1023 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1024 | hist3d histogram = cquantize->histogram; | |
1025 | register LOCFSERROR cur0, cur1, cur2; /* current error or pixel value */ | |
1026 | LOCFSERROR belowerr0, belowerr1, belowerr2; /* error for pixel below cur */ | |
1027 | LOCFSERROR bpreverr0, bpreverr1, bpreverr2; /* error for below/prev col */ | |
1028 | register FSERRPTR errorptr; /* => fserrors[] at column before current */ | |
1029 | JSAMPROW inptr; /* => current input pixel */ | |
1030 | JSAMPROW outptr; /* => current output pixel */ | |
1031 | histptr cachep; | |
1032 | int dir; /* +1 or -1 depending on direction */ | |
1033 | int dir3; /* 3*dir, for advancing inptr & errorptr */ | |
1034 | int row; | |
1035 | JDIMENSION col; | |
1036 | JDIMENSION width = cinfo->output_width; | |
1037 | JSAMPLE *range_limit = cinfo->sample_range_limit; | |
1038 | int *error_limit = cquantize->error_limiter; | |
1039 | JSAMPROW colormap0 = cinfo->colormap[0]; | |
1040 | JSAMPROW colormap1 = cinfo->colormap[1]; | |
1041 | JSAMPROW colormap2 = cinfo->colormap[2]; | |
1042 | ||
1043 | ||
1044 | for (row = 0; row < num_rows; row++) { | |
1045 | inptr = input_buf[row]; | |
1046 | outptr = output_buf[row]; | |
1047 | if (cquantize->on_odd_row) { | |
1048 | /* work right to left in this row */ | |
1049 | inptr += (width-1) * 3; /* so point to rightmost pixel */ | |
1050 | outptr += width-1; | |
1051 | dir = -1; | |
1052 | dir3 = -3; | |
1053 | errorptr = cquantize->fserrors + (width+1)*3; /* => entry after last column */ | |
1054 | cquantize->on_odd_row = false; /* flip for next time */ | |
1055 | } else { | |
1056 | /* work left to right in this row */ | |
1057 | dir = 1; | |
1058 | dir3 = 3; | |
1059 | errorptr = cquantize->fserrors; /* => entry before first real column */ | |
1060 | cquantize->on_odd_row = true; /* flip for next time */ | |
1061 | } | |
1062 | /* Preset error values: no error propagated to first pixel from left */ | |
1063 | cur0 = cur1 = cur2 = 0; | |
1064 | /* and no error propagated to row below yet */ | |
1065 | belowerr0 = belowerr1 = belowerr2 = 0; | |
1066 | bpreverr0 = bpreverr1 = bpreverr2 = 0; | |
1067 | ||
1068 | for (col = width; col > 0; col--) { | |
1069 | /* curN holds the error propagated from the previous pixel on the | |
1070 | * current line. Add the error propagated from the previous line | |
1071 | * to form the complete error correction term for this pixel, and | |
1072 | * round the error term (which is expressed * 16) to an integer. | |
1073 | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | |
1074 | * for either sign of the error value. | |
1075 | * Note: errorptr points to *previous* column's array entry. | |
1076 | */ | |
1077 | cur0 = RIGHT_SHIFT(cur0 + errorptr[dir3+0] + 8, 4); | |
1078 | cur1 = RIGHT_SHIFT(cur1 + errorptr[dir3+1] + 8, 4); | |
1079 | cur2 = RIGHT_SHIFT(cur2 + errorptr[dir3+2] + 8, 4); | |
1080 | /* Limit the error using transfer function set by init_error_limit. | |
1081 | * See comments with init_error_limit for rationale. | |
1082 | */ | |
1083 | cur0 = error_limit[cur0]; | |
1084 | cur1 = error_limit[cur1]; | |
1085 | cur2 = error_limit[cur2]; | |
1086 | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | |
1087 | * The maximum error is +- MAXJSAMPLE (or less with error limiting); | |
1088 | * this sets the required size of the range_limit array. | |
1089 | */ | |
1090 | cur0 += GETJSAMPLE(inptr[0]); | |
1091 | cur1 += GETJSAMPLE(inptr[1]); | |
1092 | cur2 += GETJSAMPLE(inptr[2]); | |
1093 | cur0 = GETJSAMPLE(range_limit[cur0]); | |
1094 | cur1 = GETJSAMPLE(range_limit[cur1]); | |
1095 | cur2 = GETJSAMPLE(range_limit[cur2]); | |
1096 | /* Index into the cache with adjusted pixel value */ | |
1097 | cachep = & histogram[cur0>>C0_SHIFT][cur1>>C1_SHIFT][cur2>>C2_SHIFT]; | |
1098 | /* If we have not seen this color before, find nearest colormap */ | |
1099 | /* entry and update the cache */ | |
1100 | if (*cachep == 0) | |
1101 | fill_inverse_cmap(cinfo, cur0>>C0_SHIFT,cur1>>C1_SHIFT,cur2>>C2_SHIFT); | |
1102 | /* Now emit the colormap index for this cell */ | |
1103 | { register int pixcode = *cachep - 1; | |
1104 | *outptr = (JSAMPLE) pixcode; | |
1105 | /* Compute representation error for this pixel */ | |
1106 | cur0 -= GETJSAMPLE(colormap0[pixcode]); | |
1107 | cur1 -= GETJSAMPLE(colormap1[pixcode]); | |
1108 | cur2 -= GETJSAMPLE(colormap2[pixcode]); | |
1109 | } | |
1110 | /* Compute error fractions to be propagated to adjacent pixels. | |
1111 | * Add these into the running sums, and simultaneously shift the | |
1112 | * next-line error sums left by 1 column. | |
1113 | */ | |
1114 | { register LOCFSERROR bnexterr, delta; | |
1115 | ||
1116 | bnexterr = cur0; /* Process component 0 */ | |
1117 | delta = cur0 * 2; | |
1118 | cur0 += delta; /* form error * 3 */ | |
1119 | errorptr[0] = (FSERROR) (bpreverr0 + cur0); | |
1120 | cur0 += delta; /* form error * 5 */ | |
1121 | bpreverr0 = belowerr0 + cur0; | |
1122 | belowerr0 = bnexterr; | |
1123 | cur0 += delta; /* form error * 7 */ | |
1124 | bnexterr = cur1; /* Process component 1 */ | |
1125 | delta = cur1 * 2; | |
1126 | cur1 += delta; /* form error * 3 */ | |
1127 | errorptr[1] = (FSERROR) (bpreverr1 + cur1); | |
1128 | cur1 += delta; /* form error * 5 */ | |
1129 | bpreverr1 = belowerr1 + cur1; | |
1130 | belowerr1 = bnexterr; | |
1131 | cur1 += delta; /* form error * 7 */ | |
1132 | bnexterr = cur2; /* Process component 2 */ | |
1133 | delta = cur2 * 2; | |
1134 | cur2 += delta; /* form error * 3 */ | |
1135 | errorptr[2] = (FSERROR) (bpreverr2 + cur2); | |
1136 | cur2 += delta; /* form error * 5 */ | |
1137 | bpreverr2 = belowerr2 + cur2; | |
1138 | belowerr2 = bnexterr; | |
1139 | cur2 += delta; /* form error * 7 */ | |
1140 | } | |
1141 | /* At this point curN contains the 7/16 error value to be propagated | |
1142 | * to the next pixel on the current line, and all the errors for the | |
1143 | * next line have been shifted over. We are therefore ready to move on. | |
1144 | */ | |
1145 | inptr += dir3; /* Advance pixel pointers to next column */ | |
1146 | outptr += dir; | |
1147 | errorptr += dir3; /* advance errorptr to current column */ | |
1148 | } | |
1149 | /* Post-loop cleanup: we must unload the final error values into the | |
1150 | * final fserrors[] entry. Note we need not unload belowerrN because | |
1151 | * it is for the dummy column before or after the actual array. | |
1152 | */ | |
1153 | errorptr[0] = (FSERROR) bpreverr0; /* unload prev errs into array */ | |
1154 | errorptr[1] = (FSERROR) bpreverr1; | |
1155 | errorptr[2] = (FSERROR) bpreverr2; | |
1156 | } | |
1157 | } | |
1158 | ||
1159 | ||
1160 | /* | |
1161 | * Initialize the error-limiting transfer function (lookup table). | |
1162 | * The raw F-S error computation can potentially compute error values of up to | |
1163 | * +- MAXJSAMPLE. But we want the maximum correction applied to a pixel to be | |
1164 | * much less, otherwise obviously wrong pixels will be created. (Typical | |
1165 | * effects include weird fringes at color-area boundaries, isolated bright | |
1166 | * pixels in a dark area, etc.) The standard advice for avoiding this problem | |
1167 | * is to ensure that the "corners" of the color cube are allocated as output | |
1168 | * colors; then repeated errors in the same direction cannot cause cascading | |
1169 | * error buildup. However, that only prevents the error from getting | |
1170 | * completely out of hand; Aaron Giles reports that error limiting improves | |
1171 | * the results even with corner colors allocated. | |
1172 | * A simple clamping of the error values to about +- MAXJSAMPLE/8 works pretty | |
1173 | * well, but the smoother transfer function used below is even better. Thanks | |
1174 | * to Aaron Giles for this idea. | |
1175 | */ | |
1176 | ||
1177 | static void | |
1178 | init_error_limit (j_decompress_ptr cinfo) | |
1179 | /* Allocate and fill in the error_limiter table */ | |
1180 | { | |
1181 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1182 | int * table; | |
1183 | int in, out; | |
1184 | ||
1185 | table = (int *) malloc((MAXJSAMPLE*2+1) * sizeof(int)); | |
1186 | table += MAXJSAMPLE; /* so can index -MAXJSAMPLE .. +MAXJSAMPLE */ | |
1187 | cquantize->error_limiter = table; | |
1188 | ||
1189 | #define STEPSIZE ((MAXJSAMPLE+1)/16) | |
1190 | /* Map errors 1:1 up to +- MAXJSAMPLE/16 */ | |
1191 | out = 0; | |
1192 | for (in = 0; in < STEPSIZE; in++, out++) { | |
1193 | table[in] = out; table[-in] = -out; | |
1194 | } | |
1195 | /* Map errors 1:2 up to +- 3*MAXJSAMPLE/16 */ | |
1196 | for (; in < STEPSIZE*3; in++, out += (in&1) ? 0 : 1) { | |
1197 | table[in] = out; table[-in] = -out; | |
1198 | } | |
1199 | /* Clamp the rest to final out value (which is (MAXJSAMPLE+1)/8) */ | |
1200 | for (; in <= MAXJSAMPLE; in++) { | |
1201 | table[in] = out; table[-in] = -out; | |
1202 | } | |
1203 | #undef STEPSIZE | |
1204 | } | |
1205 | ||
1206 | ||
1207 | /* | |
1208 | * Finish up at the end of each pass. | |
1209 | */ | |
1210 | ||
1211 | void | |
1212 | finish_pass1 (j_decompress_ptr cinfo) | |
1213 | { | |
1214 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1215 | ||
1216 | /* Select the representative colors and fill in cinfo->colormap */ | |
1217 | cinfo->colormap = cquantize->sv_colormap; | |
1218 | select_colors(cinfo, cquantize->desired); | |
1219 | /* Force next pass to zero the color index table */ | |
1220 | cquantize->needs_zeroed = true; | |
1221 | } | |
1222 | ||
1223 | ||
1224 | void | |
1225 | finish_pass2 (j_decompress_ptr cinfo) | |
1226 | { | |
1227 | /* no work */ | |
1228 | } | |
1229 | ||
1230 | ||
1231 | /* | |
1232 | * Initialize for each processing pass. | |
1233 | */ | |
1234 | ||
1235 | void | |
1236 | start_pass_2_quant (j_decompress_ptr cinfo, bool is_pre_scan) | |
1237 | { | |
1238 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1239 | hist3d histogram = cquantize->histogram; | |
1240 | int i; | |
1241 | ||
1242 | if (is_pre_scan) { | |
1243 | /* Set up method pointers */ | |
1244 | cquantize->pub.color_quantize = prescan_quantize; | |
1245 | cquantize->pub.finish_pass = finish_pass1; | |
1246 | cquantize->needs_zeroed = true; /* Always zero histogram */ | |
1247 | } else { | |
1248 | /* Set up method pointers */ | |
1249 | cquantize->pub.color_quantize = pass2_fs_dither; | |
1250 | cquantize->pub.finish_pass = finish_pass2; | |
1251 | ||
1252 | /* Make sure color count is acceptable */ | |
1253 | i = cinfo->actual_number_of_colors; | |
1254 | ||
1255 | { | |
1256 | size_t arraysize = (size_t) ((cinfo->output_width + 2) * | |
1257 | (3 * sizeof(FSERROR))); | |
1258 | /* Allocate Floyd-Steinberg workspace if we didn't already. */ | |
1259 | if (cquantize->fserrors == NULL) | |
1260 | cquantize->fserrors = (INT16*) malloc(arraysize); | |
1261 | /* Initialize the propagated errors to zero. */ | |
1262 | memset((void *) cquantize->fserrors, 0, arraysize); | |
1263 | /* Make the error-limit table if we didn't already. */ | |
1264 | if (cquantize->error_limiter == NULL) | |
1265 | init_error_limit(cinfo); | |
1266 | cquantize->on_odd_row = false; | |
1267 | } | |
1268 | ||
1269 | } | |
1270 | /* Zero the histogram or inverse color map, if necessary */ | |
1271 | if (cquantize->needs_zeroed) { | |
1272 | for (i = 0; i < HIST_C0_ELEMS; i++) { | |
1273 | memset((void *) histogram[i], 0, | |
1274 | HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell)); | |
1275 | } | |
1276 | cquantize->needs_zeroed = false; | |
1277 | } | |
1278 | } | |
1279 | ||
1280 | ||
1281 | /* | |
1282 | * Switch to a new external colormap between output passes. | |
1283 | */ | |
1284 | ||
1285 | void | |
1286 | new_color_map_2_quant (j_decompress_ptr cinfo) | |
1287 | { | |
1288 | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | |
1289 | ||
1290 | /* Reset the inverse color map */ | |
1291 | cquantize->needs_zeroed = true; | |
1292 | } | |
1293 | ||
1294 | ||
1295 | /* | |
1296 | * Module initialization routine for 2-pass color quantization. | |
1297 | */ | |
1298 | ||
1299 | void | |
1300 | jinit_2pass_quantizer (j_decompress_ptr cinfo) | |
1301 | { | |
1302 | my_cquantize_ptr cquantize; | |
1303 | int i; | |
1304 | ||
1305 | cquantize = (my_cquantize_ptr) malloc(sizeof(my_cquantizer)); | |
1306 | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; | |
1307 | cquantize->pub.start_pass = start_pass_2_quant; | |
1308 | cquantize->pub.new_color_map = new_color_map_2_quant; | |
1309 | cquantize->fserrors = NULL; /* flag optional arrays not allocated */ | |
1310 | cquantize->error_limiter = NULL; | |
1311 | ||
1312 | ||
1313 | /* Allocate the histogram/inverse colormap storage */ | |
1314 | cquantize->histogram = (hist3d) malloc(HIST_C0_ELEMS * sizeof(hist2d)); | |
1315 | for (i = 0; i < HIST_C0_ELEMS; i++) { | |
1316 | cquantize->histogram[i] = (hist2d) malloc(HIST_C1_ELEMS*HIST_C2_ELEMS * sizeof(histcell)); | |
1317 | } | |
1318 | cquantize->needs_zeroed = true; /* histogram is garbage now */ | |
1319 | ||
1320 | /* Allocate storage for the completed colormap, if required. | |
1321 | * We do this now since it is storage and may affect | |
1322 | * the memory manager's space calculations. | |
1323 | */ | |
1324 | { | |
1325 | /* Make sure color count is acceptable */ | |
1326 | int desired = cinfo->desired_number_of_colors; | |
1327 | ||
1328 | cquantize->sv_colormap = (JSAMPARRAY) malloc(sizeof(JSAMPROW) * 3); | |
1329 | cquantize->sv_colormap[0] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired); | |
1330 | cquantize->sv_colormap[1] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired); | |
1331 | cquantize->sv_colormap[2] = (JSAMPROW) malloc(sizeof(JSAMPLE) * desired); | |
1332 | ||
1333 | cquantize->desired = desired; | |
1334 | } | |
1335 | ||
1336 | /* Allocate Floyd-Steinberg workspace if necessary. | |
1337 | * This isn't really needed until pass 2, but again it is storage. | |
1338 | * Although we will cope with a later change in dither_mode, | |
1339 | * we do not promise to honor max_memory_to_use if dither_mode changes. | |
1340 | */ | |
1341 | { | |
1342 | cquantize->fserrors = (FSERRPTR) malloc( | |
1343 | (size_t) ((cinfo->output_width + 2) * (3 * sizeof(FSERROR)))); | |
1344 | /* Might as well create the error-limiting table too. */ | |
1345 | init_error_limit(cinfo); | |
1346 | } | |
1347 | } | |
1348 | ||
1349 | ||
1350 | ||
1351 | ||
1352 | ||
1353 | ||
1354 | ||
1355 | ||
1356 | ||
1357 | ||
1358 | void | |
1359 | prepare_range_limit_table (j_decompress_ptr cinfo) | |
1360 | /* Allocate and fill in the sample_range_limit table */ | |
1361 | { | |
1362 | JSAMPLE * table; | |
1363 | int i; | |
1364 | ||
1365 | table = (JSAMPLE *) malloc((5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * sizeof(JSAMPLE)); | |
1366 | cinfo->srl_orig = table; | |
1367 | table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */ | |
1368 | cinfo->sample_range_limit = table; | |
1369 | /* First segment of "simple" table: limit[x] = 0 for x < 0 */ | |
1370 | memset(table - (MAXJSAMPLE+1), 0, (MAXJSAMPLE+1) * sizeof(JSAMPLE)); | |
1371 | /* Main part of "simple" table: limit[x] = x */ | |
1372 | for (i = 0; i <= MAXJSAMPLE; i++) | |
1373 | table[i] = (JSAMPLE) i; | |
1374 | table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */ | |
1375 | /* End of simple table, rest of first half of post-IDCT table */ | |
1376 | for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++) | |
1377 | table[i] = MAXJSAMPLE; | |
1378 | /* Second half of post-IDCT table */ | |
1379 | memset(table + (2 * (MAXJSAMPLE+1)), 0, | |
1380 | (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * sizeof(JSAMPLE)); | |
1381 | memcpy(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE), | |
1382 | cinfo->sample_range_limit, CENTERJSAMPLE * sizeof(JSAMPLE)); | |
1383 | } | |
1384 | ||
1385 | ||
1386 | ||
1387 | ||
1388 | /* | |
1389 | * wxQuantize | |
1390 | */ | |
1391 | ||
1392 | IMPLEMENT_DYNAMIC_CLASS(wxQuantize, wxObject) | |
1393 | ||
1394 | void wxQuantize::DoQuantize(unsigned w, unsigned h, unsigned char **in_rows, unsigned char **out_rows, | |
1395 | unsigned char *palette, int desiredNoColours) | |
1396 | { | |
1397 | j_decompress dec; | |
1398 | my_cquantize_ptr cquantize; | |
1399 | ||
1400 | dec.output_width = w; | |
1401 | dec.desired_number_of_colors = desiredNoColours; | |
1402 | prepare_range_limit_table(&dec); | |
1403 | jinit_2pass_quantizer(&dec); | |
1404 | cquantize = (my_cquantize_ptr) dec.cquantize; | |
1405 | ||
1406 | ||
1407 | cquantize->pub.start_pass(&dec, true); | |
1408 | cquantize->pub.color_quantize(&dec, in_rows, out_rows, h); | |
1409 | cquantize->pub.finish_pass(&dec); | |
1410 | ||
1411 | cquantize->pub.start_pass(&dec, false); | |
1412 | cquantize->pub.color_quantize(&dec, in_rows, out_rows, h); | |
1413 | cquantize->pub.finish_pass(&dec); | |
1414 | ||
1415 | ||
1416 | for (int i = 0; i < dec.desired_number_of_colors; i++) { | |
1417 | palette[3 * i + 0] = dec.colormap[0][i]; | |
1418 | palette[3 * i + 1] = dec.colormap[1][i]; | |
1419 | palette[3 * i + 2] = dec.colormap[2][i]; | |
1420 | } | |
1421 | ||
1422 | for (int ii = 0; ii < HIST_C0_ELEMS; ii++) free(cquantize->histogram[ii]); | |
1423 | free(cquantize->histogram); | |
1424 | free(dec.colormap[0]); | |
1425 | free(dec.colormap[1]); | |
1426 | free(dec.colormap[2]); | |
1427 | free(dec.colormap); | |
1428 | free(dec.srl_orig); | |
1429 | ||
1430 | //free(cquantize->error_limiter); | |
1431 | free((void*)(cquantize->error_limiter - MAXJSAMPLE)); // To reverse what was done to it | |
1432 | ||
1433 | free(cquantize->fserrors); | |
1434 | free(cquantize); | |
1435 | } | |
1436 | ||
1437 | // TODO: somehow make use of the Windows system colours, rather than ignoring them for the | |
1438 | // purposes of quantization. | |
1439 | ||
1440 | bool wxQuantize::Quantize(const wxImage& src, wxImage& dest, wxPalette** pPalette, int desiredNoColours, | |
1441 | unsigned char** eightBitData, int flags) | |
1442 | ||
1443 | { | |
1444 | int i; | |
1445 | int w = src.GetWidth(); | |
1446 | int h = src.GetHeight(); | |
1447 | ||
1448 | int windowsSystemColourCount = 20; | |
1449 | int paletteShift = 0; | |
1450 | ||
1451 | // Shift the palette up by the number of Windows system colours, | |
1452 | // if necessary | |
1453 | if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS) | |
1454 | paletteShift = windowsSystemColourCount; | |
1455 | ||
1456 | // Make room for the Windows system colours | |
1457 | #ifdef __WXMSW__ | |
1458 | if ((flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS) && (desiredNoColours > (256 - windowsSystemColourCount))) | |
1459 | desiredNoColours = 256 - windowsSystemColourCount; | |
1460 | #endif | |
1461 | ||
1462 | // create rows info: | |
1463 | unsigned char **rows = new unsigned char *[h]; | |
1464 | h = src.GetHeight(), w = src.GetWidth(); | |
1465 | unsigned char *imgdt = src.GetData(); | |
1466 | for (i = 0; i < h; i++) | |
1467 | rows[i] = imgdt + 3/*RGB*/ * w * i; | |
1468 | ||
1469 | unsigned char palette[3*256]; | |
1470 | ||
1471 | // This is the image as represented by palette indexes. | |
1472 | unsigned char *data8bit = new unsigned char[w * h]; | |
1473 | unsigned char **outrows = new unsigned char *[h]; | |
1474 | for (i = 0; i < h; i++) | |
1475 | outrows[i] = data8bit + w * i; | |
1476 | ||
1477 | //RGB->palette | |
1478 | DoQuantize(w, h, rows, outrows, palette, desiredNoColours); | |
1479 | ||
1480 | delete[] rows; | |
1481 | delete[] outrows; | |
1482 | ||
1483 | // palette->RGB(max.256) | |
1484 | ||
1485 | if (flags & wxQUANTIZE_FILL_DESTINATION_IMAGE) | |
1486 | { | |
1487 | if (!dest.Ok()) | |
1488 | dest.Create(w, h); | |
1489 | ||
1490 | imgdt = dest.GetData(); | |
1491 | for (i = 0; i < w * h; i++) | |
1492 | { | |
1493 | unsigned char c = data8bit[i]; | |
1494 | imgdt[3 * i + 0/*R*/] = palette[3 * c + 0]; | |
1495 | imgdt[3 * i + 1/*G*/] = palette[3 * c + 1]; | |
1496 | imgdt[3 * i + 2/*B*/] = palette[3 * c + 2]; | |
1497 | } | |
1498 | } | |
1499 | ||
1500 | if (eightBitData && (flags & wxQUANTIZE_RETURN_8BIT_DATA)) | |
1501 | { | |
1502 | #ifdef __WXMSW__ | |
1503 | if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS) | |
1504 | { | |
1505 | // We need to shift the palette entries up | |
1506 | // to make room for the Windows system colours. | |
1507 | for (i = 0; i < w * h; i++) | |
1508 | data8bit[i] = data8bit[i] + paletteShift; | |
1509 | } | |
1510 | #endif | |
1511 | *eightBitData = data8bit; | |
1512 | } | |
1513 | else | |
1514 | delete[] data8bit; | |
1515 | ||
1516 | // Make a wxWindows palette | |
1517 | if (pPalette) | |
1518 | { | |
1519 | unsigned char* r = new unsigned char[256]; | |
1520 | unsigned char* g = new unsigned char[256]; | |
1521 | unsigned char* b = new unsigned char[256]; | |
1522 | ||
1523 | #ifdef __WXMSW__ | |
1524 | // Fill the first 20 entries with Windows system colours | |
1525 | if (flags & wxQUANTIZE_INCLUDE_WINDOWS_COLOURS) | |
1526 | { | |
1527 | HDC hDC = ::GetDC(NULL); | |
1528 | PALETTEENTRY* entries = new PALETTEENTRY[windowsSystemColourCount]; | |
1529 | ::GetSystemPaletteEntries(hDC, 0, windowsSystemColourCount, entries); | |
1530 | ::ReleaseDC(NULL, hDC); | |
1531 | ||
1532 | for (i = 0; i < windowsSystemColourCount; i++) | |
1533 | { | |
1534 | r[i] = entries[i].peRed; | |
1535 | g[i] = entries[i].peGreen; | |
1536 | b[i] = entries[i].peBlue; | |
1537 | } | |
1538 | delete[] entries; | |
1539 | } | |
1540 | #endif | |
1541 | ||
1542 | for (i = 0; i < desiredNoColours; i++) | |
1543 | { | |
1544 | r[i+paletteShift] = palette[i*3 + 0]; | |
1545 | g[i+paletteShift] = palette[i*3 + 1]; | |
1546 | b[i+paletteShift] = palette[i*3 + 2]; | |
1547 | } | |
1548 | ||
1549 | // Blank out any remaining palette entries | |
1550 | for (i = desiredNoColours+paletteShift; i < 256; i++) | |
1551 | { | |
1552 | r[i] = 0; | |
1553 | g[i] = 0; | |
1554 | b[i] = 0; | |
1555 | } | |
1556 | *pPalette = new wxPalette(256, r, g, b); | |
1557 | delete[] r; | |
1558 | delete[] g; | |
1559 | delete[] b; | |
1560 | } | |
1561 | ||
1562 | return TRUE; | |
1563 | } | |
1564 | ||
2f382cc6 JS |
1565 | // This version sets a palette in the destination image so you don't |
1566 | // have to manage it yourself. | |
1567 | ||
1568 | bool wxQuantize::Quantize(const wxImage& src, wxImage& dest, int desiredNoColours, | |
1569 | unsigned char** eightBitData, int flags) | |
1570 | { | |
1571 | wxPalette* palette = NULL; | |
1572 | if (Quantize(src, dest, & palette, desiredNoColours, eightBitData, flags)) | |
1573 | { | |
1574 | if (palette) | |
1575 | { | |
1576 | dest.SetPalette(* palette); | |
1577 | delete palette; | |
1578 | } | |
1579 | return TRUE; | |
1580 | } | |
1581 | else | |
1582 | return FALSE; | |
1583 | } | |
1584 |