]>
Commit | Line | Data |
---|---|---|
467175ab VS |
1 | ///////////////////////////////////////////////////////////////////////////// |
2 | // Name: src/common/stringops.cpp | |
3 | // Purpose: implementation of wxString primitive operations | |
4 | // Author: Vaclav Slavik | |
5 | // Modified by: | |
6 | // Created: 2007-04-16 | |
7 | // RCS-ID: $Id$ | |
8 | // Copyright: (c) 2007 REA Elektronik GmbH | |
9 | // Licence: wxWindows licence | |
10 | ///////////////////////////////////////////////////////////////////////////// | |
11 | ||
12 | // =========================================================================== | |
13 | // headers | |
14 | // =========================================================================== | |
15 | ||
16 | // For compilers that support precompilation, includes "wx.h". | |
17 | #include "wx/wxprec.h" | |
18 | ||
19 | #ifdef __BORLANDC__ | |
20 | #pragma hdrstop | |
21 | #endif | |
22 | ||
23 | #ifndef WX_PRECOMP | |
24 | #include "wx/stringops.h" | |
25 | #endif | |
26 | ||
27 | // =========================================================================== | |
28 | // implementation | |
29 | // =========================================================================== | |
30 | ||
31 | #if wxUSE_UNICODE_UTF8 | |
32 | ||
33 | // --------------------------------------------------------------------------- | |
34 | // UTF-8 sequences lengths | |
35 | // --------------------------------------------------------------------------- | |
36 | ||
37 | unsigned char wxStringOperationsUtf8::ms_utf8IterTable[256] = { | |
38 | // single-byte sequences (ASCII): | |
39 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 00..0F | |
40 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 10..1F | |
41 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 20..2F | |
42 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 30..3F | |
43 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 40..4F | |
44 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 50..5F | |
45 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 60..6F | |
46 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 70..7F | |
47 | ||
48 | // these are invalid, we use step 1 to skip | |
49 | // over them (should never happen): | |
50 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 80..8F | |
51 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 90..9F | |
52 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // A0..AF | |
53 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // B0..BF | |
54 | 1, 1, // C0,C1 | |
55 | ||
56 | // two-byte sequences: | |
57 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C2..CF | |
58 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // D0..DF | |
59 | ||
60 | // three-byte sequences: | |
61 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, // E0..EF | |
62 | ||
63 | // four-byte sequences: | |
64 | 4, 4, 4, 4, 4, // F0..F4 | |
65 | ||
66 | // these are invalid again (5- or 6-byte | |
67 | // sequences and sequences for code points | |
68 | // above U+10FFFF, as restricted by RFC 3629): | |
69 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // F5..FF | |
70 | }; | |
71 | ||
72 | // --------------------------------------------------------------------------- | |
73 | // UTF-8 operations | |
74 | // --------------------------------------------------------------------------- | |
75 | ||
76 | // | |
77 | // Table 3.1B from Unicode spec: Legal UTF-8 Byte Sequences | |
78 | // | |
79 | // Code Points | 1st Byte | 2nd Byte | 3rd Byte | 4th Byte | | |
80 | // -------------------+----------+----------+----------+----------+ | |
81 | // U+0000..U+007F | 00..7F | | | | | |
82 | // U+0080..U+07FF | C2..DF | 80..BF | | | | |
83 | // U+0800..U+0FFF | E0 | A0..BF | 80..BF | | | |
84 | // U+1000..U+FFFF | E1..EF | 80..BF | 80..BF | | | |
85 | // U+10000..U+3FFFF | F0 | 90..BF | 80..BF | 80..BF | | |
86 | // U+40000..U+FFFFF | F1..F3 | 80..BF | 80..BF | 80..BF | | |
87 | // U+100000..U+10FFFF | F4 | 80..8F | 80..BF | 80..BF | | |
88 | // -------------------+----------+----------+----------+----------+ | |
89 | ||
111d9948 | 90 | bool wxStringOperationsUtf8::IsValidUtf8String(const char *str, size_t len) |
467175ab VS |
91 | { |
92 | if ( !str ) | |
93 | return true; // empty string is UTF8 string | |
94 | ||
95 | const unsigned char *c = (const unsigned char*)str; | |
111d9948 | 96 | const unsigned char * const end = (len == wxStringImpl::npos) ? NULL : c + len; |
467175ab | 97 | |
111d9948 | 98 | for ( ; c != end && *c; ++c ) |
467175ab VS |
99 | { |
100 | unsigned char b = *c; | |
101 | ||
111d9948 VS |
102 | if ( end != NULL ) |
103 | { | |
104 | // if the string is not NULL-terminated, verify we have enough | |
105 | // bytes in it left for current character's encoding: | |
106 | if ( c + ms_utf8IterTable[*c] > end ) | |
107 | return false; | |
108 | } | |
109 | ||
467175ab VS |
110 | if ( b <= 0x7F ) // 00..7F |
111 | continue; | |
112 | ||
113 | else if ( b < 0xC2 ) // invalid lead bytes: 80..C1 | |
114 | return false; | |
115 | ||
116 | // two-byte sequences: | |
117 | else if ( b <= 0xDF ) // C2..DF | |
118 | { | |
119 | b = *(++c); | |
120 | if ( !(b >= 0x80 && b <= 0xBF ) ) | |
121 | return false; | |
122 | } | |
123 | ||
124 | // three-byte sequences: | |
125 | else if ( b == 0xE0 ) | |
126 | { | |
127 | b = *(++c); | |
128 | if ( !(b >= 0xA0 && b <= 0xBF ) ) | |
129 | return false; | |
130 | b = *(++c); | |
131 | if ( !(b >= 0x80 && b <= 0xBF ) ) | |
132 | return false; | |
133 | } | |
134 | else if ( b <= 0xEF ) // E1..EF | |
135 | { | |
136 | for ( int i = 0; i < 2; ++i ) | |
137 | { | |
138 | b = *(++c); | |
139 | if ( !(b >= 0x80 && b <= 0xBF ) ) | |
140 | return false; | |
141 | } | |
142 | } | |
143 | ||
144 | // four-byte sequences: | |
145 | else if ( b == 0xF0 ) | |
146 | { | |
147 | b = *(++c); | |
148 | if ( !(b >= 0x90 && b <= 0xBF ) ) | |
149 | return false; | |
150 | for ( int i = 0; i < 2; ++i ) | |
151 | { | |
152 | b = *(++c); | |
153 | if ( !(b >= 0x80 && b <= 0xBF ) ) | |
154 | return false; | |
155 | } | |
156 | } | |
157 | else if ( b <= 0xF3 ) // F1..F3 | |
158 | { | |
159 | for ( int i = 0; i < 3; ++i ) | |
160 | { | |
161 | b = *(++c); | |
162 | if ( !(b >= 0x80 && b <= 0xBF ) ) | |
163 | return false; | |
164 | } | |
165 | } | |
166 | else if ( b == 0xF4 ) | |
167 | { | |
168 | b = *(++c); | |
169 | if ( !(b >= 0x80 && b <= 0x8F ) ) | |
170 | return false; | |
171 | for ( int i = 0; i < 2; ++i ) | |
172 | { | |
173 | b = *(++c); | |
174 | if ( !(b >= 0x80 && b <= 0xBF ) ) | |
175 | return false; | |
176 | } | |
177 | } | |
178 | else // otherwise, it's invalid lead byte | |
179 | return false; | |
180 | } | |
181 | ||
182 | return true; | |
183 | } | |
184 | ||
185 | #ifdef __WXDEBUG__ | |
186 | bool wxStringOperationsUtf8::IsValidUtf8LeadByte(unsigned char c) | |
187 | { | |
188 | return (c <= 0x7F) || (c >= 0xC2 && c <= 0xF4); | |
189 | } | |
190 | #endif | |
191 | ||
192 | ||
193 | wxStringOperationsUtf8::Utf8CharBuffer | |
194 | wxStringOperationsUtf8::EncodeChar(const wxUniChar& ch) | |
195 | { | |
196 | Utf8CharBuffer buf; | |
197 | char *out = buf.data; | |
198 | ||
199 | wxUniChar::value_type code = ch.GetValue(); | |
200 | ||
201 | // Char. number range | UTF-8 octet sequence | |
202 | // (hexadecimal) | (binary) | |
203 | // ----------------------+--------------------------------------------- | |
204 | // 0000 0000 - 0000 007F | 0xxxxxxx | |
205 | // 0000 0080 - 0000 07FF | 110xxxxx 10xxxxxx | |
206 | // 0000 0800 - 0000 FFFF | 1110xxxx 10xxxxxx 10xxxxxx | |
207 | // 0001 0000 - 0010 FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx | |
208 | // | |
209 | // Code point value is stored in bits marked with 'x', lowest-order bit | |
210 | // of the value on the right side in the diagram above. | |
211 | // (from RFC 3629) | |
212 | ||
213 | if ( code <= 0x7F ) | |
214 | { | |
215 | out[1] = 0; | |
216 | out[0] = (char)code; | |
217 | } | |
218 | else if ( code <= 0x07FF ) | |
219 | { | |
220 | out[2] = 0; | |
221 | // NB: this line takes 6 least significant bits, encodes them as | |
222 | // 10xxxxxx and discards them so that the next byte can be encoded: | |
223 | out[1] = 0x80 | (code & 0x3F); code >>= 6; | |
224 | out[0] = 0xC0 | code; | |
225 | } | |
226 | else if ( code < 0xFFFF ) | |
227 | { | |
228 | out[3] = 0; | |
229 | out[2] = 0x80 | (code & 0x3F); code >>= 6; | |
230 | out[1] = 0x80 | (code & 0x3F); code >>= 6; | |
231 | out[0] = 0xE0 | code; | |
232 | } | |
233 | else if ( code <= 0x10FFFF ) | |
234 | { | |
235 | out[4] = 0; | |
236 | out[3] = 0x80 | (code & 0x3F); code >>= 6; | |
237 | out[2] = 0x80 | (code & 0x3F); code >>= 6; | |
238 | out[1] = 0x80 | (code & 0x3F); code >>= 6; | |
239 | out[0] = 0xF0 | code; | |
240 | } | |
241 | else | |
242 | { | |
243 | wxFAIL_MSG( _T("trying to encode undefined Unicode character") ); | |
244 | out[0] = 0; | |
245 | } | |
246 | ||
247 | return buf; | |
248 | } | |
249 | ||
250 | wxUniChar | |
251 | wxStringOperationsUtf8::DecodeChar(wxStringImpl::const_iterator i) | |
252 | { | |
253 | wxASSERT( IsValidUtf8LeadByte(*i) ); | |
254 | ||
255 | wxUniChar::value_type code = 0; | |
256 | size_t len = GetUtf8CharLength(*i); | |
257 | wxASSERT_MSG( len <= 4, _T("invalid UTF-8 sequence length") ); | |
258 | ||
259 | // Char. number range | UTF-8 octet sequence | |
260 | // (hexadecimal) | (binary) | |
261 | // ----------------------+--------------------------------------------- | |
262 | // 0000 0000 - 0000 007F | 0xxxxxxx | |
263 | // 0000 0080 - 0000 07FF | 110xxxxx 10xxxxxx | |
264 | // 0000 0800 - 0000 FFFF | 1110xxxx 10xxxxxx 10xxxxxx | |
265 | // 0001 0000 - 0010 FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx | |
266 | // | |
267 | // Code point value is stored in bits marked with 'x', lowest-order bit | |
268 | // of the value on the right side in the diagram above. | |
269 | // (from RFC 3629) | |
270 | ||
271 | // mask to extract lead byte's value ('x' bits above), by sequence's length: | |
272 | static const unsigned char s_leadValueMask[4] = { 0x7F, 0x1F, 0x0F, 0x07 }; | |
273 | #ifdef __WXDEBUG__ | |
274 | // mask and value of lead byte's most significant bits, by length: | |
275 | static const unsigned char s_leadMarkerMask[4] = { 0x80, 0xE0, 0xF0, 0xF8 }; | |
276 | static const unsigned char s_leadMarkerVal[4] = { 0x00, 0xC0, 0xE0, 0xF0 }; | |
277 | #endif | |
278 | ||
279 | // extract the lead byte's value bits: | |
280 | wxASSERT_MSG( ((unsigned char)*i & s_leadMarkerMask[len-1]) == | |
281 | s_leadMarkerVal[len-1], | |
282 | _T("invalid UTF-8 lead byte") ); | |
283 | code = (unsigned char)*i & s_leadValueMask[len-1]; | |
284 | ||
285 | // all remaining bytes, if any, are handled in the same way regardless of | |
286 | // sequence's length: | |
287 | for ( ++i ; len > 1; --len, ++i ) | |
288 | { | |
289 | wxASSERT_MSG( ((unsigned char)*i & 0xC0) == 0x80, | |
290 | _T("invalid UTF-8 byte") ); | |
291 | ||
292 | code <<= 6; | |
293 | code |= (unsigned char)*i & 0x3F; | |
294 | } | |
295 | ||
296 | return wxUniChar(code); | |
297 | } | |
298 | ||
299 | wxCharBuffer wxStringOperationsUtf8::EncodeNChars(size_t n, const wxUniChar& ch) | |
300 | { | |
301 | Utf8CharBuffer once(EncodeChar(ch)); | |
302 | // the IncIter() table can be used to determine the length of ch's encoding: | |
303 | size_t len = ms_utf8IterTable[(unsigned char)once.data[0]]; | |
304 | ||
305 | wxCharBuffer buf(n * len); | |
306 | char *ptr = buf.data(); | |
307 | for ( size_t i = 0; i < n; i++, ptr += len ) | |
308 | { | |
309 | memcpy(ptr, once.data, len); | |
310 | } | |
311 | ||
312 | return buf; | |
313 | } | |
314 | ||
315 | #endif // wxUSE_UNICODE_UTF8 |