]> git.saurik.com Git - wxWidgets.git/blame - include/wx/matrix.h
Copied/merged from the 2.2 branch.
[wxWidgets.git] / include / wx / matrix.h
CommitLineData
c801d85f
KB
1/////////////////////////////////////////////////////////////////////////////
2// Name: matrix.h
3// Purpose: wxTransformMatrix class. NOT YET USED
555526fb
RR
4//! Author: Chris Breeze, Julian Smart
5// Modified by: Klaas Holwerda
c801d85f
KB
6// Created: 01/02/97
7// RCS-ID: $Id$
8// Copyright: (c) Julian Smart and Markus Holzem
555526fb 9// Licence: wxWindows licence
c801d85f
KB
10/////////////////////////////////////////////////////////////////////////////
11
34138703
JS
12#ifndef _WX_MATRIXH__
13#define _WX_MATRIXH__
c801d85f
KB
14
15#ifdef __GNUG__
16#pragma interface "matrix.h"
17#endif
18
555526fb 19//! headerfiles="matrix.h wx/object.h"
c801d85f
KB
20#include "wx/object.h"
21
555526fb
RR
22//! codefiles="matrix.cpp"
23
c801d85f
KB
24// A simple 3x3 matrix. This may be replaced by a more general matrix
25// class some day.
26//
27// Note: this is intended to be used in wxDC at some point to replace
28// the current system of scaling/translation. It is not yet used.
29
555526fb
RR
30//:defenition
31// A 3x3 matrix to do 2D transformations.
32// It can be used to map data to window coordinates.
33// But also for manipulating your own data.
34// For example drawing a picture (composed of several primitives)
35// at a certain coordinate and angle within another parent picture.
36// At all times m_isIdentity is set if the matrix itself is an Identity matrix.
37// It is used where possible to optimize calculations.
c801d85f
KB
38class WXDLLEXPORT wxTransformMatrix: public wxObject
39{
40public:
555526fb
RR
41 wxTransformMatrix(void);
42 wxTransformMatrix(const wxTransformMatrix& mat);
43
44 //get the value in the matrix at col,row
45 //rows are horizontal (second index of m_matrix member)
46 //columns are vertical (first index of m_matrix member)
47 double GetValue(int col, int row) const;
48
49 //set the value in the matrix at col,row
50 //rows are horizontal (second index of m_matrix member)
51 //columns are vertical (first index of m_matrix member)
52 void SetValue(int col, int row, double value);
53
54 void operator = (const wxTransformMatrix& mat);
55 bool operator == (const wxTransformMatrix& mat);
56 bool operator != (const wxTransformMatrix& mat);
57
58 //multiply every element by t
59 wxTransformMatrix& operator*=(const double& t);
60 //divide every element by t
61 wxTransformMatrix& operator/=(const double& t);
62 //add matrix m to this t
63 wxTransformMatrix& operator+=(const wxTransformMatrix& m);
64 //subtract matrix m from this
65 wxTransformMatrix& operator-=(const wxTransformMatrix& m);
66 //multiply matrix m with this
67 wxTransformMatrix& operator*=(const wxTransformMatrix& m);
68
69 // constant operators
70
71 //multiply every element by t and return result
72 wxTransformMatrix operator*(const double& t) const;
73 //divide this matrix by t and return result
74 wxTransformMatrix operator/(const double& t) const;
75 //add matrix m to this and return result
76 wxTransformMatrix operator+(const wxTransformMatrix& m) const;
77 //subtract matrix m from this and return result
78 wxTransformMatrix operator-(const wxTransformMatrix& m) const;
79 //multiply this by matrix m and return result
80 wxTransformMatrix operator*(const wxTransformMatrix& m) const;
81 wxTransformMatrix operator-() const;
82
83 //rows are horizontal (second index of m_matrix member)
84 //columns are vertical (first index of m_matrix member)
85 double& operator()(int col, int row);
86
87 //rows are horizontal (second index of m_matrix member)
88 //columns are vertical (first index of m_matrix member)
89 double operator()(int col, int row) const;
90
91 // Invert matrix
92 bool Invert(void);
93
94 // Make into identity matrix
95 bool Identity(void);
96
97 // Is the matrix the identity matrix?
98 // Only returns a flag, which is set whenever an operation
99 // is done.
100 inline bool IsIdentity(void) const { return m_isIdentity; };
101
102 // This does an actual check.
103 inline bool IsIdentity1(void) const ;
104
105 //Scale by scale (isotropic scaling i.e. the same in x and y):
106 //!ex:
107 //!code: | scale 0 0 |
108 //!code: matrix' = | 0 scale 0 | x matrix
109 //!code: | 0 0 scale |
110 bool Scale(double scale);
111
112 //Scale with center point and x/y scale
113 //
114 //!ex:
115 //!code: | xs 0 xc(1-xs) |
116 //!code: matrix' = | 0 ys yc(1-ys) | x matrix
117 //!code: | 0 0 1 |
118 wxTransformMatrix& Scale(const double &xs, const double &ys,const double &xc, const double &yc);
119
120 // mirror a matrix in x, y
121 //!ex:
122 //!code: | -1 0 0 |
123 //!code: matrix' = | 0 -1 0 | x matrix
124 //!code: | 0 0 1 |
3bdb7232
DW
125#if defined(__WXPM__)
126 wxTransformMatrix& Mirror(bool x=TRUE, bool y=FALSE);
127#else
555526fb 128 wxTransformMatrix& Mirror(bool x=true, bool y=false);
3bdb7232 129#endif
555526fb
RR
130 // Translate by dx, dy:
131 //!ex:
132 //!code: | 1 0 dx |
133 //!code: matrix' = | 0 1 dy | x matrix
134 //!code: | 0 0 1 |
135 bool Translate(double x, double y);
136
137 // Rotate clockwise by the given number of degrees:
138 //!ex:
139 //!code: | cos sin 0 |
140 //!code: matrix' = | -sin cos 0 | x matrix
141 //!code: | 0 0 1 |
142 bool Rotate(double angle);
143
144 //Rotate counter clockwise with point of rotation
145 //
146 //!ex:
147 //!code: | cos(r) -sin(r) x(1-cos(r))+y(sin(r)|
148 //!code: matrix' = | sin(r) cos(r) y(1-cos(r))-x(sin(r)| x matrix
149 //!code: | 0 0 1 |
150 wxTransformMatrix& Rotate(const double &r, const double &x, const double &y);
151
152 // Transform X value from logical to device
153 inline double TransformX(double x) const;
154
155 // Transform Y value from logical to device
156 inline double TransformY(double y) const;
157
158 // Transform a point from logical to device coordinates
159 bool TransformPoint(double x, double y, double& tx, double& ty) const;
160
161 // Transform a point from device to logical coordinates.
162 // Example of use:
163 // wxTransformMatrix mat = dc.GetTransformation();
164 // mat.Invert();
165 // mat.InverseTransformPoint(x, y, x1, y1);
166 // OR (shorthand:)
167 // dc.LogicalToDevice(x, y, x1, y1);
168 // The latter is slightly less efficient if we're doing several
169 // conversions, since the matrix is inverted several times.
170 // N.B. 'this' matrix is the inverse at this point
171 bool InverseTransformPoint(double x, double y, double& tx, double& ty) const;
172
173 double Get_scaleX();
174 double Get_scaleY();
175 double GetRotation();
176 void SetRotation(double rotation);
c801d85f 177
c801d85f
KB
178
179public:
555526fb
RR
180 double m_matrix[3][3];
181 bool m_isIdentity;
c801d85f
KB
182};
183
46dc76ba
RR
184
185/*
555526fb 186Chris Breeze reported, that
46dc76ba
RR
187some functions of wxTransformMatrix cannot work because it is not
188known if he matrix has been inverted. Be careful when using it.
555526fb 189*/
46dc76ba 190
c801d85f 191// Transform X value from logical to device
555526fb
RR
192// warning: this function can only be used for this purpose
193// because no rotation is involved when mapping logical to device coordinates
194// mirror and scaling for x and y will be part of the matrix
195// if you have a matrix that is rotated, eg a shape containing a matrix to place
196// it in the logical coordinate system, use TransformPoint
c801d85f
KB
197inline double wxTransformMatrix::TransformX(double x) const
198{
555526fb
RR
199 //normally like this, but since no rotation is involved (only mirror and scale)
200 //we can do without Y -> m_matrix[1]{0] is -sin(rotation angle) and therefore zero
201 //(x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]))
202 return (m_isIdentity ? x : (x * m_matrix[0][0] + m_matrix[2][0]));
c801d85f
KB
203}
204
205// Transform Y value from logical to device
555526fb
RR
206// warning: this function can only be used for this purpose
207// because no rotation is involved when mapping logical to device coordinates
208// mirror and scaling for x and y will be part of the matrix
209// if you have a matrix that is rotated, eg a shape containing a matrix to place
210// it in the logical coordinate system, use TransformPoint
c801d85f
KB
211inline double wxTransformMatrix::TransformY(double y) const
212{
555526fb
RR
213 //normally like this, but since no rotation is involved (only mirror and scale)
214 //we can do without X -> m_matrix[0]{1] is sin(rotation angle) and therefore zero
215 //(x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]))
216 return (m_isIdentity ? y : (y * m_matrix[1][1] + m_matrix[2][1]));
c801d85f 217}
555526fb 218
c801d85f
KB
219
220// Is the matrix the identity matrix?
555526fb 221// Each operation checks whether the result is still the identity matrix and sets a flag.
c801d85f
KB
222inline bool wxTransformMatrix::IsIdentity1(void) const
223{
555526fb
RR
224 return
225 (m_matrix[0][0] == 1.0 &&
226 m_matrix[1][1] == 1.0 &&
227 m_matrix[2][2] == 1.0 &&
228 m_matrix[1][0] == 0.0 &&
229 m_matrix[2][0] == 0.0 &&
230 m_matrix[0][1] == 0.0 &&
231 m_matrix[2][1] == 0.0 &&
232 m_matrix[0][2] == 0.0 &&
233 m_matrix[1][2] == 0.0) ;
c801d85f
KB
234}
235
236// Calculates the determinant of a 2 x 2 matrix
237inline double wxCalculateDet(double a11, double a21, double a12, double a22)
238{
555526fb 239 return a11 * a22 - a12 * a21;
c801d85f
KB
240}
241
242#endif
555526fb 243 // _WX_MATRIXH__