+/* Mark the page as used */
+static void vmMarkPageUsed(off_t page) {
+ off_t byte = page/8;
+ int bit = page&7;
+ server.vm_bitmap[byte] |= 1<<bit;
+}
+
+/* Mark N contiguous pages as used, with 'page' being the first. */
+static void vmMarkPagesUsed(off_t page, off_t count) {
+ off_t j;
+
+ for (j = 0; j < count; j++)
+ vmMarkPageUsed(page+count);
+}
+
+/* Mark the page as free */
+static void vmMarkPageFree(off_t page) {
+ off_t byte = page/8;
+ int bit = page&7;
+ server.vm_bitmap[byte] &= ~(1<<bit);
+}
+
+/* Mark N contiguous pages as free, with 'page' being the first. */
+static void vmMarkPagesFree(off_t page, off_t count) {
+ off_t j;
+
+ for (j = 0; j < count; j++)
+ vmMarkPageFree(page+count);
+}
+
+/* Test if the page is free */
+static int vmFreePage(off_t page) {
+ off_t byte = page/8;
+ int bit = page&7;
+ return server.vm_bitmap[byte] & bit;
+}
+
+/* Find N contiguous free pages storing the first page of the cluster in *first.
+ * Returns 1 if it was able to find N contiguous pages, otherwise 0 is
+ * returned.
+ *
+ * This function uses a simple algorithm: we try to allocate
+ * REDIS_VM_MAX_NEAR_PAGES sequentially, when we reach this limit we start
+ * again from the start of the swap file searching for free spaces.
+ *
+ * If it looks pretty clear that there are no free pages near our offset
+ * we try to find less populated places doing a forward jump of
+ * REDIS_VM_MAX_RANDOM_JUMP, then we start scanning again a few pages
+ * without hurry, and then we jump again and so forth...
+ *
+ * This function can be improved using a free list to avoid to guess
+ * too much, since we could collect data about freed pages.
+ *
+ * note: I implemented this function just after watching an episode of
+ * Battlestar Galactica, where the hybrid was continuing to say "JUMP!"
+ */
+static int vmFindContiguousPages(off_t *first, int n) {
+ off_t base, offset = 0, since_jump = 0, numfree = 0;
+
+ if (server.vm_near_pages == REDIS_VM_MAX_NEAR_PAGES) {
+ server.vm_near_pages = 0;
+ server.vm_next_page = 0;
+ }
+ server.vm_near_pages++; /* Yet another try for pages near to the old ones */
+ base = server.vm_next_page;
+
+ while(offset < server.vm_pages) {
+ off_t this = base+offset;
+
+ /* If we overflow, restart from page zero */
+ if (this >= server.vm_pages) {
+ this -= server.vm_pages;
+ if (this == 0) {
+ /* Just overflowed, what we found on tail is no longer
+ * interesting, as it's no longer contiguous. */
+ numfree = 0;
+ }
+ }
+ if (vmFreePage(this)) {
+ /* This is a free page */
+ numfree++;
+ /* Already got N free pages? Return to the caller, with success */
+ if (numfree == n) {
+ *first = this;
+ return 1;
+ }
+ } else {
+ /* The current one is not a free page */
+ numfree = 0;
+ }
+
+ /* Fast-forward if the current page is not free and we already
+ * searched enough near this place. */
+ since_jump++;
+ if (!numfree && since_jump >= REDIS_VM_MAX_RANDOM_JUMP/4) {
+ offset += random() % REDIS_VM_MAX_RANDOM_JUMP;
+ since_jump = 0;
+ /* Note that even if we rewind after the jump, we are don't need
+ * to make sure numfree is set to zero as we only jump *if* it
+ * is set to zero. */
+ } else {
+ /* Otherwise just check the next page */
+ offset++;
+ }
+ }
+ return 0;
+}
+