]> git.saurik.com Git - wxWidgets.git/blame - include/wx/matrix.h
Fixes for building wxOS2 shared with OpenWatcom.
[wxWidgets.git] / include / wx / matrix.h
CommitLineData
c801d85f
KB
1/////////////////////////////////////////////////////////////////////////////
2// Name: matrix.h
3// Purpose: wxTransformMatrix class. NOT YET USED
371a5b4e 4// Author: Chris Breeze, Julian Smart
555526fb 5// Modified by: Klaas Holwerda
c801d85f
KB
6// Created: 01/02/97
7// RCS-ID: $Id$
371a5b4e 8// Copyright: (c) Julian Smart, Chris Breeze
65571936 9// Licence: wxWindows licence
c801d85f
KB
10/////////////////////////////////////////////////////////////////////////////
11
34138703
JS
12#ifndef _WX_MATRIXH__
13#define _WX_MATRIXH__
c801d85f 14
555526fb 15//! headerfiles="matrix.h wx/object.h"
c801d85f
KB
16#include "wx/object.h"
17
555526fb
RR
18//! codefiles="matrix.cpp"
19
c801d85f
KB
20// A simple 3x3 matrix. This may be replaced by a more general matrix
21// class some day.
22//
23// Note: this is intended to be used in wxDC at some point to replace
24// the current system of scaling/translation. It is not yet used.
25
65b17727 26//:definition
555526fb 27// A 3x3 matrix to do 2D transformations.
65b17727
JS
28// It can be used to map data to window coordinates,
29// and also for manipulating your own data.
555526fb
RR
30// For example drawing a picture (composed of several primitives)
31// at a certain coordinate and angle within another parent picture.
32// At all times m_isIdentity is set if the matrix itself is an Identity matrix.
33// It is used where possible to optimize calculations.
c801d85f
KB
34class WXDLLEXPORT wxTransformMatrix: public wxObject
35{
36public:
555526fb
RR
37 wxTransformMatrix(void);
38 wxTransformMatrix(const wxTransformMatrix& mat);
39
40 //get the value in the matrix at col,row
41 //rows are horizontal (second index of m_matrix member)
42 //columns are vertical (first index of m_matrix member)
43 double GetValue(int col, int row) const;
44
45 //set the value in the matrix at col,row
46 //rows are horizontal (second index of m_matrix member)
47 //columns are vertical (first index of m_matrix member)
48 void SetValue(int col, int row, double value);
49
50 void operator = (const wxTransformMatrix& mat);
fbfb8bcc
VZ
51 bool operator == (const wxTransformMatrix& mat) const;
52 bool operator != (const wxTransformMatrix& mat) const;
555526fb
RR
53
54 //multiply every element by t
55 wxTransformMatrix& operator*=(const double& t);
56 //divide every element by t
57 wxTransformMatrix& operator/=(const double& t);
58 //add matrix m to this t
59 wxTransformMatrix& operator+=(const wxTransformMatrix& m);
60 //subtract matrix m from this
61 wxTransformMatrix& operator-=(const wxTransformMatrix& m);
62 //multiply matrix m with this
63 wxTransformMatrix& operator*=(const wxTransformMatrix& m);
64
65 // constant operators
66
67 //multiply every element by t and return result
68 wxTransformMatrix operator*(const double& t) const;
69 //divide this matrix by t and return result
70 wxTransformMatrix operator/(const double& t) const;
71 //add matrix m to this and return result
72 wxTransformMatrix operator+(const wxTransformMatrix& m) const;
73 //subtract matrix m from this and return result
74 wxTransformMatrix operator-(const wxTransformMatrix& m) const;
75 //multiply this by matrix m and return result
76 wxTransformMatrix operator*(const wxTransformMatrix& m) const;
77 wxTransformMatrix operator-() const;
78
79 //rows are horizontal (second index of m_matrix member)
80 //columns are vertical (first index of m_matrix member)
81 double& operator()(int col, int row);
82
83 //rows are horizontal (second index of m_matrix member)
84 //columns are vertical (first index of m_matrix member)
85 double operator()(int col, int row) const;
86
87 // Invert matrix
88 bool Invert(void);
89
90 // Make into identity matrix
91 bool Identity(void);
92
93 // Is the matrix the identity matrix?
94 // Only returns a flag, which is set whenever an operation
95 // is done.
96 inline bool IsIdentity(void) const { return m_isIdentity; };
97
98 // This does an actual check.
99 inline bool IsIdentity1(void) const ;
100
101 //Scale by scale (isotropic scaling i.e. the same in x and y):
102 //!ex:
103 //!code: | scale 0 0 |
104 //!code: matrix' = | 0 scale 0 | x matrix
105 //!code: | 0 0 scale |
106 bool Scale(double scale);
107
108 //Scale with center point and x/y scale
109 //
110 //!ex:
111 //!code: | xs 0 xc(1-xs) |
112 //!code: matrix' = | 0 ys yc(1-ys) | x matrix
113 //!code: | 0 0 1 |
114 wxTransformMatrix& Scale(const double &xs, const double &ys,const double &xc, const double &yc);
115
116 // mirror a matrix in x, y
117 //!ex:
118 //!code: | -1 0 0 |
119 //!code: matrix' = | 0 -1 0 | x matrix
120 //!code: | 0 0 1 |
4e32eea1 121 wxTransformMatrix& Mirror(bool x=true, bool y=false);
555526fb
RR
122 // Translate by dx, dy:
123 //!ex:
124 //!code: | 1 0 dx |
125 //!code: matrix' = | 0 1 dy | x matrix
126 //!code: | 0 0 1 |
127 bool Translate(double x, double y);
128
129 // Rotate clockwise by the given number of degrees:
130 //!ex:
131 //!code: | cos sin 0 |
132 //!code: matrix' = | -sin cos 0 | x matrix
133 //!code: | 0 0 1 |
134 bool Rotate(double angle);
135
136 //Rotate counter clockwise with point of rotation
137 //
138 //!ex:
139 //!code: | cos(r) -sin(r) x(1-cos(r))+y(sin(r)|
140 //!code: matrix' = | sin(r) cos(r) y(1-cos(r))-x(sin(r)| x matrix
141 //!code: | 0 0 1 |
142 wxTransformMatrix& Rotate(const double &r, const double &x, const double &y);
143
144 // Transform X value from logical to device
145 inline double TransformX(double x) const;
146
147 // Transform Y value from logical to device
148 inline double TransformY(double y) const;
149
150 // Transform a point from logical to device coordinates
151 bool TransformPoint(double x, double y, double& tx, double& ty) const;
152
153 // Transform a point from device to logical coordinates.
154 // Example of use:
155 // wxTransformMatrix mat = dc.GetTransformation();
156 // mat.Invert();
157 // mat.InverseTransformPoint(x, y, x1, y1);
158 // OR (shorthand:)
159 // dc.LogicalToDevice(x, y, x1, y1);
160 // The latter is slightly less efficient if we're doing several
161 // conversions, since the matrix is inverted several times.
162 // N.B. 'this' matrix is the inverse at this point
163 bool InverseTransformPoint(double x, double y, double& tx, double& ty) const;
164
165 double Get_scaleX();
166 double Get_scaleY();
167 double GetRotation();
168 void SetRotation(double rotation);
c801d85f 169
c801d85f
KB
170
171public:
555526fb
RR
172 double m_matrix[3][3];
173 bool m_isIdentity;
c801d85f
KB
174};
175
46dc76ba
RR
176
177/*
555526fb 178Chris Breeze reported, that
46dc76ba
RR
179some functions of wxTransformMatrix cannot work because it is not
180known if he matrix has been inverted. Be careful when using it.
555526fb 181*/
46dc76ba 182
c801d85f 183// Transform X value from logical to device
555526fb
RR
184// warning: this function can only be used for this purpose
185// because no rotation is involved when mapping logical to device coordinates
186// mirror and scaling for x and y will be part of the matrix
187// if you have a matrix that is rotated, eg a shape containing a matrix to place
188// it in the logical coordinate system, use TransformPoint
c801d85f
KB
189inline double wxTransformMatrix::TransformX(double x) const
190{
555526fb
RR
191 //normally like this, but since no rotation is involved (only mirror and scale)
192 //we can do without Y -> m_matrix[1]{0] is -sin(rotation angle) and therefore zero
193 //(x * m_matrix[0][0] + y * m_matrix[1][0] + m_matrix[2][0]))
194 return (m_isIdentity ? x : (x * m_matrix[0][0] + m_matrix[2][0]));
c801d85f
KB
195}
196
197// Transform Y value from logical to device
555526fb
RR
198// warning: this function can only be used for this purpose
199// because no rotation is involved when mapping logical to device coordinates
200// mirror and scaling for x and y will be part of the matrix
201// if you have a matrix that is rotated, eg a shape containing a matrix to place
202// it in the logical coordinate system, use TransformPoint
c801d85f
KB
203inline double wxTransformMatrix::TransformY(double y) const
204{
555526fb
RR
205 //normally like this, but since no rotation is involved (only mirror and scale)
206 //we can do without X -> m_matrix[0]{1] is sin(rotation angle) and therefore zero
207 //(x * m_matrix[0][1] + y * m_matrix[1][1] + m_matrix[2][1]))
208 return (m_isIdentity ? y : (y * m_matrix[1][1] + m_matrix[2][1]));
c801d85f 209}
555526fb 210
c801d85f
KB
211
212// Is the matrix the identity matrix?
555526fb 213// Each operation checks whether the result is still the identity matrix and sets a flag.
c801d85f
KB
214inline bool wxTransformMatrix::IsIdentity1(void) const
215{
555526fb 216 return
c77a6796
VZ
217 ( wxIsSameDouble(m_matrix[0][0], 1.0) &&
218 wxIsSameDouble(m_matrix[1][1], 1.0) &&
219 wxIsSameDouble(m_matrix[2][2], 1.0) &&
220 wxIsSameDouble(m_matrix[1][0], 0.0) &&
221 wxIsSameDouble(m_matrix[2][0], 0.0) &&
222 wxIsSameDouble(m_matrix[0][1], 0.0) &&
223 wxIsSameDouble(m_matrix[2][1], 0.0) &&
224 wxIsSameDouble(m_matrix[0][2], 0.0) &&
225 wxIsSameDouble(m_matrix[1][2], 0.0) );
c801d85f
KB
226}
227
228// Calculates the determinant of a 2 x 2 matrix
229inline double wxCalculateDet(double a11, double a21, double a12, double a22)
230{
555526fb 231 return a11 * a22 - a12 * a21;
c801d85f
KB
232}
233
c77a6796 234#endif // _WX_MATRIXH__