]> git.saurik.com Git - redis.git/commitdiff
doc changes
authorantirez <antirez@gmail.com>
Sat, 9 May 2009 07:58:26 +0000 (09:58 +0200)
committerantirez <antirez@gmail.com>
Sat, 9 May 2009 07:58:26 +0000 (09:58 +0200)
doc/ExpireCommand.html
doc/FAQ.html
doc/ReplicationHowto.html [new file with mode: 0644]
doc/SmoveCommand.html
doc/index.html

index 3af6cd413e1c7fda41cafe90fbf8e8157ca9e6a6..5f36dece73c8aba8664a083f9649699958ef1d36 100644 (file)
@@ -48,7 +48,7 @@ OK
 1: the timeout was set.
 0: the timeout was not set since the key already has an associated timeout, or the key does not exist.
 </pre><h2><a name="See also">See also</a></h2>
-<ul><li> []</li></ul>
+<ul><li> <a href="TypeCommand.html">TYPE</a></li></ul>
                 </div>
         
             </div>
index 84320715ea7133b074fa0a8c34152c3a085f422a..348351738909a61c71b4464e6534c2b387157d7a 100644 (file)
@@ -16,7 +16,7 @@
             <div id="pagecontent">
                 <div class="index">
 <!-- This is a (PRE) block.  Make sure it's left aligned or your toc title will be off. -->
-<b>FAQ: Contents</b><br>&nbsp;&nbsp;<a href="#Why I need Redis if there is already memcachedb, Tokyo Cabinet, ...?">Why I need Redis if there is already memcachedb, Tokyo Cabinet, ...?</a><br>&nbsp;&nbsp;<a href="#Isn't this key-value thing just hype?">Isn't this key-value thing just hype?</a><br>&nbsp;&nbsp;<a href="#Can I backup a Redis DB while the server is working?">Can I backup a Redis DB while the server is working?</a><br>&nbsp;&nbsp;<a href="#What's the Redis memory footprint?">What's the Redis memory footprint?</a><br>&nbsp;&nbsp;<a href="#I like Redis high level operations and features, but I don't like it takes everything in memory and I can't have a dataset larger the memory. Plans to change this?">I like Redis high level operations and features, but I don't like it takes everything in memory and I can't have a dataset larger the memory. Plans to change this?</a><br>&nbsp;&nbsp;<a href="#Ok but I absolutely need to have a DB larger than memory, still I need the Redis features">Ok but I absolutely need to have a DB larger than memory, still I need the Redis features</a><br>&nbsp;&nbsp;<a href="#I have an empty Redis server but INFO and logs are reporting megabytes of memory in use!">I have an empty Redis server but INFO and logs are reporting megabytes of memory in use!</a><br>&nbsp;&nbsp;<a href="#What happens if Redis runs out of memory?">What happens if Redis runs out of memory?</a><br>&nbsp;&nbsp;<a href="#How much time it takes to load a big database at server startup?">How much time it takes to load a big database at server startup?</a><br>&nbsp;&nbsp;<a href="#What Redis means actually?">What Redis means actually?</a><br>&nbsp;&nbsp;<a href="#Why did you started the Redis project?">Why did you started the Redis project?</a>
+<b>FAQ: Contents</b><br>&nbsp;&nbsp;<a href="#Why I need Redis if there is already memcachedb, Tokyo Cabinet, ...?">Why I need Redis if there is already memcachedb, Tokyo Cabinet, ...?</a><br>&nbsp;&nbsp;<a href="#Isn't this key-value thing just hype?">Isn't this key-value thing just hype?</a><br>&nbsp;&nbsp;<a href="#Can I backup a Redis DB while the server is working?">Can I backup a Redis DB while the server is working?</a><br>&nbsp;&nbsp;<a href="#What's the Redis memory footprint?">What's the Redis memory footprint?</a><br>&nbsp;&nbsp;<a href="#I like Redis high level operations and features, but I don't like it takes everything in memory and I can't have a dataset larger the memory. Plans to change this?">I like Redis high level operations and features, but I don't like it takes everything in memory and I can't have a dataset larger the memory. Plans to change this?</a><br>&nbsp;&nbsp;<a href="#Ok but I absolutely need to have a DB larger than memory, still I need the Redis features">Ok but I absolutely need to have a DB larger than memory, still I need the Redis features</a><br>&nbsp;&nbsp;<a href="#I have an empty Redis server but INFO and logs are reporting megabytes of memory in use!">I have an empty Redis server but INFO and logs are reporting megabytes of memory in use!</a><br>&nbsp;&nbsp;<a href="#What happens if Redis runs out of memory?">What happens if Redis runs out of memory?</a><br>&nbsp;&nbsp;<a href="#How much time it takes to load a big database at server startup?">How much time it takes to load a big database at server startup?</a><br>&nbsp;&nbsp;<a href="#Redis is single threaded, how can I exploit multiple CPU / cores?">Redis is single threaded, how can I exploit multiple CPU / cores?</a><br>&nbsp;&nbsp;<a href="#I'm using some form of key hashing for partitioning, but what about SORT BY?">I'm using some form of key hashing for partitioning, but what about SORT BY?</a><br>&nbsp;&nbsp;<a href="#What is the maximum number of keys a single Redis instance can hold?">What is the maximum number of keys a single Redis instance can hold?</a><br>&nbsp;&nbsp;<a href="#What Redis means actually?">What Redis means actually?</a><br>&nbsp;&nbsp;<a href="#Why did you started the Redis project?">Why did you started the Redis project?</a>
                 </div>
                 
                 <h1 class="wikiname">FAQ</h1>
@@ -34,7 +34,7 @@ So Redis offers more features:<br/><br/><ul><li> Keys can store different data t
 <ul><li> We wrote a <a href="http://retwis.antirez.com" target="_blank">simple Twitter Clone</a> using just Redis as database. Download the source code from the download section and imagine to write it with a plain key-value DB without support for lists and sets... it's <b>much</b> harder.</li></ul>
 <ul><li> Multiple DBs. Using the SELECT command the client can select different datasets. This is useful because Redis provides a MOVE atomic primitive that moves a key form a DB to another one, if the target DB already contains such a key it returns an error: this basically means a way to perform locking in distributed processing.</li></ul>
 <ul><li> <b>So what is Redis really about?</b> The User interface with the programmer. Redis aims to export to the programmer the right tools to model a wide range of problems. <b>Sets, Lists with O(1) push operation, lrange and ltrim, server-side fast intersection between sets, are primitives that allow to model complex problems with a key value database</b>.</li></ul>
-<h1><a name="Isn't this key-value thing just hype?">Isn't this key-value thing just hype?</a></h1>I imagine key-value DBs, in the short term future, to be used like you use memory in a program, with lists, hashes, and so on. With Redis it's like this, but this special kind of memory containing your data structures is shared, atomic, persistent.<br/><br/>When we write code it is obvious, when we take data in memory, to use the most sensible data structure for the work, right? Incredibly when data is put inside a relational DB this is no longer true, and we create an absurd data model even if our need is to put data and get this data back in the same order we put it inside (an ORDER BY is required when the data should be already sorted. Strange, dont' you think?).<br/><br/>Key-value DBs bring this back at home, to create sensible data models and use the right data structures for the problem we are trying to solve.<h1><a name="Can I backup a Redis DB while the server is working?">Can I backup a Redis DB while the server is working?</a></h1>Yes you can. When Redis saves the DB it actually creates a temp file, then rename(2) that temp file name to the destination file name. So even while the server is working it is safe to save the database file just with the <i>cp</i> unix command. Note that you can use master-slave replication in order to have redundancy of data, but if all you need is backups, cp or scp will do the work pretty well.<h1><a name="What's the Redis memory footprint?">What's the Redis memory footprint?</a></h1>Worst case scenario: 1 Million keys with the key being the natural numbers from 0 to 999999 and the string &quot;Hello World&quot; as value use 100MB on my Intel macbook (32bit). Note that the same data stored linearly in an unique string takes something like 16MB, this is the norm because with small keys and values there is a lot of overhead. Memcached will perform similarly.<br/><br/>With large keys/values the ratio is much better of course.<br/><br/>64 bit systems will use much more memory than 32 bit systems to store the same keys, especially if the keys and values are small, this is because pointers takes 8 bytes in 64 bit systems. But of course the advantage is that you can have a lot of memory in 64 bit systems, so to run large Redis servers a 64 bit system is more or less required.<h1><a name="I like Redis high level operations and features, but I don't like it takes everything in memory and I can't have a dataset larger the memory. Plans to change this?">I like Redis high level operations and features, but I don't like it takes everything in memory and I can't have a dataset larger the memory. Plans to change this?</a></h1>The whole key-value hype started for a reason: performances. Redis takes the whole dataset in memory and writes asynchronously on disk in order to be very fast, you have the best of both worlds: hyper-speed and persistence of data, but the price to pay is exactly this, that the dataset must fit on your computers RAM.<br/><br/>If the data is larger then memory, and this data is stored on disk, what happens is that the bottleneck of the disk I/O speed will start to ruin the performances. Maybe not in benchmarks, but once you have real load from multiple clients with distributed key accesses the data must come from disk, and the disk is damn slow. Not only, but Redis supports higher level data structures than the plain values. To implement this things on disk is even slower.<br/><br/>Redis will always continue to hold the whole dataset in memory because this days scalability requires to use RAM as storage media, and RAM is getting cheaper and cheaper. Today it is common for an entry level server to have 16 GB of RAM! And in the 64-bit era there are no longer limits to the amount of RAM you can have in theory.<h1><a name="Ok but I absolutely need to have a DB larger than memory, still I need the Redis features">Ok but I absolutely need to have a DB larger than memory, still I need the Redis features</a></h1>You may try to load a dataset larger than your memory in Redis and see what happens, basically if you are using a modern Operating System, and you have a lot of data in the DB that is rarely accessed, the OS's virtual memory implementation will try to swap rarely used pages of memory on the disk, to only recall this pages when they are needed. If you have many large values rarely used this will work. If your DB is big because you have tons of little values accessed at random without a specific pattern this will not work (at low level a page is usually 4096 bytes, and you can have different keys/values stored at a single page. The OS can't swap this page on disk if there are even few keys used frequently).<br/><br/>Another possible solution is to use both MySQL and Redis at the same time, basically take the state on Redis, and all the things that get accessed very frequently: user auth tokens, Redis Lists with chronologically ordered IDs of the last N-comments, N-posts, and so on. Then use MySQL as a simple storage engine for larger data, that is just create a table with an auto-incrementing ID as primary key and a large BLOB field as data field. Access MySQL data only by primary key (the ID). The application will run the high traffic queries against Redis but when there is to take the big data will ask MySQL for specific resources IDs.<h1><a name="I have an empty Redis server but INFO and logs are reporting megabytes of memory in use!">I have an empty Redis server but INFO and logs are reporting megabytes of memory in use!</a></h1>This may happen and it's prefectly ok. Redis objects are small C structures allocated and freed a lot of times. This costs a lot of CPU so instead of being freed, released objects are taken into a free list and reused when needed. This memory is taken exactly by this free objects ready to be reused.<h1><a name="What happens if Redis runs out of memory?">What happens if Redis runs out of memory?</a></h1>With modern operating systems malloc() returning NULL is not common, usually the server will start swapping and Redis performances will be disastrous so you'll know it's time to use more Redis servers or get more RAM.<br/><br/>However it is planned to add a configuration directive to tell Redis to stop accepting queries but instead to SAVE the latest data and quit if it is using more than a given amount of memory. Also the new INFO command (work in progress in this days) will report the amount of memory Redis is using so you can write scripts that monitor your Redis servers checking for critical conditions.<br/><br/>Update: redis SVN is able to know how much memory it is using and report it via the <a href="InfoCommand.html">INFO</a> command.<h1><a name="How much time it takes to load a big database at server startup?">How much time it takes to load a big database at server startup?</a></h1>Just an example on normal hardware: It takes about 45 seconds to restore a 2 GB database on a fairly standard system, no RAID. This can give you some kind of feeling about the order of magnitude of the time needed to load data when you restart the server.<h1><a name="What Redis means actually?">What Redis means actually?</a></h1>Redis means two things:
+<h1><a name="Isn't this key-value thing just hype?">Isn't this key-value thing just hype?</a></h1>I imagine key-value DBs, in the short term future, to be used like you use memory in a program, with lists, hashes, and so on. With Redis it's like this, but this special kind of memory containing your data structures is shared, atomic, persistent.<br/><br/>When we write code it is obvious, when we take data in memory, to use the most sensible data structure for the work, right? Incredibly when data is put inside a relational DB this is no longer true, and we create an absurd data model even if our need is to put data and get this data back in the same order we put it inside (an ORDER BY is required when the data should be already sorted. Strange, dont' you think?).<br/><br/>Key-value DBs bring this back at home, to create sensible data models and use the right data structures for the problem we are trying to solve.<h1><a name="Can I backup a Redis DB while the server is working?">Can I backup a Redis DB while the server is working?</a></h1>Yes you can. When Redis saves the DB it actually creates a temp file, then rename(2) that temp file name to the destination file name. So even while the server is working it is safe to save the database file just with the <i>cp</i> unix command. Note that you can use master-slave replication in order to have redundancy of data, but if all you need is backups, cp or scp will do the work pretty well.<h1><a name="What's the Redis memory footprint?">What's the Redis memory footprint?</a></h1>Worst case scenario: 1 Million keys with the key being the natural numbers from 0 to 999999 and the string &quot;Hello World&quot; as value use 100MB on my Intel macbook (32bit). Note that the same data stored linearly in an unique string takes something like 16MB, this is the norm because with small keys and values there is a lot of overhead. Memcached will perform similarly.<br/><br/>With large keys/values the ratio is much better of course.<br/><br/>64 bit systems will use much more memory than 32 bit systems to store the same keys, especially if the keys and values are small, this is because pointers takes 8 bytes in 64 bit systems. But of course the advantage is that you can have a lot of memory in 64 bit systems, so to run large Redis servers a 64 bit system is more or less required.<h1><a name="I like Redis high level operations and features, but I don't like it takes everything in memory and I can't have a dataset larger the memory. Plans to change this?">I like Redis high level operations and features, but I don't like it takes everything in memory and I can't have a dataset larger the memory. Plans to change this?</a></h1>The whole key-value hype started for a reason: performances. Redis takes the whole dataset in memory and writes asynchronously on disk in order to be very fast, you have the best of both worlds: hyper-speed and persistence of data, but the price to pay is exactly this, that the dataset must fit on your computers RAM.<br/><br/>If the data is larger then memory, and this data is stored on disk, what happens is that the bottleneck of the disk I/O speed will start to ruin the performances. Maybe not in benchmarks, but once you have real load from multiple clients with distributed key accesses the data must come from disk, and the disk is damn slow. Not only, but Redis supports higher level data structures than the plain values. To implement this things on disk is even slower.<br/><br/>Redis will always continue to hold the whole dataset in memory because this days scalability requires to use RAM as storage media, and RAM is getting cheaper and cheaper. Today it is common for an entry level server to have 16 GB of RAM! And in the 64-bit era there are no longer limits to the amount of RAM you can have in theory.<h1><a name="Ok but I absolutely need to have a DB larger than memory, still I need the Redis features">Ok but I absolutely need to have a DB larger than memory, still I need the Redis features</a></h1>You may try to load a dataset larger than your memory in Redis and see what happens, basically if you are using a modern Operating System, and you have a lot of data in the DB that is rarely accessed, the OS's virtual memory implementation will try to swap rarely used pages of memory on the disk, to only recall this pages when they are needed. If you have many large values rarely used this will work. If your DB is big because you have tons of little values accessed at random without a specific pattern this will not work (at low level a page is usually 4096 bytes, and you can have different keys/values stored at a single page. The OS can't swap this page on disk if there are even few keys used frequently).<br/><br/>Another possible solution is to use both MySQL and Redis at the same time, basically take the state on Redis, and all the things that get accessed very frequently: user auth tokens, Redis Lists with chronologically ordered IDs of the last N-comments, N-posts, and so on. Then use MySQL as a simple storage engine for larger data, that is just create a table with an auto-incrementing ID as primary key and a large BLOB field as data field. Access MySQL data only by primary key (the ID). The application will run the high traffic queries against Redis but when there is to take the big data will ask MySQL for specific resources IDs.<h1><a name="I have an empty Redis server but INFO and logs are reporting megabytes of memory in use!">I have an empty Redis server but INFO and logs are reporting megabytes of memory in use!</a></h1>This may happen and it's prefectly ok. Redis objects are small C structures allocated and freed a lot of times. This costs a lot of CPU so instead of being freed, released objects are taken into a free list and reused when needed. This memory is taken exactly by this free objects ready to be reused.<h1><a name="What happens if Redis runs out of memory?">What happens if Redis runs out of memory?</a></h1>With modern operating systems malloc() returning NULL is not common, usually the server will start swapping and Redis performances will be disastrous so you'll know it's time to use more Redis servers or get more RAM.<br/><br/>However it is planned to add a configuration directive to tell Redis to stop accepting queries but instead to SAVE the latest data and quit if it is using more than a given amount of memory. Also the new INFO command (work in progress in this days) will report the amount of memory Redis is using so you can write scripts that monitor your Redis servers checking for critical conditions.<br/><br/>Update: redis SVN is able to know how much memory it is using and report it via the <a href="InfoCommand.html">INFO</a> command.<h1><a name="How much time it takes to load a big database at server startup?">How much time it takes to load a big database at server startup?</a></h1>Just an example on normal hardware: It takes about 45 seconds to restore a 2 GB database on a fairly standard system, no RAID. This can give you some kind of feeling about the order of magnitude of the time needed to load data when you restart the server.<h1><a name="Redis is single threaded, how can I exploit multiple CPU / cores?">Redis is single threaded, how can I exploit multiple CPU / cores?</a></h1>Simply start multiple instances of Redis in different ports in the same box and threat them as different servers! Given that Redis is a distributed database anyway in order to scale you need to think in terms of multiple computational units. At some point a single box may not be enough anyway.<br/><br/>In general key-value databases are very scalable because of the property that different keys can stay on different servers independently.<br/><br/>In Redis there are client libraries such Redis-rb (the Ruby client) that are able to handle multiple servers automatically using <i>consistent hashing</i>. We are going to implement consistent hashing in all the other major client libraries. If you use a different language you can implement it yourself otherwise just hash the key before to SET / GET it from a given server. For example imagine to have N Redis servers, server-0, server-1, ..., server-N. You want to store the key &quot;foo&quot;, what's the right server where to put &quot;foo&quot; in order to distribute keys evenly among different servers? Just perform the <i>crc</i> = CRC32(&quot;foo&quot;), then <i>servernum</i> = <i>crc</i> % N (the rest of the division for N). This will give a number between 0 and N-1 for every key. Connect to this server and store the key. The same for gets.<br/><br/>This is a basic way of performing key partitioning, consistent hashing is much better and this is why after Redis 1.0 will be released we'll try to implement this in every widely used client library starting from Python and PHP (Ruby already implements this support).<h1><a name="I'm using some form of key hashing for partitioning, but what about SORT BY?">I'm using some form of key hashing for partitioning, but what about SORT BY?</a></h1>With <a href="SortCommand.html">SORT</a> BY you need that all the <i>weight keys</i> are in the same Redis instance of the list/set you are trying to sort. In order to make this possible we developed a concept called <i>key tags</i>. A key tag is a special pattern inside a key that, if preset, is the only part of the key hashed in order to select the server for this key. For example in order to hash the key &quot;foo&quot; I simply perform the CRC32 checksum of the whole string, but if this key has a pattern in the form of the characters {...} I only hash this substring. So for example for the key &quot;foo{bared}&quot; the key hashing code will simply perform the CRC32 of &quot;bared&quot;. This way using key tags you can ensure that related keys will be stored on the same Redis instance just using the same key tag for all this keys. Redis-rb already implements key tags.<h1><a name="What is the maximum number of keys a single Redis instance can hold?">What is the maximum number of keys a single Redis instance can hold?</a></h1>The latest versions of Redis in the Git repository are able to handle at least 150 million of keys per instance. We are working in order to experiment with larger values.<h1><a name="What Redis means actually?">What Redis means actually?</a></h1>Redis means two things:
 <ul><li> it's a joke on the word Redistribute (instead to use just a Relational DB redistribute your workload among Redis servers)</li><li> it means REmote DIctionary Server</li></ul>
 <h1><a name="Why did you started the Redis project?">Why did you started the Redis project?</a></h1>In order to scale <a href="http://lloogg.com" target="_blank">LLOOGG</a>. But after I got the basic server working I liked the idea to share the work with other guys, and Redis was turned into an open source project.
 
diff --git a/doc/ReplicationHowto.html b/doc/ReplicationHowto.html
new file mode 100644 (file)
index 0000000..e3e2349
--- /dev/null
@@ -0,0 +1,41 @@
+
+<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">
+<html>
+    <head>
+        <link type="text/css" rel="stylesheet" href="style.css" />
+    </head>
+    <body>
+        <div id="page">
+        
+            <div id='header'>
+            <a href="index.html">
+            <img style="border:none" alt="Redis Documentation" src="redis.png">
+            </a>
+            </div>
+        
+            <div id="pagecontent">
+                <div class="index">
+<!-- This is a (PRE) block.  Make sure it's left aligned or your toc title will be off. -->
+<b>ReplicationHowto: Contents</b><br>&nbsp;&nbsp;<a href="#Redis Replication Howto">Redis Replication Howto</a><br>&nbsp;&nbsp;&nbsp;&nbsp;<a href="#General Information">General Information</a><br>&nbsp;&nbsp;&nbsp;&nbsp;<a href="#How Redis replication works">How Redis replication works</a><br>&nbsp;&nbsp;&nbsp;&nbsp;<a href="#Configuration">Configuration</a>
+                </div>
+                
+                <h1 class="wikiname">ReplicationHowto</h1>
+
+                <div class="summary">
+                    
+                </div>
+
+                <div class="narrow">
+                    <h1><a name="Redis Replication Howto">Redis Replication Howto</a></h1><h2><a name="General Information">General Information</a></h2>Redis replication is a very simple to use and configure master-slave replication that allows slave Redis servers to be exact copies of master servers. The following are some very important facts about Redis replication:<br/><br/><ul><li> A master can have multiple slaves.</li><li> Slaves are able to accept other slaves connections, so instead to connect a number of slaves against the same master it is also possible to connect some of the slaves to other slaves in a graph-alike structure.</li><li> Redis replication is non-blocking on the master side, this means that the master will continue to serve queries while one or more slaves are performing the first synchronization. Instead replication is blocking on the slave side: while the slave is performing the first synchronization it can't reply to queries.</li><li> Replications can be used both for scalability, in order to have multiple slaves for read-only queries (for example heavy <a href="SortCommand.html">SORT</a> operations can be launched against slaves), or simply for data redundancy.</li><li> It is possible to use replication to avoid the saving process on the master side: just configure your master redis.conf in order to avoid saving at all (just comment al the &quot;save&quot; directives), then connect a slave configured to save from time to time.</li></ul>
+<h2><a name="How Redis replication works">How Redis replication works</a></h2>In order to start the replication, or after the connection closes in order resynchronize with the master, the client connects to the master and issues the SYNC command.<br/><br/>The master starts a background saving, and at the same time starts to collect all the new commands received that had the effect to modify the dataset. When the background saving completed the master starts the transfer of the database file to the slave, that saves it on disk, and then load it in memory. At this point the master starts to send all the accumulated commands, and all the new commands received from clients, that had the effect of a dataset modification.<br/><br/>You can try it yourself via telnet. Connect to the Redis port while the server is doing some work and issue the SYNC command. You'll see a bulk transfer and then every command received by the master will be re-issued in the telnet session.<br/><br/>Slaves are able to automatically reconnect when the master <code name="code" class="python">&lt;-&gt;</code> slave link goes down for some reason. If the master receives multiple concurrent slave synchronization requests it performs a single background saving in order to serve all them.<h2><a name="Configuration">Configuration</a></h2>To configure replication is trivial: just add the following line to the slave configuration file:
+<pre class="codeblock python" name="code">
+slaveof 192.168.1.1 6379
+</pre>
+Of course you need to replace 192.168.1.1 6379 with your master ip address (or hostname) and port.
+                </div>
+        
+            </div>
+        </div>
+    </body>
+</html>
+
index 9c9c54e420ccdefc98bb23b7d8ae6b7ba18c090e..5cbde97e56ed988222bfd65f9ce8a9d7b597244a 100644 (file)
@@ -28,7 +28,7 @@
                 <div class="narrow">
                     <h1><a name="SMOVE _srckey_ _dstkey_ _member_">SMOVE _srckey_ _dstkey_ _member_</a></h1>
 <i>Time complexity O(1)</i><blockquote>Move the specifided <i>member</i> from the set at <i>srckey</i> to the set at <i>dstkey</i>.This operation is atomic, in every given moment the element will appear tobe in the source or destination set for accessing clients.</blockquote>
-<blockquote>If the source set does not exist or does not contain the specified elementno operation is performed and zero is returned, otherwise the element isremoved from the source set and added to the destination set. On successone is returned, even if the element was already present in the destionationset.</blockquote>
+<blockquote>If the source set does not exist or does not contain the specified elementno operation is performed and zero is returned, otherwise the element isremoved from the source set and added to the destination set. On successone is returned, even if the element was already present in the destinationset.</blockquote>
 <blockquote>An error is raised if the source or destination keys contain a non Set value.</blockquote>
 <h2><a name="Return value">Return value</a></h2><a href="ReplyTypes.html">Integer reply</a>, specifically:<br/><br/><pre class="codeblock python" name="code">
 1 if the element was moved
index 0b040564b685452d72961b61f56db97425648c84..0489b34ab5643ecae53002834eb582b600427b3e 100644 (file)
@@ -26,7 +26,7 @@
                 </div>
 
                 <div class="narrow">
-                    <h1><a name="Redis Documentation">Redis Documentation</a></h1>Hello! The followings are pointers to different parts of the Redis Documentation.<br/><br/><ul><li> <a href="README.html">The README</a> is the best starting point to know more about the project.</li><li> <a href="CommandReference.html">The command reference</a> is a description of all the Redis commands with links to command specific pages.</li><li> <a href="ProtocolSpecification.html">The Protocol Specification</a> is all you need in order to implement a Redis client library for a missing language. PHP, Python, Ruby and Erlang are already supported.</li><li> <a href="TwitterAlikeExample.html">This is a tuturial about creating a Twitter clone using *only* Redis as database, no relational DB at all is used</a>, it is a good start to understand the key-value database paradigm.</li><li> <a href="FAQ.html">Our FAQ</a> contains of course some answers to common questions about Redis.</li><li> <a href="Benchmarks.html">The benchmark page</a> is about the speed performances of Redis.</li><li> <b>New!</b> video: <a href="http://mwrc2009.confreaks.com/13-mar-2009-19-24-redis-key-value-nirvana-ezra-zygmuntowicz.html" target="_blank">watch the Ezra Zygmuntowicz talk about Redis</a> to know the most important Redis ideas in few minutes.</li></ul>
+                    <h1><a name="Redis Documentation">Redis Documentation</a></h1>Hello! The followings are pointers to different parts of the Redis Documentation.<br/><br/><ul><li> <a href="README.html">The README</a> is the best starting point to know more about the project.</li><li> <a href="CommandReference.html">The command reference</a> is a description of all the Redis commands with links to command specific pages.</li><li> <a href="ProtocolSpecification.html">The Protocol Specification</a> is all you need in order to implement a Redis client library for a missing language. PHP, Python, Ruby and Erlang are already supported.</li><li> <a href="TwitterAlikeExample.html">This is a tuturial about creating a Twitter clone using *only* Redis as database, no relational DB at all is used</a>, it is a good start to understand the key-value database paradigm.</li><li> <a href="ReplicationHowto.html">The Redis Replication HOWTO</a> is what you need to read in order to understand how Redis master <code name="code" class="python">&lt;-&gt;</code> slave replication works.</li><li> <a href="FAQ.html">Our FAQ</a> contains of course some answers to common questions about Redis.</li><li> <a href="Benchmarks.html">The benchmark page</a> is about the speed performances of Redis.</li><li> <b>New!</b> video: <a href="http://mwrc2009.confreaks.com/13-mar-2009-19-24-redis-key-value-nirvana-ezra-zygmuntowicz.html" target="_blank">watch the Ezra Zygmuntowicz talk about Redis</a> to know the most important Redis ideas in few minutes.</li></ul>
                 </div>
         
             </div>